Research article Special Issues

The dual fuzzy matrix equations: Extended solution, algebraic solution and solution

  • Received: 14 September 2022 Revised: 10 December 2022 Accepted: 25 December 2022 Published: 12 January 2023
  • MSC : 03E72, 08A72, 26E50

  • In this paper, we propose a direct method to solve the dual fuzzy matrix equation of the form $ \mathbf{A}\widetilde{\mathbf{X}}+\widetilde{\mathbf{B}} = \mathbf{C}\widetilde{\mathbf{X}}+\widetilde{\mathbf{D}} $ with $ \mathbf{A} $, $ \mathbf{C} $ matrices of crisp coefficients and $ \widetilde{\mathbf{B}} $, $ \widetilde{\mathbf{D}} $ fuzzy number matrices. Extended solution and algebraic solution of the dual fuzzy matrix equations are defined and the relationship between them is investigated. This article focuses on the algebraic solution and a necessary and sufficient condition for the unique algebraic solution existence is given. By algebraic methods we not need to transform a dual fuzzy matrix equation into two crisp matrix equations to solve. In addition, the general dual fuzzy matrix equations and dual fuzzy linear systems are investigated based on the generalized inverses of the matrices. Especially, the solution formula and calculation method of the dual fuzzy matrix equation with triangular fuzzy number matrices are given and discussed. The effectiveness of the proposed method is illustrated with examples.

    Citation: Zengtai Gong, Jun Wu, Kun Liu. The dual fuzzy matrix equations: Extended solution, algebraic solution and solution[J]. AIMS Mathematics, 2023, 8(3): 7310-7328. doi: 10.3934/math.2023368

    Related Papers:

  • In this paper, we propose a direct method to solve the dual fuzzy matrix equation of the form $ \mathbf{A}\widetilde{\mathbf{X}}+\widetilde{\mathbf{B}} = \mathbf{C}\widetilde{\mathbf{X}}+\widetilde{\mathbf{D}} $ with $ \mathbf{A} $, $ \mathbf{C} $ matrices of crisp coefficients and $ \widetilde{\mathbf{B}} $, $ \widetilde{\mathbf{D}} $ fuzzy number matrices. Extended solution and algebraic solution of the dual fuzzy matrix equations are defined and the relationship between them is investigated. This article focuses on the algebraic solution and a necessary and sufficient condition for the unique algebraic solution existence is given. By algebraic methods we not need to transform a dual fuzzy matrix equation into two crisp matrix equations to solve. In addition, the general dual fuzzy matrix equations and dual fuzzy linear systems are investigated based on the generalized inverses of the matrices. Especially, the solution formula and calculation method of the dual fuzzy matrix equation with triangular fuzzy number matrices are given and discussed. The effectiveness of the proposed method is illustrated with examples.



    加载中


    [1] S. Abbasbandy, E. Babolian, M. Alavi, Numerical method for solving linear Fredholm fuzzy integral equations of the second kind, Chaos, Soliton. Fract., 31 (2007), 138–146. https://doi.org/10.1016/j.chaos.2005.09.036 doi: 10.1016/j.chaos.2005.09.036
    [2] T. Allahviranloo, M. Ghanbari, On the algebraic solution of fuzzy linear systems based on interval theory, Appl. Math. Model., 36 (2012), 5360–5379. https://doi.org/10.1016/j.apm.2012.01.002 doi: 10.1016/j.apm.2012.01.002
    [3] T. Allahviranloo, M. Ghanbar, A. A. Hosseinzadeh, E. Haghi, R. Nuraei, A note on "Fuzzy linear systems", Fuzzy Set. Syst., 177 (2011), 87–92. https://doi.org/10.1016/j.fss.2011.02.010 doi: 10.1016/j.fss.2011.02.010
    [4] T. Allahviranloo, E. Haghi, M. Ghanbari, The nearest symmetric fuzzy solution for a symmetric fuzzy linear system, An. Stiint. Univ. Ovidius Constanta, Ser. Mat., 20 (2013), 151–172. https://doi.org/10.2478/v10309-012-0011-x doi: 10.2478/v10309-012-0011-x
    [5] T. Allahviranloo, R. Nuraei, M. Ghanbari, E. Haghi, A. A. Hosseinzadeh, A new metric for L-R fuzzy numbers and its application in fuzzy linear systems, Soft Comput., 16 (2012), 1743–1754. https://doi.org/10.1007/s00500-012-0858-9 doi: 10.1007/s00500-012-0858-9
    [6] S. Abbasbandy, M. Otadi, M. Mosleh, Minimal solution of general dual fuzzy linear systems, Chaos, Soliton. Fract., 37 (2008), 1113–1124. https://doi.org/10.1016/j.chaos.2006.10.045 doi: 10.1016/j.chaos.2006.10.045
    [7] T. Allahviranloo, Uncertain information and linear systems, Cham: Springer, 2020. https://doi.org/10.1007/978-3-030-31324-1
    [8] G. Bojadziev, M. Bojadziev, Fuzzy logic control for business, finance, and management, Singapore: World Scientific, 2007.
    [9] M. Chehlabi, Solving fuzzy dual complex linear systems, J. Appl. Math. Comput., 60 (2019), 87–112. https://doi.org/10.1007/s12190-018-1204-x doi: 10.1007/s12190-018-1204-x
    [10] D. Driankov, H. Hellendoorn, M. Reinfrank, An introduction to fuzzy control, Berlin, Heidelberg: Springer, 1996.
    [11] D. Dubois, H. Prade, Fuzzy sets and systems: Theory and applications, New York: Academic Press, 1980.
    [12] R. Ezzati, A method for solving dual fuzzy general linear systems, Appl. Comput. Math., 7 (2008), 235–241.
    [13] M. A. Fariborzi Araghi, M. M. Hoseinzadeh, Solution of general dual fuzzy linear systems using ABS algorithm, Appl. Math. Sci., 6 (2012), 163–171.
    [14] M. Friedman, M. Ma, A. Kandel, Fuzzy linear systems, Fuzzy Set. Syst., 96 (1998), 201–209. https://doi.org/10.1016/S0165-0114(96)00270-9
    [15] M. Ghanbari, T. Allahviranloo, W. Pedrycz, A straightforward approach for solving dual fuzzy linear systems, Fuzzy Set. Syst., 435 (2022), 89–106. https://doi.org/10.1016/j.fss.2021.04.007 doi: 10.1016/j.fss.2021.04.007
    [16] M. Ghanbari, T. Allahviranloo, W. Pedrycz, On the rectangular fuzzy complex linear systems, Appl. Soft Comput., 91 (2020), 106196. https://doi.org/10.1016/j.asoc.2020.106196 doi: 10.1016/j.asoc.2020.106196
    [17] Z. T. Gong, X. B. Guo, K. Liu, Approximate solution of dual fuzzy matrix equations, Inform. Sci., 266 (2014), 112–133. https://doi.org/10.1016/j.ins.2013.12.054 doi: 10.1016/j.ins.2013.12.054
    [18] M. Ghanbari, R. Nuraei, Convergence of a semi-analytical method on the fuzzy linear systems, Iran. J. Fuzzy Syst., 11 (2014), 45–60. https://doi.org/10.22111/IJFS.2014.1623 doi: 10.22111/IJFS.2014.1623
    [19] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Set. Syst., 12 (1984), 215–229. https://doi.org/10.1016/0165-0114(84)90069-1
    [20] M. Ma, M. Friedman, A. Kandel, Duality in fuzzy linear systems, Fuzzy Set. Syst., 109 (2000), 55–58. https://doi.org/10.1016/S0165-0114(98)00102-X doi: 10.1016/S0165-0114(98)00102-X
    [21] S. Muzzioli, H. Reynaerts, Fuzzy linear systems of the form $A_{1}x+b_{1} = A_{2}x+b_{2}$, Fuzzy Set. Syst., 157 (2006), 939–951. https://doi.org/10.1016/j.fss.2005.09.005 doi: 10.1016/j.fss.2005.09.005
    [22] R. Nuraei, T. Allahviranloo, M. Ghanbari, Finding an inner estimation of the solution set of a fuzzy linear system, Appl. Math. Model., 37 (2013), 5148–5161. https://doi.org/10.1016/j.apm.2012.10.020 doi: 10.1016/j.apm.2012.10.020
    [23] M. Otadi, A New method for solving general dual fuzzy linear systems, J. Math. Ext., 7 (2013), 63–75.
    [24] X. D. Sun, S. Z. Guo, Solution to general fuzzy linear system and its necessary and sufficient condition, Fuzzy Inf. Eng., 1 (2009), 317–327.
    [25] A. Sarkar, G. Sahoo, U. C. Sahoo, Application of fuzzy logic in transport planning, Int. J. Soft Comput., 3 (2012), 1–21.
    [26] Z. F. Tian, X. B. Wu, Iterative method for dual fuzzy linear systems, In: Fuzzy information and engineering. Advances in soft computing, Berlin, Heidelberg: Springer, 2009.
    [27] C. X. Wu, M. Ma, Embedding problem of fuzzy number space: Part I, Fuzzy Set. Syst., 44 (1991), 33–38.
    [28] X. Z. Wang, Z. M. Zhong, M. H. Ha, Iteration algorithms for solving a system of fuzzy linear equations, Fuzzy Set. Syst., 119 (2005), 121–128. https://doi.org/10.1016/S0165-0114(98)00284-X doi: 10.1016/S0165-0114(98)00284-X
    [29] E. A. Youness, I. M. Mekawy, A study on fuzzy complex linear programming problems, Int. J. Contemp. Math. Sci., 7 (2012), 897–908.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1201) PDF downloads(81) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog