Herein the research objects, a hyperbolic quasi-linear system of governing equations was solved by an asymptotic method (far-field technique) with explaining a 1-D unsteady planar and cylindrically symmetric flows in magnetogasdynamics. The evolution equation was obtained by generalized Burger's equation. A relatively accurate systematic result of the evolution equation was gotten by us through the analytic homotopy analysis method (HAM). We are allowed by the method to determine the various effects of nonlinearity and geometrical spreading. One of the fundamental problems of conservation laws are represented by the non-linear waves from preliminary data.
Citation: Anoop Kumar, Aziz Khan, Rajan Arora, Thabet Abdeljawad, K. Karthikeyan, Mohamed Houas. Analysis of the far-field behavior of waves in magnetogasdynamic[J]. AIMS Mathematics, 2023, 8(3): 7329-7345. doi: 10.3934/math.2023369
Herein the research objects, a hyperbolic quasi-linear system of governing equations was solved by an asymptotic method (far-field technique) with explaining a 1-D unsteady planar and cylindrically symmetric flows in magnetogasdynamics. The evolution equation was obtained by generalized Burger's equation. A relatively accurate systematic result of the evolution equation was gotten by us through the analytic homotopy analysis method (HAM). We are allowed by the method to determine the various effects of nonlinearity and geometrical spreading. One of the fundamental problems of conservation laws are represented by the non-linear waves from preliminary data.
[1] | E. Becker, Chemically reacting flows, Ann. Rev. Fluid Mech., 4 (1972), 155–194. https://doi.org/10.1146/annurev.fl.04.010172.001103 doi: 10.1146/annurev.fl.04.010172.001103 |
[2] | P. Blythe, Nonlinear wave propagation in a relaxing gas, J. Fluid Mech., 37 (1969), 31–50. https://doi.org/10.1017/S0022112069000401 doi: 10.1017/S0022112069000401 |
[3] | M. Sichel, Y. Yin, Viscous transonic flow in relaxing gases, ZAMM, 56 (1976), 315–329. https://doi.org/10.1002/zamm.19760560706 doi: 10.1002/zamm.19760560706 |
[4] | P. Wegener, B. Wu, Gasdynamics and homogeneous nucleation, Adv. ColloidInterfac., 7 (1977), 325–417. https://doi.org/10.1016/0001-8686(77)85008-2 doi: 10.1016/0001-8686(77)85008-2 |
[5] | J. Clarke, M. Mc Chesney, Dynamics of relaxing gases, London: Butterworths, 1976. |
[6] | H. Ockenden, D. Spence, Nonlinear wave propagation in a relaxing gas, J. Fluid Mech., 39 (1969), 329–345. https://doi.org/10.1017/S0022112069002205 doi: 10.1017/S0022112069002205 |
[7] | D. Parker, Nonlinearity, relaxation and diffusion in acoustic and ultrasonics, J. Fluid Mech., 39 (1969), 793–815. https://doi.org/10.1017/S0022112069002473 doi: 10.1017/S0022112069002473 |
[8] | D. Parker, Propagation of rapid pulses through a relaxing gas, The Physics of Fluids, 15 (1972), 256. https://doi.org/10.1063/1.1693902 doi: 10.1063/1.1693902 |
[9] | W. Scott, N. Johannesen, Spherical nonlinear wave propagation in a vibrationally relaxing gas, Proc. R. Soc. Lond. A, 382 (1982), 103–134. https://doi.org/10.1098/rspa.1982.0092 doi: 10.1098/rspa.1982.0092 |
[10] | J. Hunter, J. Keller, Weakly nonlinear high frequency waves, Commun. Pur. Appl. Math., 36 (1983), 547–569. https://doi.org/10.1002/cpa.3160360502 doi: 10.1002/cpa.3160360502 |
[11] | V. Sharma, L. Singh, R. Ram, The progressive wave approach analyzing the decay of a saw tooth profile in magnetogasdynamics, The Physics of Fluids, 30 (1987), 1572. https://doi.org/10.1063/1.866222 doi: 10.1063/1.866222 |
[12] | V. Sharma, R. Sharma, B. Pandey, N. Gupta, Nonlinear analysis of a traffic flow, Z. Angew. Math. Phys., 40 (1989), 828–837. https://doi.org/10.1007/BF00945805 doi: 10.1007/BF00945805 |
[13] | Ch. Radha, V. Sharma, Propagation and interaction of waves in a relaxing gas, Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 352 (1995), 169–195. https://doi.org/10.1098/rsta.1995.0062 doi: 10.1098/rsta.1995.0062 |
[14] | S. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph. D Thesis, Shanghai Jiao Tong University, 1992. |
[15] | S. Liao, Beyond perturbation: introduction to the homotopy analysis method, Boca Raton: Chapman and Hall/CRC Press, 2003. |
[16] | S. Liao, Comparison between the homotopy analysis method and homotopy perturbation method, Appl. Math. Comput., 169 (2005), 1186–1194. https://doi.org/10.1016/j.amc.2004.10.058 doi: 10.1016/j.amc.2004.10.058 |
[17] | C. Liu, Y. Liu, Comparison of the general series method and the homotopy analysis method, Mod. Phys. Lett. B, 24 (2010), 1699–1706. https://doi.org/10.1142/S0217984910024079 doi: 10.1142/S0217984910024079 |
[18] | F. Allan, K. Al-Khaled, An approximation of the analytic solution of the shock wave equation, J. Comput. Appl. Math., 192 (2006), 301–309. https://doi.org/10.1016/j.cam.2005.05.009 doi: 10.1016/j.cam.2005.05.009 |
[19] | F. Allan, Derivation of the Adomian decomposition method using the homotopy analysis method, Appl. Math. Comput., 190 (2007), 6–14. https://doi.org/10.1016/j.amc.2006.12.074 doi: 10.1016/j.amc.2006.12.074 |
[20] | K. Hosseinia, M. Ilie, M. Mirzazadeh, A. Yusuf, T. Sulaiman, D. Baleanue, et al., An effective computational method to deal with a time-fractional nonlinear water wave equation in the Caputo sense, Math. Comput. Simulat., 187 (2021), 248–260. https://doi.org/10.1016/j.matcom.2021.02.021 doi: 10.1016/j.matcom.2021.02.021 |
[21] | K. Hosseini, M. Ilie, M. Mirzazadeh, D. Baleanu, An analytic study on the approximate solution of a nonlinear time-fractional Cauchy reaction-diffusion equation with the Mittag-Leffler law, Math. Method. Appl. Sci., 44 (2021), 6247–6258. https://doi.org/10.1002/mma.7059 doi: 10.1002/mma.7059 |
[22] | K. Hosseini, K. Sadri, M. Mirzazadeh, A. Ahmadian, Y.Chu, S. Salahshour, Reliable methods to look for analytical and numerical solutions of a nonlinear differential equation arising in heat transfer with the conformable derivative, Math. Method. Appl. Sci., in press. https://doi.org/10.1002/mma.7582 |
[23] | A. Loyinmi, T. Akinfe, An algorithm for solving the Burgers-Huxley equation using the Elzaki transform, SN Appl. Sci., 2 (2020), 7. https://doi.org/10.1007/s42452-019-1653-3 doi: 10.1007/s42452-019-1653-3 |
[24] | B. Sangani, K. Engolikar, R. Jana, M. Kumar, Homotopy analysis method for Burgers' equation: application of gradient descent approach, Authorea Preprints, in press. https://doi.org/10.22541/au.165942007.79344292/v1 |
[25] | L. Singh, A. Husain, M. Singh, An analytical study of strong non planar shock waves in magnetogasdynamics, Adv. Theor. Appl. Mech., 3 (2010), 291–297. |
[26] | S. Manickam, Ch. Radha, V. Sharma, Far field behaviour of waves in a vibrationally relaxing gas, Appl. Numer. Math., 45 (2003), 293–307. https://doi.org/10.1016/S0168-9274(02)00214-3 doi: 10.1016/S0168-9274(02)00214-3 |
[27] | R. Arora, M. Siddiqui, V. Singh, Solutions of inviscid Burgers' and Equal width wave equations by RDTM, IJAPM, 2 (2012), 212–214. https://doi.org/10.7763/IJAPM.2012.V2.92 doi: 10.7763/IJAPM.2012.V2.92 |