In this article we have introduced a metric named complex valued controlled metric type space, more generalized form of controlled metric type spaces. This concept is a new extension of the concept complex valued $ b $-metric type space and this one is different from complex valued extended $ b $-metric space. Using the idea of this new metric, some fixed point theorems involving Banach, Kannan and Fisher contractions type are proved. Some examples togetheran application are described to sustain our primary results.
Citation: Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Manar A. Alqudah, Thabet Abdeljawad. Fixed point theory in complex valued controlled metric spaces with an application[J]. AIMS Mathematics, 2022, 7(7): 11879-11904. doi: 10.3934/math.2022663
In this article we have introduced a metric named complex valued controlled metric type space, more generalized form of controlled metric type spaces. This concept is a new extension of the concept complex valued $ b $-metric type space and this one is different from complex valued extended $ b $-metric space. Using the idea of this new metric, some fixed point theorems involving Banach, Kannan and Fisher contractions type are proved. Some examples togetheran application are described to sustain our primary results.
[1] | A. Azam, J. Ahmad, P. Kumam, Common fixed point theorems for multi-valued mappings in complex valued metric spaces, J. Inequal. Appl., 2013 (2013), 578. https://doi.org/10.1186/1029-242X-2013-578 doi: 10.1186/1029-242X-2013-578 |
[2] | A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Func. Anal. Opt., 32 (2011), 243–253. https://doi.org/10.1080/01630563.2011.533046 doi: 10.1080/01630563.2011.533046 |
[3] | H. Afshari, S. M. A. Aleomraninejad, Some fixed point results of $F$-contraction mapping in $D$-metric spaces by Samet's method, J. Math. Anal. Model., 2 (2021), 1–8. https://doi.org/10.48185/jmam.v2i3.299 doi: 10.48185/jmam.v2i3.299 |
[4] | M. A. Almalahi, S. K. Panchal, Existence and $delta$-approximate solution of implicit fractional pantographequations in the frame of Hilfer-Katugampola operator, J. Fracy. Calc. Nonlinear Syst., 2 (2021), 1–17. https://doi.org/10.48185/jfcns.v2i1.59 doi: 10.48185/jfcns.v2i1.59 |
[5] | M. S. Aslam, M. F. Bota, M. S. R. Chowdhury, L. Guran, N. Saleem, Common fixed points technique for existence of a solution of Urysohn type integral equations system in complex valued $b$-metric spaces, Mathematics, 9 (2021), 400. https://doi.org/10.3390/math9040400 doi: 10.3390/math9040400 |
[6] | A. Belhenniche, S. Benahmed, L. Guran, Existence of a solution for integral Urysohn type equations system via fixed points technique in complex valued extended $b$-metric spaces, J. Prime Res. Math., 16 (2020), 109–122. |
[7] | I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., 30 (1989), 26–37. |
[8] | N. Bouteraa, S. Benaicha, H. Djourdem, On the existence and multiplicity of positive radial solutions for nonlinear elliptic equation on bounded annular domains via fixed point index, Maltepe J. Math., 1 (2019), 30–47. |
[9] | S. Banach, Sur les operation dans les ensembles abstraits et applications aux equations integrals, Fund. Math., 3 (1922), 133–181. |
[10] | S. Barootkoob, H. Lakzian, Z. D. Mitrović, The best proximity points for weak MT-cyclic Reich type contractions, J. Math. Ext., 16 (2022), 1–21. https://doi.org/10.30495/JME.2022.1886 doi: 10.30495/JME.2022.1886 |
[11] | S. Chandok, D. Kumar, Some common fixed point results for rational type contraction mappings in complex valued metric spaces, J. Oper., 2013 (2013), 1–7. https://doi.org/10.1155/2013/813707 doi: 10.1155/2013/813707 |
[12] | S. K. Chatterjea, Fixed point theorem, C. R. Acad. Bulgare Sci., 25 (1972), 727–730. |
[13] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11. |
[14] | S. Czerwik, Nonlinear set-valued contraction mappings in $b$-metric spaces, Atti Sem. Mat. Univ. Modena, 46 (1998), 263–276. |
[15] | M. Edelstein, On fixed and periodic points under contractive mappings, J. Lond. Math. Soc., 1 (1962), 74–79. https://doi.org/10.1112/jlms/s1-37.1.74 doi: 10.1112/jlms/s1-37.1.74 |
[16] | H. A. Hammad, H. Aydi, Y. U. Gaba, Exciting fixed point results on a novel space with supportive applications, J. Funct. Space., 2021 (2021), 6613774. https://doi.org/10.1155/2021/6613774 doi: 10.1155/2021/6613774 |
[17] | Z. Hammouch, M. Yavuz, N. Özdemir, Numerical solutions and synchronization of a variable-order fractional chaotic system, Math. Model. Numer. Simul. Appl., 1 (2021), 11–23. https://doi.org/10.53391/mmnsa.2021.01.002 doi: 10.53391/mmnsa.2021.01.002 |
[18] | E. Karapınar, A short survey on the recent fixed point results on $b$-metric spaces, Constr. Math. Anal., 1 (2018), 15–44. https://doi.org/10.33205/cma.453034 doi: 10.33205/cma.453034 |
[19] | T. Kamran, M. Samreen, Q. Ul Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019 |
[20] | D. Lateef, Fisher type fixed point results in controlled metric spaces, J. Math. Comput. Sci., 20 (2020), 234–240. http://dx.doi.org/10.22436/jmcs.020.03.06 doi: 10.22436/jmcs.020.03.06 |
[21] | D. Lateef, Kannan fixed point theorem in $C$-metric spaces, J. Math. Anal., 10 (2019), 34–40. |
[22] | Z. H. Ma, L. N. Jiang, H. K. Sun, $C^*$-algebra valued metric spaces and related fixed point theorems, Fixed Point Theory Appl., 2014 (2014), 206. https://doi.org/10.1186/1687-1812-2014-206 doi: 10.1186/1687-1812-2014-206 |
[23] | N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and related contraction principle, Mathematics, 6 (2018), 1–6. https://doi.org/10.3390/math6100194 doi: 10.3390/math6100194 |
[24] | N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, An improvement of recent results in controlled metric type spaces, Filomat, 34 (2020), 1853–1862, https://doi.org/10.2298/FIL2006853M doi: 10.2298/FIL2006853M |
[25] | N. Saleem, J. Vujaković, W. U. Baloch, S. Radenović, Coincidence point results for multivalued Suzuki type mappings using $\Theta$-contraction in $b$-metric spaces, Mathematics, 7 (2019), 1017. https://doi.org/10.3390/math7111017 doi: 10.3390/math7111017 |
[26] | J. Patil, B. Hardan, A. Bachhav, A common coincidence of fixed point for generalized Caristi fixed point theorem, J. Math. Anal. Model., 2 (2021), 40–46. https://doi.org/10.48185/jmam.v2i1.151 doi: 10.48185/jmam.v2i1.151 |
[27] | J. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawai, Common fixed points of almost generalized $(\psi, \varphi)_{s}$-contractive mapping in ordered $b$-metric spaces, Fixed Point Theory Appl., 2013 (2013), 159. https://doi.org/10.1186/1687-1812-2013-159 doi: 10.1186/1687-1812-2013-159 |
[28] | K. P. R. Rao, P. R. Swamy, J. R. Prasad, A common fixed point theorem in complex valued $b$-metric spaces, Bull. Math. Stat. Res., 1 (2013), 1–8. |
[29] | A. Som Babu, T. Došenović, MD. Mustaq Ali, S. Radenović, K. P. R. Rao, Some presic type results in $b$-dislocated metric spaces, Constr. Math. Anal., 2 (2019), 40–48. https://doi.org/10.33205/cma.499171 doi: 10.33205/cma.499171 |
[30] | E. Tarafdar, An approach to fixed-point theorems on uniform spaces, Trans. Amer. Math. Soc., 191 (1974), 209–225. https://doi.org/10.2307/1996991 doi: 10.2307/1996991 |
[31] | N. Ullah, M. S. Shagari, A. Azam, Fixed point theorems in complex valued extended $b$ metric spaces, Moroccan J. Pure Appl. Anal., 5 (2019), 140–163. https://doi.org/10.2478/mjpaa-2019-0011 doi: 10.2478/mjpaa-2019-0011 |