The aim of this article is to obtain common fixed point results on complex-valued extended b-metric spaces for rational contractions involving control functions of two variables. Our theorems generalize some famous results in the literature. We supply an example to show the originality of our main result. As an application, we develop common fixed point results for rational contractions involving control functions of one variable in the class of complex-valued extended b-metric spaces.
Citation: Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Hassen Aydi, Manuel De La Sen. Rational contractions on complex-valued extended b-metric spaces and an application[J]. AIMS Mathematics, 2023, 8(2): 3338-3352. doi: 10.3934/math.2023172
[1] | Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977 |
[2] | Amer Hassan Albargi . Common fixed point theorems on complex valued extended b-metric spaces for rational contractions with application. AIMS Mathematics, 2023, 8(1): 1360-1374. doi: 10.3934/math.2023068 |
[3] | Afrah Ahmad Noman Abdou . A fixed point approach to predator-prey dynamics via nonlinear mixed Volterra–Fredholm integral equations in complex-valued suprametric spaces. AIMS Mathematics, 2025, 10(3): 6002-6024. doi: 10.3934/math.2025274 |
[4] | Asifa Tassaddiq, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Durdana Lateef, Farha Lakhani . On common fixed point results in bicomplex valued metric spaces with application. AIMS Mathematics, 2023, 8(3): 5522-5539. doi: 10.3934/math.2023278 |
[5] | Sudipta Kumar Ghosh, Ozgur Ege, Junaid Ahmad, Ahmad Aloqaily, Nabil Mlaiki . On elliptic valued b-metric spaces and some new fixed point results with an application. AIMS Mathematics, 2024, 9(7): 17184-17204. doi: 10.3934/math.2024835 |
[6] | Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Manar A. Alqudah, Thabet Abdeljawad . Fixed point theory in complex valued controlled metric spaces with an application. AIMS Mathematics, 2022, 7(7): 11879-11904. doi: 10.3934/math.2022663 |
[7] | Abdullah Shoaib, Poom Kumam, Shaif Saleh Alshoraify, Muhammad Arshad . Fixed point results in double controlled quasi metric type spaces. AIMS Mathematics, 2021, 6(2): 1851-1864. doi: 10.3934/math.2021112 |
[8] | Badriah Alamri, Jamshaid Ahmad . Fixed point results in b-metric spaces with applications to integral equations. AIMS Mathematics, 2023, 8(4): 9443-9460. doi: 10.3934/math.2023476 |
[9] | Afrah A. N. Abdou, Maryam F. S. Alasmari . Fixed point theorems for generalized α-ψ-contractive mappings in extended b-metric spaces with applications. AIMS Mathematics, 2021, 6(6): 5465-5478. doi: 10.3934/math.2021323 |
[10] | Khaled Berrah, Abdelkrim Aliouche, Taki eddine Oussaeif . Applications and theorem on common fixed point in complex valued b-metric space. AIMS Mathematics, 2019, 4(3): 1019-1033. doi: 10.3934/math.2019.3.1019 |
The aim of this article is to obtain common fixed point results on complex-valued extended b-metric spaces for rational contractions involving control functions of two variables. Our theorems generalize some famous results in the literature. We supply an example to show the originality of our main result. As an application, we develop common fixed point results for rational contractions involving control functions of one variable in the class of complex-valued extended b-metric spaces.
Fixed point theory is one of the celebrated and conventional theories in mathematics which has comprehensive applications in different fields. In this theory, the first and pioneer result is the Banach contraction principle in which the underlying space is the complete metric space. The fundamental establishment of a metric space was naturally accomplished by M. Frechet in 1906. Motivated from the influence of this genuine idea to fixed point theory, various authors have undertaken several extensions of this idea in recent years.
In 2011, Azam et al. [1] gave the notion of a complex-valued metric space (CVMS) and proved common fixed points of two single-valued mappings. Since the concept to introduce complex-valued metric spaces is designed to define rational expressions that cannot be defined in cone metric spaces, and therefore several results of fixed point theory cannot be proved to cone metric spaces, so complex-valued metric spaces form a special class of cone metric spaces. Actually, the definition of a cone metric space banks on the underlying Banach space which is not a division Ring. However, we can study generalizations of many results of fixed point theory involving divisions in complex-valued metric spaces. Moreover, this idea is also used to define complex-valued Banach spaces [2] which offer a lot of scopes for further investigations.
Subsequently, Rouzkard et al. [3] added a rational expression in the Azam's contraction and generalized the main work of Azam et al. [1]. Later on, Sintunavarat et al. [4] replaced the constants involved in the contraction with control functions of one variable and generalized the papers of Azam et al. [1] and Rouzkard et al. [3]. Sitthikul et al. [5] used control functions of two variables in the contraction and established common fixed point theorems in the context of a CVMS. In 2014, Mukheimer [6] extended this concept to complex-valued b-metric spaces (CVbMSs). In recent times, Naimatullah et al. [7] gave the concept of a complex-valued extended b-metric space (CVEbMS) as an extension of a CVbMS and proved some fixed point results for generalized contractions. For more details in this direction, we refer the readers to [8,9,10,11,12,13,14,15].
In this article, we utilize the notion of a complex-valued extended b -metric space and obtain common fixed point results for rational contractions involving control functions of two variables. We also provide a non-trivial example to show the originality of our main results. As an application, we investigate the solution of a Urysohn integral equation.
The notion of a complex-valued metric space (CVMS) is given as follows:
Definition 2.1. (See [1]) Let υ1,υ2∈C. A partial order ≾ on C is defined as follows:
υ1≾υ2 ⇔ Re(υ1)⩽Re(υ2), Im(υ1)⩽Im(υ2). |
It follows that
υ1≾υ2, |
if one of these assertions is satisfied:
(a) Re(υ1)=Re(υ2), Im(υ1)<Im(υ2),(b) Re(υ1)<Re(υ2), Im(υ1)=Im(υ2),(c) Re(υ1)<Re(υ2), Im(υ1)<Im(υ2),(d) Re(υ1)=Re(υ2), Im(υ1)=Im(υ2). |
Definition 2.2. (See [1]) Let F≠∅ and ς:F×F→C be a mapping satisfying
(i) 0≾ς(υ,ℏ), and ς(υ,ℏ)=0 ⇔ υ=ℏ;
(ii) ς(υ,ℏ)=ς(ℏ,υ);
(iii) ς(υ,ℏ)≾ς(υ,ϱ)+ς(ϱ,ℏ),
for all υ,ℏ,ϱ∈F, then (F,ς) is said to be a complex-valued metric space.
Example 2.1. (See [1]) Let F=[0,1] and υ,ℏ∈F. Define ς:F×F→C by
ς(υ,ℏ)={0, if υ=ℏ,i2, if υ≠ℏ. |
Then (F,ς) is a complex-valued metric space. $
Mukheimer [6] presented the concept of a complex-valued b-metric space (CVbMS).
Definition 2.3. (See [6]) Let F≠∅, π≥1 and ς:F×F→C be a mapping satisfying
(i) 0≾ς(υ,ℏ) and ς(υ,ℏ)=0 ⇔ υ=ℏ;
(ii) ς(υ,ℏ)=ς(ℏ,υ);
(iii) ς(υ,ℏ)≾π[ς(υ,ϱ)+ς(ϱ,ℏ)],
for all υ,ℏ,ϱ∈F, then (F,ς) is said to be a complex-valued b- metric space (CVbMS).
Example 2.2. (See [6]) Let F=[0,1]. Define ς:F×F→C by
ς(υ,ℏ)=|υ−ℏ|2+i|υ−ℏ|2 |
for all υ,ℏ∈F. Then (F,ς) is a complex-valued b-metric space with π=2.
In 2019, Naimatullah et al. [7] defined the concept of a complex valued extended b-metric space as follows:
Definition 2.4. (See [7]) Let F≠∅, φ:F×F→[1,∞) and ς:F×F→C be a mapping satisfying
(i) 0≾ς(υ,ℏ), for all υ,ℏ∈F and ς(υ,ℏ)=0 if and only if υ=ℏ;
(ii) ς(υ,ℏ)=ς(ℏ,υ) for all υ,ℏ∈F;
(iii) ς(υ,ℏ)≾φ(υ,ℏ)[ς(υ,ϱ)+ς(ϱ,ℏ)], for all υ,ℏ,ϱ∈F.
Then (F,ς) is said to be a complex-valued extended b-metric space (CVEbMS).
Example 2.3. (See [7]) Given F≠∅. Let φ:F×F→[1,∞) be defined by
φ(υ,ℏ)=1+υ+ℏυ+ℏ |
and ς:F×F→C by
(i) ς(υ,ℏ)=iυℏ for all 0<υ,ℏ≤1;
(ii) ς(υ,ℏ)=0⇔υ=ℏ for all 0≤υ,ℏ≤1;
(iii) ς(υ,0)=ς(0,υ)=iυ for all 0<υ≤1.
Then (F,ς) is a CVEbMS.
Lemma 2.1. (See [7]) Let (F,ς) be a CVEbMS and let {υı} ⊆F. Then {υı} converges to υ if and only if |ς(υı,υ)|→0 when ı→∞.
Lemma 2.2. (See [7]) Let (F,ς) be a CVEbMS and let {υı} ⊆F. Then {υı} is a Cauchy sequence if and only if |ς(υı,υı+m)|→0 when ı→∞, for each m∈N.
In this paper, we obtain common fixed point results on a complex-valued extended b-metric space (CVEbMS) for rational contractions involving control functions of two variables. Applying our results, we derive the main theorems of Azam et al. [1], Rouzkard et al. [3], Sintunavarat et al. [4] and Sitthikul et al. [5] for single-valued mappings in CVEbMSs.
We state and prove the following proposition which is required in the proof of our main result.
Proposition 3.1. Let υ0∈ F. Define the sequence {υı} by
υ2ı+1=ℑ1υ2ı and υ2ı+2=ℑ2υ2ı+1 |
for all ı=0,1,⋯. Assume that there exists ρ:F×F→[0,1) satisfying
ρ(ℑ2ℑ1υ,ℏ)≤ρ(υ,ℏ) and ρ(υ,ℑ1ℑ2ℏ)≤ρ(υ,ℏ) |
for all υ,ℏ∈F. Then
ρ(υ2ı,ℏ)≤ρ(υ0,ℏ) and ρ(υ,υ2ı+1)≤ρ(υ,υ1) |
for all υ,ℏ∈F and ı=0,1,⋯.
Lemma 3.1. Let ρ,κ:F×F→[0,1) and υ,ℏ∈ F. If ℑ1,ℑ2:F→F satisfies
ς(ℑ1υ,ℑ2ℑ1υ)⪯ρ(υ,ℑ1υ)ς(υ,ℑ1υ)+κ(υ,ℑ1υ)ς(υ,ℑ1υ)ς(ℑ1υ,ℑ2ℑ1υ)1+ς(υ,ℑ1υ), |
ς(ℑ1ℑ2ℏ,ℑ2ℏ)⪯ρ(ℑ2ℏ,ℏ)ς(ℑ2ℏ,ℏ)+κ(ℑ2ℏ,ℏ)ς(ℑ2ℏ,ℑ1ℑ2ℏ)ς(ℏ,ℑ2ℏ)1+ς(ℑ2ℏ,ℏ), |
then
|ς(ℑ1υ,ℑ2ℑ1υ)|≤ρ(υ,ℑ1υ)|ς(υ,ℑ1υ)|+κ(υ,ℑ1υ)|ς(ℑ1υ,ℑ2ℑ1υ)|, |
|ς(ℑ1ℑ2ℏ,ℑ2ℏ)|≤ρ(ℑ2ℏ,ℏ)|ς(ℑ2ℏ,ℏ)|+κ(ℑ2ℏ,ℏ)|ς(ℑ2ℏ,ℑ1ℑ2ℏ)|. |
Proof. We can write
|ς(ℑ1υ,ℑ2ℑ1υ)|≤|ρ(υ,ℑ1υ)ς(υ,ℑ1υ)+κ(υ,ℑ1υ)ς(υ,ℑ1υ)ς(ℑ1υ,ℑ2ℑ1υ)1+ς(υ,ℑ1υ)|≤ρ(υ,ℑ1υ)|ς(υ,ℑ1υ)|+κ(υ,ℑ1υ)|ς(υ,ℑ1υ)1+ς(υ,ℑ1υ)||ς(ℑ1υ,ℑ2ℑ1υ)|≤ρ(υ,ℑ1υ)|ς(υ,ℑ1υ)|+κ(υ,ℑ1υ)|ς(ℑ1υ,ℑ2ℑ1υ)|. |
Similarly, we have
|ς(ℑ1ℑ2ℏ,ℑ2ℏ)|≤|ρ(ℑ2ℏ,ℏ)ς(ℑ2ℏ,ℏ)+κ(ℑ2ℏ,ℏ)ς(ℑ2ℏ,ℑ1ℑ2ℏ)ς(ℏ,ℑ2ℏ)1+ς(ℑ2ℏ,ℏ)|≤ρ(ℑ2ℏ,ℏ)|ς(ℑ2ℏ,ℏ)|+κ(ℑ2ℏ,ℏ)|ς(ℏ,ℑ2ℏ)1+ς(ℑ2ℏ,ℏ)||ς(ℑ2ℏ,ℑ1ℑ2ℏ)|≤ρ(ℑ2ℏ,ℏ)|ς(ℑ2ℏ,ℏ)|+κ(ℑ2ℏ,ℏ)|ς(ℑ2ℏ,ℑ1ℑ2ℏ)|. |
Theorem 3.1. Let (F,ς) be a complete CVEbMS, φ:F×F→[1,∞) and let ℑ1,ℑ2: F →F. If there exist mappings ρ,κ,μ:F×F→[0,1) such that for all υ,ℏ∈ F,
(a) ρ(ℑ2ℑ1υ,ℏ)≤ρ(υ,ℏ) and ρ(υ,ℑ1ℑ2ℏ)≤ρ(υ,ℏ),
κ(ℑ2ℑ1υ,ℏ)≤κ(υ,ℏ) and κ(υ,ℑ1ℑ2ℏ)≤κ(υ,ℏ),
μ(ℑ2ℑ1υ,ℏ)≤μ(υ,ℏ) and μ(υ,ℑ1ℑ2ℏ)≤μ(υ,ℏ),
(b) ρ(υ,ℏ)+κ(υ,ℏ)+μ(υ,ℏ)<1,
(c)
ς(ℑ1υ,ℑ2ℏ)⪯ρ(υ,ℏ)ς(υ,ℏ)+κ(υ,ℏ)ς(υ,ℑ1υ)ς(ℏ,ℑ2ℏ)1+ς(υ,ℏ)+μ(υ,ℏ)ς(ℏ,ℑ1υ)ς(υ,ℑ2ℏ)1+ς(υ,ℏ), | (3.1) |
(d) For each υ0∈F, λ=ρ(υ0,υ1)1−κ(υ0,υ1)<1 and limı,m→∞φ(υı,υm)λ<1 hold, whenever the sequence {υı} is defined by
υ2ı+1=ℑ1υ2ı and υ2ı+2=ℑ2υ2ı+1, | (3.2) |
then ℑ1 and ℑ2 have a unique common fixed point.
Proof. Let υ,ℏ∈F. From (3.1), we have
ς(ℑ1υ,ℑ2ℑ1υ)⪯ρ(υ,ℑ1υ)ς(υ,ℑ1υ)+κ(υ,ℑ1υ)ς(υ,ℑ1υ)ς(ℑ1υ,ℑ2ℑ1υ)1+ς(υ,ℑ1υ)=ρ(υ,ℑ1υ)ς(υ,ℑ1υ)+κ(υ,ℑ1υ)ς(υ,ℑ1υ)ς(ℑ1υ,ℑ2ℑ1υ)1+ς(υ,ℑ1υ). |
By Lemma 3.1, we get
|ς(ℑ1υ,ℑ2ℑ1υ)|≤ρ(υ,ℑ1υ)|ς(υ,ℑ1υ)|+κ(υ,ℑ1υ)|ς(ℑ1υ,ℑ2ℑ1υ)|. | (3.3) |
Similarly, we have
ς(ℑ1ℑ2ℏ,ℑ2ℏ)⪯ρ(ℑ2ℏ,ℏ)ς(ℑ2ℏ,ℏ)+κ(ℑ2ℏ,ℏ)ς(ℑ2ℏ,ℑ1ℑ2ℏ)ς(ℏ,ℑ2ℏ)1+ς(ℑ2ℏ,ℏ)+μ(υ,ℏ)ς(ℏ,ℑ1ℑ2ℏ)ς(ℑ2ℏ,ℑ2ℏ)1+ς(ℑ2ℏ,ℏ)=ρ(ℑ2ℏ,ℏ)ς(ℑ2ℏ,ℏ)+κ(ℑ2ℏ,ℏ)ς(ℑ2ℏ,ℑ1ℑ2ℏ)ς(ℏ,ℑ2ℏ)1+ς(ℑ2ℏ,ℏ). |
By Lemma 3.1, we get
|ς(ℑ1ℑ2ℏ,ℑ2ℏ)|≤ρ(ℑ2ℏ,ℏ)|ς(ℑ2ℏ,ℏ)|+κ(ℑ2ℏ,ℏ)|ς(ℑ2ℏ,ℑ1ℑ2ℏ)|. | (3.4) |
Let υ0 be an arbitrary point in F and the sequence {υı} be defined by (3.2). From Proposition 3.1, (3.3) and (3.4) and for all ı=0,1,2,⋯,
|ς(υ2ı+1,υ2ı)|=|ς(ℑ1ℑ2υ2ı−1,ℑ2υ2ı−1)|≤ρ(ℑ2υ2ı−1,υ2ı−1)|ς(ℑ2υ2ı−1,υ2ı−1)|+κ(ℑ2υ2ı−1,υ2ı−1)|ς(ℑ2υ2ı−1,ℑ1ℑ2υ2ı−1)|=ρ(υ2ı,υ2ı−1)|ς(υ2ı,υ2ı−1)|+κ(υ2ı,υ2ı−1)|ς(υ2ı,υ2ı+1)|≤ρ(υ0,υ2ı−1)|ς(υ2ı,υ2ı−1)|+κ(υ0,υ2ı−1)|ς(υ2ı,υ2ı+1)|≤ρ(υ0,υ1)|ς(υ2ı,υ2ı−1)|+κ(υ0,υ1)|ς(υ2ı,υ2ı+1)|, |
which implies that
|ς(υ2ı+1,υ2ı)|≤ρ(υ0,υ1)1−κ(υ0,υ1)|ς(υ2ı,υ2ı−1)|. | (3.5) |
Similarly, we have
|ς(υ2ı+2,υ2ı+1)|=|ς(ℑ2ℑ1υ2ı,ℑ1υ2ı)|≤ρ(υ2ı,ℑ1υ2ı)|ς(υ2ı,ℑ1υ2ı)|+κ(υ2ı,ℑ1υ2ı)|ς(ℑ1υ2ı,ℑ2ℑ1υ2ı)|=ρ(υ2ı,υ2ı+1)|ς(υ2ı,υ2ı+1)|+κ(υ2ı,υ2ı+1)|ς(υ2ı+1,υ2ı+2)|≤ρ(υ0,υ2ı+1)|ς(υ2ı,υ2ı+1)|+κ(υ0,υ2ı+1)|ς(υ2ı+1,υ2ı+2)|≤ρ(υ0,υ1)|ς(υ2ı,υ2ı+1)|+κ(υ0,υ1)|ς(υ2ı+1,υ2ı+2)|. |
It implies that
|ς(υ2ı+2,υ2ı+1)|≤ρ(υ0,υ1)1−κ(υ0,υ1)|ς(υ2ı,υ2ı+1)|=ρ(υ0,υ1)1−κ(υ0,υ1)|ς(υ2ı+1,υ2ı)|. | (3.6) |
Let λ= ρ(υ0,υ1)1−κ(υ0,υ1)<1. Then from (3.5) and (3.6), we have
|ς(υı+1,υı)|≤λ|ς(υı,υı−1)| |
for all ı∈N. By induction, we build a sequence {υı} in F so that
|ς(υı+1,υı)|≤λ|ς(υı,υı−1)|,|ς(υı+1,υı)|≤λ2|ς(υı−1,υı−2)|,⋅⋅⋅|ς(υı+1,υı)|≤λı|ς(υ1,υ0)|=λı|ς(υ0,υ1)|, |
∀ ı∈N. Now, for m>ı, we have
|ς(υı,υm)|≤φ(υı,υm)λı|ς(υ0,υ1)|+φ(υı,υm)φ(υı+1,υm)λı+1|ς(υ0,υ1)|+⋅⋅⋅+φ(υı,υm)φ(υı+1,υm)⋅⋅⋅φ(υm−2,υm)φ(υm−1,υm)λm−1|ς(υ0,υ1)|≤|ς(υ0,υ1)|[φ(υı,υm)λı+φ(υı,υm)φ(υı+1,υm)λı+1+⋅⋅⋅+φ(υı,υm)φ(υı+1,υm)⋅⋅⋅φ(υm−2,υm)φ(υm−1,υm)λm−1]. |
Since limı,m→∞φ(υı,υm)λ<1, the series ∞∑ı=1λıp∏i=1φ(υi,υm) converges by ratio test for each m∈N. Let
S=∞∑ı=1λıp∏i=1φ(υi,υm), Sı=ı∑j=1λjp∏i=1φ(υi,υm). |
For m>ı, one writes
|ς(υı,υm)|≤|ς(υ0,υ1)|[Sm−1−Sı]. |
When ı→∞, we have
|ς(υı,υm)|→0. |
Using Lemma 2.2, one asserts that the sequence {υı} is Cauchy. Since F is complete, there is υ∗ so that υı→υ∗∈F as ı→∞.
Now, we show that υ∗ is a fixed point of ℑ1. From (3.1), we have
ς(υ∗,ℑ1υ∗)⪯φ(υ∗,ℑ1υ∗)(ς(υ∗,ℑ2υ2ı+1)+ς(ℑ2υ2ı+1,ℑ1υ∗))=φ(υ∗,ℑ1υ∗)(ς(υ∗,ℑ2υ2ı+1)+ς(ℑ1υ∗,ℑ2υ2ı+1))⪯φ(υ∗,ℑ1υ∗)(ς(υ∗,υ2ı+2)+ρ(υ∗,υ2ı+1)ς(υ∗,υ2ı+1)+κ(υ∗,υ2ı+1)ς(υ∗,ℑ1υ∗)ς(υ2ı+1,ℑ2υ2ı+1 )1+ς(υ∗,υ2ı+1 )+μ(υ∗,υ2ı+1)ς(υ2ı+1,ℑ1υ∗)ς(υ∗,ℑ2υ2ı+1 )1+ς(υ∗,υ2ı+1 ))⪯φ(υ∗,ℑ1υ∗)(ς(υ∗,υ2ı+2)+ρ(υ∗,υ2ı+1)ς(υ∗,υ2ı+1)+κ(υ∗,υ2ı+1)ς(υ∗,ℑ1υ∗)ς(υ2ı+1,υ2ı+2 )1+ς(υ∗,υ2ı+1 )+μ(υ∗,υ2ı+1)ς(υ2ı+1,ℑ1υ∗)ς(υ∗,υ2ı+2 )1+ς(υ∗,υ2ı+1 )). |
This implies that
|ς(υ∗,ℑ1υ∗)|≤φ(υ∗,ℑ1υ∗)(|ς(υ∗,υ2ı+2)|+ρ(υ∗,υ2ı+1)|ς(υ∗,υ2ı+1)|+κ(υ∗,υ2ı+1)|ς(υ∗,ℑ1υ∗ )||ς(υ2ı+1,υ2ı+2)||1+ς(υ∗,υ2ı+1)|+μ(υ∗,υ2ı+1)|ς(υ2ı+1,ℑ1υ∗ )||ς(υ∗,υ2ı+2)||1+ς(υ∗,υ2ı+1)|). |
Letting ı→∞, we have |ς(υ∗,ℑ1υ∗)|=0. Thus υ∗=ℑ1υ∗. Now, we prove that υ∗ is a fixed point of ℑ2. By (3.1), we have
ς(υ∗,ℑ2υ∗)⪯φ(υ∗,ℑ2υ∗)(ς(υ∗,ℑ1υ2ı)+ς(ℑ1υ2ı,ℑ2υ∗))⪯φ(υ∗,ℑ2υ∗)(ς(υ∗,ℑ1υ2ı)+ρ(υ2ı,υ∗)ς(υ2ı,υ∗)+κ(υ2ı,υ∗)ς(υ2ı,ℑ1υ2ı)ς(υ∗,ℑ2υ∗)1+ς(υ2ı,υ∗)+μ(υ2ı,υ∗)ς(υ∗,ℑ1υ2ı)ς(υ2ı,ℑ2υ∗)1+ς(υ2ı,υ∗))⪯φ(υ∗,ℑ2υ∗)(ς(υ∗,υ2ı+1)+ρ(υ2ı,υ∗)ς(υ2ı,υ∗)+κ(υ2ı,υ∗)ς(υ2ı,υ2ı+1)ς(υ∗,ℑ2υ∗)1+ς(υ2ı,υ∗)+μ(υ2ı,υ∗)ς(υ∗,υ2ı+1)ς(υ2ı,ℑ2υ∗)1+ς(υ2ı,υ∗)). |
This implies that
|ς(υ∗,ℑ2υ∗)|≤φ(υ∗,ℑ2υ∗)(|ς(υ∗,υ2ı+1)|+ρ(υ2ı,υ∗)|ς(υ2ı,υ∗)|+κ(υ2ı,υ∗)|ς(υ2ı,υ2ı+1)||ς(υ∗,ℑ2υ∗)||1+ς(υ2ı,υ∗)|+μ(υ2ı,υ∗)|ς(υ∗,υ2ı+1)||ς(υ2ı,ℑ2υ∗)||1+ς(υ2ı,υ∗)|). |
Letting ı→∞, we have |ς(υ∗,ℑ2υ∗)|=0. Thus, υ∗=ℑ2υ∗. Now, we prove that υ∗ is unique. We assume that there exists another common fixed of υ/ of ℑ1 and ℑ2, i.e.,
υ/=ℑ1υ/=ℑ2υ/, |
but υ∗≠υ/. Now, from (3.1), we have
ς(υ∗,υ/)=ς(ℑ1υ∗,ℑ2υ/)⪯ρ(υ∗,υ/)ς(υ∗,υ/)+κ(υ∗,υ/)ς(υ∗,ℑυ∗)ς(υ/,ℑ2υ/)1+ς(υ∗,υ/)+μ(υ∗,υ/)ς(υ/,ℑ1υ∗)ς(υ∗,ℑ2υ/)1+ς(υ∗,υ/)=ρ(υ∗,υ/)ς(υ∗,υ/)+κ(υ∗,υ/)ς(υ∗,υ∗)ς(υ/,υ/)1+ς(υ∗,υ/)+μ(υ∗,υ/)ς(υ/,υ∗)ς(υ∗,υ/)1+ς(υ∗,υ/). |
This implies that
|ς(υ∗,υ/)|≤ρ(υ∗,υ/)|ς(υ∗,υ/)|+μ(υ∗,υ/)|ς(υ∗,υ/)||ς(υ∗,υ/)1+ς(υ∗,υ/)|≤ρ(υ∗,υ/)|ς(υ∗,υ/)|+μ(υ∗,υ/)|ς(υ∗,υ/)|=(ρ(υ∗,υ/)+μ(υ∗,υ/))|ς(υ∗,υ/)|. |
As ρ(υ∗,υ/)+μ(υ∗,υ/)<1, we have
|ς(υ∗,υ/)|=0. |
Thus, υ∗=υ/.
By setting μ=0 in Theorem 3.1, we state the following result.
Corollary 3.1. Let (F,ς) be a complete CVEbMS, φ:F×F→[1,∞) and let ℑ1,ℑ2:F →F. If there exist mappings ρ,κ:F×F→[0,1) such that for all υ,ℏ∈ F, (a) ρ(ℑ2ℑ1υ,ℏ)≤ρ(υ,ℏ) and ρ(υ,ℑ1ℑ2ℏ)≤ρ(υ,ℏ),
(a) κ(ℑ2ℑ1υ,ℏ)≤κ(υ,ℏ) and κ(υ,ℑ1ℑ2ℏ)≤κ(υ,ℏ),
(b) ρ(υ,ℏ)+κ(υ,ℏ)<1,
(c)
ς(ℑ1υ,ℑ2ℏ)⪯ρ(υ,ℏ)ς(υ,ℏ)+κ(υ,ℏ)ς(υ,ℑ1υ)ς(ℏ,ℑ2ℏ)1+ς(υ,ℏ), |
(d) For each υ0∈F, λ=ρ(υ0,υ1)1−κ(υ0,υ1)<1 and limı,m→∞φ(υı,υm)λ<1 hold, whenever the sequence {υı} is defined by
υ2ı+1=ℑ1υ2ı and υ2ı+2=ℑ2υ2ı+1, |
then ℑ1 and ℑ2 have a unique common fixed point.
By taking κ=0 in Theorem 3.1, we get the following corollary:
Corollary 3.2. Let (F,ς) be a complete CVEbMS, φ:F×F→[1,∞) and let ℑ1,ℑ2:F →F. If there exist mappings ρ,μ:F×F→[0,1) such that for all υ,ℏ∈ F, (a) ρ(ℑ2ℑ1υ,ℏ)≤ρ(υ,ℏ) and ρ(υ,ℑ1ℑ2ℏ)≤ρ(υ,ℏ),
(a) μ(ℑ2ℑ1υ,ℏ)≤μ(υ,ℏ) and μ(υ,ℑ1ℑ2ℏ)≤μ(υ,ℏ),
(b) ρ(υ,ℏ)+μ(υ,ℏ)<1,
(c)
ς(ℑ1υ,ℑ2ℏ)⪯ρ(υ,ℏ)ς(υ,ℏ)+μ(υ,ℏ)ς(ℏ,ℑ1υ)ς(υ,ℑ2ℏ)1+ς(υ,ℏ), |
(d) For each υ0∈F, λ=ρ(υ0,υ1)<1 and limı,m→∞φ(υı,υm)λ<1 hold, whenever the sequence {υı} is defined by
υ2ı+1=ℑ1υ2ı and υ2ı+2=ℑ2υ2ı+1, |
then ℑ1 and ℑ2 have a unique common fixed point.
By setting κ=μ=0 in Theorem 3.1, we have the following corollary.
Corollary 3.3. Let (F,ς) be a complete CVEbMS, φ:F×F→[1,∞) and let ℑ1,ℑ2:F→F. If there exists the mapping ρ:F×F→[0,1) such that for all υ,ℏ∈F,
(a) ρ(ℑ2ℑ1υ,ℏ)≤ρ(υ,ℏ) and ρ(υ,ℑ1ℑ2ℏ)≤ρ(υ,ℏ),
(b) ς(ℑ1υ,ℑ2ℏ)⪯ρ(υ,ℏ)ς(υ,ℏ),
(c) For each υ0∈F, λ=ρ(υ0,υ1)<1 and limı,m→∞φ(υı,υm)λ<1 hold, whenever the sequence {υı} is defined by
υ2ı+1=ℑ1υ2ı and υ2ı+2=ℑ2υ2ı+1, |
then ℑ1 and ℑ2 have a unique common fixed point.
By setting ℑ1=ℑ2=ℑ in Theorem 3.1, we have the following corollary.
Corollary 3.4. Let (F,ς) be a complete CVEbMS, φ:F×F→[1,∞) and let ℑ:F →F. If there exist mappings ρ,κ,μ:F×F→[0,1) such that for all υ,ℏ∈ F,
(a) ρ(ℑυ,ℏ)≤ρ(υ,ℏ) and ρ(υ,ℑℏ)≤ρ(υ,ℏ),
κ(ℑυ,ℏ)≤κ(υ,ℏ) and κ(υ,ℑℏ)≤κ(υ,ℏ),
μ(ℑυ,ℏ)≤μ(υ,ℏ) and μ(υ,ℑℏ)≤μ(υ,ℏ),
(b) ρ(υ,ℏ)+κ(υ,ℏ)+μ(υ,ℏ)<1,
(c)
ς(ℑυ,ℑℏ)⪯ρ(υ,ℏ)ς(υ,ℏ)+κ(υ,ℏ)ς(υ,ℑυ)ς(ℏ,ℑℏ)1+ς(υ,ℏ)+μ(υ,ℏ)ς(ℏ,ℑυ)ς(υ,ℑℏ)1+ς(υ,ℏ), |
(d) For each υ0∈F, λ=ρ(υ0,υ1)1−κ(υ0,υ1)<1 and limı,m→∞φ(υı,υm)λ<1 hold, whenever the sequence {υı} is defined by
υı+1=ℑυı, |
then ℑ has a unique fixed point.
Example 3.1. Let F=[0,1) and φ:F×F→[1,∞) be a function defined by
φ(υ,ℏ)=5+υ+ℏ1+υ+ℏ |
and ς:F×F→C by
ς(υ,ℏ)=|υ−ℏ|2+i|υ−ℏ|2 |
for all υ,ℏ∈ F. Then (F,ς) is a complete CVEbMS. Define a self mapping ℑ:F →F by
ℑυ=13(2−υ). |
Consider
ρ,κ,μ:F×F→[0,1) |
by
ρ(υ,ℏ)=11+υ+ℏ |
and
κ(υ,ℏ)=μ(υ,ℏ)=0. |
Then, it is very simple to prove that all the hypothesis of Corollary 3.4 are hold and 12 is a fixed point of the mapping ℑ. $
Corollary 3.5. Let (F,ς) be a complete CVEbMS, φ:F×F→[1,∞) and let ℑ:F →F. If there exist mappings ρ,κ,μ:F×F→[0,1) such that for all υ,ℏ∈ F,
(a) ρ(ℑυ,ℏ)≤ρ(υ,ℏ) and ρ(υ,ℑℏ)≤ρ(υ,ℏ),
κ(ℑυ,ℏ)≤κ(υ,ℏ) and κ(υ,ℑℏ)≤κ(υ,ℏ),
μ(ℑυ,ℏ)≤μ(υ,ℏ) and μ(υ,ℑℏ)≤μ(υ,ℏ),
(b) ρ(υ,ℏ)+κ(υ,ℏ)+μ(υ,ℏ)<1,
(c)
ς(ℑnυ,ℑnℏ)⪯ρ(υ,ℏ)ς(υ,ℏ)+κ(υ,ℏ)ς(υ,ℑnυ)ς(ℏ,ℑnℏ)1+ς(υ,ℏ)+μ(υ,ℏ)ς(ℏ,ℑnυ)ς(υ,ℑnℏ)1+ς(υ,ℏ), | (3.7) |
(d) For each υ0∈F, λ=ρ(υ0,υ1)1−κ(υ0,υ1)<1 and limı,m→∞φ(υı,υm)λ<1 hold, whenever the sequence {υı} is defined by
υı+1=ℑυı, |
then there exists a unique point υ∗∈F such that ℑυ∗=υ∗.
Proof. From Corollary 3.4, we have υ∈F such that ℑnυ=υ. Now, from
ς(ℑυ,υ)=ς(ℑℑnυ,ℑnυ)=ς(ℑnℑυ,ℑnυ)⪯ρ(ℑυ,υ)ς(ℑυ,υ)+κ(ℑυ,υ)ς(ℑυ,ℑnℑυ)ς(υ,ℑnυ)1+ς(ℑυ,υ)+μ(ℑυ,υ)ς(υ,ℑnℑυ)ς(ℑυ,ℑnυ)1+ς(ℑυ,υ) ⪯ρ(ℑυ,υ)ς(ℑυ,υ)+κ(ℑυ,υ)ς(ℑυ,ℑυ)ς(υ,υ)1+ς(ℑυ,υ)+μ(ℑυ,υ)ς(υ,ℑυ)ς(ℑυ,υ)1+ς(ℑυ,υ)=ρ(ℑυ,υ)ς(ℑυ,υ)+μ(ℑυ,υ)ς(υ,ℑυ)ς(ℑυ,υ)1+ς(ℑυ,υ), |
which implies that
|ς(ℑυ,υ)|≤ρ(ℑυ,υ)|ς(ℑυ,υ)|+μ(ℑυ,υ)|ς(υ,ℑυ)||ς(ℑυ,υ)1+ς(ℑυ,υ)|≤ρ(ℑυ,υ)|ς(ℑυ,υ)|+μ(ℑυ,υ)|ς(υ,ℑυ)|=(ρ(ℑυ,υ)+μ(ℑυ,υ))|ς(υ,ℑυ)|. |
It is possible only whenever |ς(ℑυ,υ)|=0. Thus, ℑυ=υ.
Corollary 3.6. Let (F,ς) be a complete CVEbMS, φ:F×F→[1,∞) and let ℑ1,ℑ2:F→F. If there exist mappings ρ,κ,μ:F→[0,1) such that for all υ,ℏ∈ F,
(a) ρ(ℑ2ℑ1υ)≤ρ(υ), κ(ℑ2ℑ1υ)≤κ(υ), μ(ℑ2ℑ1υ)≤μ(υ),
(b) ρ(υ)+κ(υ)+μ(υ)<1,
(c)
ς(ℑ1υ,ℑ2ℏ)⪯ρ(υ)ς(υ,ℏ)+κ(υ)ς(υ,ℑ1υ)ς(ℏ,ℑ2ℏ)1+ς(υ,ℏ)+μ(υ)ς(ℏ,ℑ1υ)ς(υ,ℑ2ℏ)1+ς(υ,ℏ), |
(d) For each υ0∈F, λ=ρ(υ0)1−κ(υ0)<1 and limı,m→∞φ(υı,υm)λ<1 hold, whenever the sequence {υı} is defined by
υ2ı+1=ℑ1υ2ı and υ2ı+2=ℑ2υ2ı+1, |
then ℑ1 and ℑ2 have a unique common fixed point.
Proof. Define ρ,κ,μ:F×F→[0,1) by
ρ(υ,ℏ)=ρ(υ), κ(υ,ℏ)=κ(υ) and μ(υ,ℏ)=μ(υ) |
for all υ,ℏ∈F. Then for all υ,ℏ∈F, we have
(a) ρ(ℑ2ℑ1υ,ℏ)=ρ(ℑ2ℑ1υ)≤ρ(υ)=ρ(υ,ℏ) and ρ(υ,ℑ1ℑ2ℏ)=ρ(υ)=ρ(υ,ℏ),
κ(ℑ2ℑ1υ,ℏ)=κ(ℑ2ℑ1υ)≤κ(υ)=κ(υ,ℏ) and κ(υ,ℑ1ℑ2ℏ)=κ(υ)=κ(υ,ℏ),
μ(ℑ2ℑ1υ,ℏ)=μ(ℑ2ℑ1υ)≤μ(υ)=μ(υ,ℏ) and μ(υ,ℑ1ℑ2ℏ)=μ(υ)=μ(υ,ℏ),
(b) ρ(υ,ℏ)+κ(υ,ℏ)+μ(υ,ℏ)=ρ(υ)+κ(υ)+μ(υ)<1,
(c)
ς(ℑ1υ,ℑ2ℏ)⪯ρ(υ)ς(υ,ℏ)+κ(υ)ς(υ,ℑ1υ)ς(ℏ,ℑ2ℏ)1+ς(υ,ℏ)+μ(υ)ς(ℏ,ℑ1υ)ς(υ,ℑ2ℏ)1+ς(υ,ℏ) =ρ(υ,ℏ)ς(υ,ℏ)+κ(υ,ℏ)ς(υ,ℑ1υ)ς(ℏ,ℑ2ℏ)1+ς(υ,ℏ)+μ(υ,ℏ)ς(ℏ,ℑ1υ)ς(υ,ℑ2ℏ)1+ς(υ,ℏ), |
(d) λ=ρ(υ0,υ1)1−κ(υ0,υ1)=ρ(υ0)1−κ(υ0)<1.
By Theorem 3.1, ℑ1 and ℑ2 have a unique common fixed point.
If we take ρ(⋅)=ρ, κ(⋅)=κ and μ(⋅)=μ in Corollary 3.6, we have the following corollaries.
Corollary 3.7. Let (F,ς) be a complete CVEbMS, φ:F×F→[1,∞) and let ℑ1,ℑ2:F →F. If there exist nonnegative real numbers ρ,κ and μ with ρ+κ+μ<1 such that
ς(ℑ1υ,ℑ2ℏ)⪯ρς(υ,ℏ)+κς(υ,ℑ1υ)ς(ℏ,ℑ2ℏ)1+ς(υ,ℏ)+μς(ℏ,ℑ1υ)ς(υ,ℑ2ℏ)1+ς(υ,ℏ) |
for all υ,ℏ∈ F, and for each υ0∈F, λ=ρ1−κ<1 and limı,m→∞φ(υı,υm)λ<1 hold, whenever the sequence {υı} is defined by
υ2ı+1=ℑ1υ2ı and υ2ı+2=ℑ2υ2ı+1, |
then ℑ1 and ℑ2 have a unique common fixed point.
Corollary 3.8. Let (F,ς) be a complete CVEbMS, φ:F×F→[1,∞) and let ℑ1,ℑ2: F →F. If there are nonnegative reals ρ and κ with ρ+κ<1 such that
ς(ℑ1υ,ℑ2ℏ)⪯ρς(υ,ℏ)+κς(υ,ℑ1υ)ς(ℏ,ℑ2ℏ)1+ς(υ,ℏ) |
for all υ,ℏ∈ F, and for each υ0∈F, λ=ρ1−κ<1 and limı,m→∞φ(υı,υm)λ<1 hold, whenever the sequence {υı} is defined by
υ2ı+1=ℑ1υ2ı and υ2ı+2=ℑ2υ2ı+1, |
then ℑ1 and ℑ2 have a unique common fixed point.
The main result of this section is as follows:
Theorem 4.1. Let F=C([a,b],Rn), a>0 and d:F×F→C be given as
d(υ,ℏ)=maxt∈[a,b]‖ |
and \varphi :\mathfrak{F}\times \mathfrak{F}\rightarrow \lbrack 1, \infty) be defined by \varphi (\upsilon, \hbar) = 2 . Then ( \mathfrak{F}, d ) is complete CVEbMS. Considering the set of Urysohn integral equations
\begin{equation} \upsilon (t) = \int_{a}^{b}K_{1}(t, s, \upsilon (s))ds+\varpi (t), \end{equation} | (4.1) |
and
\begin{equation} \upsilon (t) = \int_{a}^{b}K_{2}(t, s, \upsilon (s))ds+\phi (t), \end{equation} | (4.2) |
for ı \in \lbrack a, b]\subset \mathbb{R} , \upsilon, \varpi, \phi \in \mathfrak{F} .
Assume that K_{1}, K_{2}:[a, b]\times \lbrack a, b]\times \mathbb{R} ^{n}\rightarrow \mathbb{R}^{n} are such that F_{\upsilon }, G_{\upsilon }\in \mathfrak{F}, \ \ \forall \ \upsilon \in \mathfrak{F} , where
\begin{equation*} F_{\upsilon }\left( t\right) = \int_{a}^{b}K_{1}(t, s, \upsilon (s))ds, \quad G_{\upsilon }\left( t\right) = \int_{a}^{b}K_{2}(t, s, \upsilon (s))ds , \end{equation*} |
\forall \ t\in \lbrack a, b].
If there exist \ \mathfrak{\rho, }\kappa \in \lbrack 0, 1) with \mathfrak{\rho +}\kappa < 1 such that for every \upsilon, \hbar \in \mathfrak{F} ,
\begin{equation*} \left \Vert F_{\upsilon }\left( t\right) -G_{\hbar }\left( t\right) +\varpi (t)-\phi (t)\right \Vert ^{2}\sqrt{1+a^{2}}e^{i\tan ^{-1}a}\precsim \mathfrak{\rho }A\left( \upsilon , \hbar \right) \left( t\right) +\kappa B\left( \upsilon , \hbar \right) \left( t\right), \end{equation*} |
where
\begin{eqnarray*} A\left( \upsilon , \hbar \right) \left( t\right) & = &\left \Vert \upsilon (t)-\hbar (t)\right \Vert ^{2}\sqrt{1+a^{2}}e^{i\tan ^{-1}a}, \\ B\left( \upsilon , \hbar \right) \left( t\right) & = &\frac{\left \Vert F_{\upsilon }\left( t\right) +\varpi (t)-\upsilon (t)\right \Vert ^{2}\left \Vert G_{\hbar }\left( t\right) +\phi (t)-\hbar (t)\right \Vert ^{2}}{1+ \underset{t\in \left[ a, b\right] }{\max }A\left( \upsilon , \hbar \right) \left( t\right) }\sqrt{1+a^{2}}e^{i\tan ^{-1}a}, \end{eqnarray*} |
then (4.1) and (4.2) have a unique common solution.
Proof. Define \Im _{1}, \Im _{2}:\mathfrak{F}\rightarrow \mathfrak{F} by
\begin{equation*} \Im _{1}\upsilon = F_{\upsilon }+\varpi , \quad \Im _{2}\upsilon = G_{\upsilon }+\phi . \end{equation*} |
Then,
\begin{equation*} d\left( \Im _{1}\upsilon , \Im _{2}\hbar \right) = \underset{t\in \left[ a, b \right] }{\max }\left \Vert F_{\upsilon }\left( t\right) -G_{\hbar }\left( t\right) +\varpi (t)-\phi (t)\right \Vert ^{2}\sqrt{1+a^{2}}e^{i\tan ^{-1}a}, \end{equation*} |
\begin{equation*} d\left( \upsilon , \hbar \right) = \underset{t\in \left[ a, b\right] }{\max } A\left( \upsilon , \hbar \right) \left( t\right) , \end{equation*} |
\begin{equation*} \frac{d(\upsilon , \Im _{1}\upsilon )d(\hbar , \Im _{2}\hbar )}{1+d(\upsilon , \hbar )} = \underset{t\in \left[ a, b\right] }{\max }B\left( \upsilon , \hbar \right) \left( t\right) . \end{equation*} |
It is easily seen that
\begin{equation*} d\left( \Im _{1}\upsilon , \Im _{2}\hbar \right) \precsim \mathfrak{\rho } d(\upsilon , \hbar )+\kappa \frac{d(\upsilon , \Im _{1}\upsilon )d(\hbar , \Im _{2}\hbar )}{1+d(\upsilon , \hbar )} \end{equation*} |
for every \upsilon, \hbar \in \mathfrak{F} . By Corollary 3.8, the Urysohn integral equations (4.1) and (4.2) have a unique common solution.
In this article, we have utilized the notion of a complex-valued extended b -metric space (CVEbMS) and obtained common fixed point results for rational contractions involving control functions of two variables. We have derived common fixed points and fixed points of single-valued mappings for contractions involving control functions of one variable and constants. We hope that the obtained results in this article will form new relations for those who are employing in a CVEbMS.
The future works in this way will target studying the common fixed points of single-valued and multivalued mappings in the setting of a CVEbMS. Differential and integral equations can be solved as applications of these results.
This work was supported by the Basque Government under Grant IT1555-22.
The authors declare that they have no conflicts of interest.
[1] | A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex-valued metric spaces, Numer. Funct. Anal. Optim., 32 (2011), 243–253. |
[2] |
G. A. Okeke, Iterative approximation of fixed points of contraction mappings in complex-valued Banach spaces, Arab J. Math. Sci., 25 (2019), 83–105. https://doi.org/10.1016/j.ajmsc.2018.11.001 doi: 10.1016/j.ajmsc.2018.11.001
![]() |
[3] |
F. Rouzkard, M. Imdad, Some common fixed point theorems on complex-valued metric spaces, Comput. Math. Appl., 64 (2012), 1866–1874. https://doi.org/10.1016/j.camwa.2012.02.063 doi: 10.1016/j.camwa.2012.02.063
![]() |
[4] |
W. Sintunavarat, P. Kumam, Generalized common fixed point theorems in complex-valued metric spaces and applications, J. Inequal. Appl., 2012 (2012), 1–12. https://doi.org/10.1186/1029-242X-2012-84 doi: 10.1186/1029-242X-2012-84
![]() |
[5] |
K. Sitthikul, S. Saejung, Some fixed point theorems in complex valued metric spaces, Fixed Point Theory Appl., 2012 (2012), 1–11. https://doi.org/10.1186/1687-1812-2012-189 doi: 10.1186/1687-1812-2012-189
![]() |
[6] |
A. A. Mukheimer, Some common fixed point theorems in complex valued b-metric spaces, Sci. World J., 2014 (2014), 1–6. https://doi.org/10.1155/2014/587825 doi: 10.1155/2014/587825
![]() |
[7] |
N. Ullah, M. S. Shagari, A. Azam, Fixed point theorems in complex-valued extended b-metric spaces, Moroccan J. Pure Appl. Anal., 5 (2019), 140–163. https://doi.org/10.2478/mjpaa-2019-0011 doi: 10.2478/mjpaa-2019-0011
![]() |
[8] |
A. Ahmad, C. Klin-eam, A. Azam, Common fixed points for multivalued mappings in complex valued metric spaces with applications, Abstr. Appl. Anal., 2013 (2013), 1–12. https://doi.org/10.1155/2013/854965 doi: 10.1155/2013/854965
![]() |
[9] |
M. Arshad, Fahimuddin, A. Shoaib, A. Hussain, Fixed point results for \alpha -\psi -locally graphic contraction in dislocated qusai metric spaces, Math. Sci., 8 (2014), 79–85. https://doi.org/10.1007/s40096-014-0132-7 doi: 10.1007/s40096-014-0132-7
![]() |
[10] |
A. Azam, J. Ahmad, P. Kumam, Common fixed point theorems for multi-valued mappings in complex-valued metric spaces, J. Inequal. Appl., 2013 (2013), 1–12. https://doi.org/10.1186/1029-242X-2013-578 doi: 10.1186/1029-242X-2013-578
![]() |
[11] |
M. A. Kutbi, J. Ahmad, A. Azam, N. Hussain, On fuzzy fixed points for fuzzy maps with generalized weak property, J. Appl. Math., 2014 (2014), 1–12. https://doi.org/10.1155/2014/549504 doi: 10.1155/2014/549504
![]() |
[12] |
C. Klin-eam, C. Suanoom, Some common fixed-point theorems for generalized-contractive-type mappings on complex-valued metric spaces, Abstr. Appl. Anal., 2013 (2013), 1–6. https://doi.org/10.1155/2013/604215 doi: 10.1155/2013/604215
![]() |
[13] | J. C. P. Raj, A. A. Xavier, J. M. Joseph, M. Marudai, Common fixed point theorems under rational contractions in complex valued extended b-metric spaces, Int. J. Nonlinear Anal. Appl., 13 (2022), 3479–3490. |
[14] |
Humaira, M. Sarwar, P. Kumam, Common fixed point results for fuzzy mappings on complex-valued metric spaces with homotopy results, Symmetry, 11 (2019), 1–17. https://doi.org/10.3390/sym11010061 doi: 10.3390/sym11010061
![]() |
[15] | S. S. Mohammed, N. Ullah, Fixed point results in complex valued extended b-metric spaces and related applications, Ann. Math. Comput. Sci., 1 (2021), 1–11. |
1. | Mingliang Song, Dan Liu, Common fixed and coincidence point theorems for nonlinear self-mappings in cone b -metric spaces using \varphi -mapping, 2023, 31, 2688-1594, 4788, 10.3934/era.2023245 | |
2. | Amnah Essa Shammaky, Jamshaid Ahmad, Common Fixed Point Theorems in Complex-Valued Controlled Metric Spaces with Application, 2024, 16, 2073-8994, 1442, 10.3390/sym16111442 |