Research article

Fixed point results in double controlled quasi metric type spaces

  • Received: 14 June 2020 Accepted: 05 November 2020 Published: 02 December 2020
  • MSC : 47H10, 54H25

  • Abdeljawad et.al (Mathematics, 6(12), 320, 2018) introduced a new concept, named double controlled metric type spaces, as a generalization of the notion of extended $ b $-metric spaces. In this paper, we introduce double controlled quasi metric type spaces and obtain common fixed points of multivalued mappings satisfying rational type, Reich type and Kannan type contractions in double controlled quasi metric type spaces. Some concrete examples are also provided to illustrate the superiority of our results over other existing results.

    Citation: Abdullah Shoaib, Poom Kumam, Shaif Saleh Alshoraify, Muhammad Arshad. Fixed point results in double controlled quasi metric type spaces[J]. AIMS Mathematics, 2021, 6(2): 1851-1864. doi: 10.3934/math.2021112

    Related Papers:

  • Abdeljawad et.al (Mathematics, 6(12), 320, 2018) introduced a new concept, named double controlled metric type spaces, as a generalization of the notion of extended $ b $-metric spaces. In this paper, we introduce double controlled quasi metric type spaces and obtain common fixed points of multivalued mappings satisfying rational type, Reich type and Kannan type contractions in double controlled quasi metric type spaces. Some concrete examples are also provided to illustrate the superiority of our results over other existing results.


    加载中


    [1] T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 1-10.
    [2] M. Arshad, A. Shoaib, P. Vetro, Common fixed point of a pair of Hardy Rogers type mapping on closed ball in order dislocated metric space, J. Funct. Space. Appl., 2013 (2013), 1-9.
    [3] M. Arshad, Z. Kadelburg, S. Radenović, A. Shoaib, S. Shukla, Fixed points of α-dominated mappings on dislocated quasi metric spaces, Filomat, 31 (2017), 3041-3056. doi: 10.2298/FIL1711041A
    [4] H. Aydi, R. Banković, I. Mitrović, M. Nazam, Nemytzki-Edelstein-Meir-Keeler type results in b-metric spaces, Discrete Dyn. Nat. Soc., 2018 (2018), 1-7.
    [5] H. Aydi, M. F. Bota, E. Karapinar, S. Mitrović, Fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., 2012 (2012), 1-8. doi: 10.1186/1687-1812-2012-1
    [6] A. Azam, M. Arshad, Kannan fixed point theorems on generalized metric spaces, J. Nonlinear Sci. Appl., 1 (2008), 45-48. doi: 10.22436/jnsa.001.01.07
    [7] A. Azam, M. Waseem, M. Rashid, Fixed point theorems for fuzzy contractive mappings in quasipseudo metric spaces, Fixed Point Theory Appl., 2013 (2013), 1-14. doi: 10.1186/1687-1812-2013-1
    [8] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26-37.
    [9] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., 3 (1992), 133-181.
    [10] N. Bilgili, E. Karapınar, B. Samet, Generalized α - ψ contractive mappings in quasi-metric spaces and related fixed point theorems, Fixed Point Theory Appl., 2014 (2014), 1-15. doi: 10.1186/1687-1812-2014-1
    [11] S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5-11.
    [12] T. Kamran, M. Samreen, Q. U. Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 1-7.
    [13] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76.
    [14] Z. Li, X. Shu, F. Xu, The existence of upper and lower solutions to second order random impulsive differential equation with boundary value problem, AIMS Mathematics, 5 (2020), 6189-6210. doi: 10.3934/math.2020398
    [15] J. Marın, S. Romaguera, P. Tirado, Weakly contractive multivalued maps and wdistances on complete quasi-metric spaces, Fixed Point Theory Appl., 2011 (2011), 1-9.
    [16] N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 1-7.
    [17] T. Rasham, A. Shoaib, N. Hussain, B. A. S. Alamri, M. Arshad, Multivalued fixed point results in dislocated b- metric spaces with application to the system of nonlinear integral equations, Symmetry, 11 (2019), 1-16.
    [18] S. Reich, Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121-124. doi: 10.4153/CMB-1971-024-9
    [19] S. Reich, Fixed points of contractive functions, B. Unione. Mat. Ital., 5 (1972), 26-42.
    [20] S. Reich, Some fixed point problems, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, 57 (1974), 194-198.
    [21] I. L. Reilly, P. V. Semirahmanya, M. K. Vamanamurthy, Cauchy sequences in quasi-pseudo-metric spaces, Monatshefte für Mathematik, 93 (1982), 127-140. doi: 10.1007/BF01301400
    [22] M. Samreen, T. Kamran, M. Postolache, Extended b-metric space, extended b-comparison function and nonlinear contractions, U. P. B. Sci. Bull., Series A, 80 (2018), 21-28.
    [23] W. Shatanawi, Fixed and common fixed point for mapping satisfying some nonlinear contraction in b-metric spaces, J. Math. Anal., 7 (2016), 1-12.
    [24] A. Shoaib, P. Kumam, A. Shahzad, S. Phiangsungnoen, Q. Mahmood, Fixed point results for fuzzy mappings in a b-metric space, Fixed Point Theory Appl., 2018 (2018), 1-12. doi: 10.1186/s13663-017-0625-9
    [25] A. Shoaib, S. Mustafa, A. Shahzad, Common Fixed Point of Multivalued Mappings in Ordered Dislocated Quasi G-Metric Spaces, Punjab University Journal of Mathematics, 52 (2020), 1-23.
    [26] A. Shoaib, A. Azam, M. Arshad, A. Shahzad, Fixed point results for the multivalued mapping on closed ball in dislocated fuzzy metric space, J. Math. Anal., 8 (2017), 98-106.
    [27] A. Shoaib, S. Kazi, A. Tassaddiq, S. Alshoraify, T. Rasham, Double Controlled Quasi-Metric Type Spaces and Some Results, Complexity, 2020 (2020), 1-8.
    [28] A. Shoaib, S. Alshoraify, M. Arshad, Double Controlled Dislocated Quasi-Metric Type Spaces and Some Results, Journal of Mathematics, 2020 (2020), 1-8.
    [29] M. Sgroi, C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat, 27 (2013), 1259-1268. doi: 10.2298/FIL1307259S
    [30] W. A. Wilson, On quasi metric spaces, Am. J. Math., 53 (1931), 675-684.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2757) PDF downloads(353) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog