Research article Special Issues

Weighted pseudo almost periodicity on neutral type CNNs involving multi-proportional delays and D operator

  • Received: 23 September 2020 Accepted: 16 November 2020 Published: 02 December 2020
  • MSC : 34K13, 34C25

  • In this paper, we aim to explore the dynamic behaviors of cellular neural networks with D operator and multi-proportional delays. By using the fixed point theorem and some differential inequality techniques, we derive some new sufficient criteria on the existence and exponential stability of weighted pseudo almost periodic solutions for the proposed neural networks, which generalize and improve all known consequences in Yang et al. [22] and Yu [Neural Process Lett., 45 (2017), 141-151]. Finally, the effectiveness of the obtained results is illustrated by a numerical simulation example.

    Citation: Hedi Yang. Weighted pseudo almost periodicity on neutral type CNNs involving multi-proportional delays and D operator[J]. AIMS Mathematics, 2021, 6(2): 1865-1879. doi: 10.3934/math.2021113

    Related Papers:

  • In this paper, we aim to explore the dynamic behaviors of cellular neural networks with D operator and multi-proportional delays. By using the fixed point theorem and some differential inequality techniques, we derive some new sufficient criteria on the existence and exponential stability of weighted pseudo almost periodic solutions for the proposed neural networks, which generalize and improve all known consequences in Yang et al. [22] and Yu [Neural Process Lett., 45 (2017), 141-151]. Finally, the effectiveness of the obtained results is illustrated by a numerical simulation example.


    加载中


    [1] L. O. Chua, L. Yang, Cellular neural networks: application, IEEE Trans Circuits Syst., 35 (1988), 1273-1290. doi: 10.1109/31.7601
    [2] A. Rawat, R. N. Yadav, S. C. Shrivastava, Neural network applications in smart antenna arrays, Int. J. Electron Commun., 66 (2012), 903-912. doi: 10.1016/j.aeue.2012.03.012
    [3] C. Huang, Y. Tan, Global begavior of a reaction-diffusion model with time delay and Dirichlet condition, J. Differ. Equ., 271 (2021), 186-215. Available from: https://doi.org/10.1016/j.jde.2020.08.008.
    [4] K. Zhu, Y. Xie, F. Zhou, Attractors for the nonclassical reaction-diffusion equations on timedependent spaces, Boundary Value Problems, 2020 (2020), DOI: 10.1186/s13661-020-01392-7.
    [5] Y. Tan, C. Huang, B. Sun, T. Wang, Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition, J. Math. Anal. Appl., 458 (2018), 1115-1130. doi: 10.1016/j.jmaa.2017.09.045
    [6] Y. Xu, Q. Cao, X. Guo, Stability on a patch structure Nicholson's blowflies system involving distinctive delays, Appl. Math. Lett., 106340 (2020), Available from: https://doi.org/10.1016/j.aml.2020.106340.
    [7] H. L. Smith, An Introduction to Delay Differential Equations With Applications to the Life Sciences, Appl. Math., 2011.
    [8] Y. Xie, Q. Li, K. Zhu, Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, Nonlinear Anal.: Real World Appl., 31 (2016), 23-37. doi: 10.1016/j.nonrwa.2016.01.004
    [9] C. Qian, Y. Hu, Novel stability criteria on nonlinear density-dependent mortality Nicholson's blowflies systems in asymptotically almost periodic environments, J. Inequal. Appl., 2020 (2020), Available from: https://doi.org/10.1186/s13660-019-2275-4.
    [10] L. Li, W. Wang, L. Huang, J. Wu, Some weak flocking models and its application to target tracking, J. Math. Anal. Appl., 480 (2019), Available from: https://doi.org/10.1016/j.jmaa.2019.123404.
    [11] J. Li, J. Ying, D. Xie, On the analysis and application of an ion size-modified Poisson-Boltzmann equation, Nonlinear Anal., Real World Appl., 47 (2019), 188-203. doi: 10.1016/j.nonrwa.2018.10.011
    [12] Y. Jiang, X. Xu, A monotone finite volume method for time fractional Fokker-Planck equations, Sci. China Math., 62 (2019), 783-794. doi: 10.1007/s11425-017-9179-x
    [13] H. Chen, D. Xu, J. Zhou, A second-order accurate numerical method with graded meshes for an evolution equation with a weakly singular kernel, J. Comput. Appl. Math., 356 (2019), 152-163. doi: 10.1016/j.cam.2019.01.031
    [14] B. Li, F. Wang, K. Zhao, Large time dynamics of 2d semi-dissipative boussinesq equations, Nonlinearity, 33 (2020), 2481-2501. doi: 10.1088/1361-6544/ab74b1
    [15] L. Li, Q. Jin, B. Yao, Regularity of fuzzy convergence spaces, Open Math., 16 (2018), 1455-1465. doi: 10.1515/math-2018-0118
    [16] N. S. Al-Islam, S. M. Alsulami, T. Diagana, Existence of weighted pseudo anti-periodic solutions to some non-autonomous differential equations, Appl. Math. Comput., 218 (2012), 6536-6548.
    [17] Z. Gao, L. Fang, The invariance principle for random sums of a double random sequence, Bull. Korean Math. Soc., 50 (2013), 1539-1554. doi: 10.4134/BKMS.2013.50.5.1539
    [18] T. Diagana, Weighted pseudo-almost periodic solutions to some differential equations, Nonlinear Anal., 68 (2008), 2250-2260. doi: 10.1016/j.na.2007.01.054
    [19] M. Shi, J. Guo, X. Fang, C. Huang, Global exponential stability of delayed inertial competitive neural networks, Adv. Differ. Equ., 2020 (2020), Available from: https://doi.org/10.1186/s13662-019-2476-7.
    [20] Y. Xie, Y. Li, Y. Zeng, Uniform attractors for nonclassical diffusion equations with memory, J. Funct. Spaces., 5340489 (2016), 1-12. DOI:10.1155/2016/5340489. doi: 10.1155/2016/5340489
    [21] C. Huang, H. Yang, J. Cao, Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator, Discrete Contin. Dyn. Syst. Ser. S, (2020). DOI:10.3934/dcdss.2020372 doi: 10.3934/dcdss.2020372
    [22] G. Yang, W. Wan, Weighted pseudo almost periodic solutions for cellular neural networks with multi-proportional delays, Neural Process Lett., 49 (2019), 1125-1138. doi: 10.1007/s11063-018-9851-3
    [23] C. Huang, X. Zhao, J. Cao, F. E. Alsaadi, Global dynamics of neoclassical growth model with multiple pairs of variable delays, Nonlinearity, 33 (2020), 6819-6834. doi: 10.1088/1361-6544/abab4e
    [24] B. Liu, Finite-time stability of CNNs with neutral proportional delays and time-varying leakage delays, Math. Methods Appl. Sci., 40 (2017), 167-174. doi: 10.1002/mma.3976
    [25] R. Wei, J. Cao, C. Huang, Lagrange exponential stability of quaternion-valued memristive neural networks with time delays, Math. Methods Appl. Sci., 43 (2020), 7269-7291. Available from: https://doi.org/10.1002/mma.6463.
    [26] C. Huang, B. Liu, New studies on dynamic analysis of inertial neural networks involving nonreduced order method, Neurocomputing, 325 (2019), 283-287. doi: 10.1016/j.neucom.2018.09.065
    [27] C. Huang, H. Zhang, Periodicity of non-autonomous inertial neural networks involving proportional delays and non-reduced order method, Int. J. Biomath., 12 (2019), 1950016. doi: 10.1142/S1793524519500165
    [28] Y. Liu, J. Wu, Multiple solutions of ordinary differential systems with min-max terms and applications to the fuzzy differential equations, Adv. Differ. Equ., 379 (2015), Available from: https://doi.org/10.1186/s13662-015-0708-z.
    [29] C. Huang, X. Long, J. Cao, Stability of anti-periodic recurrent neural networks with multiproportional delays, Math. Methods Appl. Sci., 43 (2020), 6093-6102. Available from: https://doi.org/10.1002/mma.6350.
    [30] C. Huang, J. Wang, L. Huang, New results on asymptotically almost periodicity of delayed Nicholson-typesystem involving patch structure, Electron. J. Diff. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0
    [31] J. Zhang, C. Huang, Dynamics analysis on a class of delayed neural networks involving inertial terms, Adv. Difference Equ., 120 (2020), Available from: https://doi.org/10.1186/s13662-020-02566-4.
    [32] Q. Cao, G. Wang, C. Qian, New results on global exponential stability for a periodic Nicholson's blowflies model involving time-varying delays, Adv. Difference Equ., 2020 (2020). Available from: https://doi.org/10.1186/s13662-020-2495-4.
    [33] C. Huang, S. Wen, L. Huang, Dynamics of anti-periodic solutions on shunting inhibitory cellular neural networks with multi-proportional delays, Neurocomputing, 357 (2019), 47-52. doi: 10.1016/j.neucom.2019.05.022
    [34] H. Hu, X. Yuan, L. Huang, C. Huang, Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks, Math. Biosci. Eng., 16 (2019), 5729-5749. Available from: https://doi:10.3934/mbe.2019286.
    [35] W. Tang, J. Zhang, Symmetric integrators based on continuous-stage Runge-Kutta-Nystrom methods for reversible systems, Appl. Math. Comput., 361 (2019), 1-12. doi: 10.1016/j.cam.2019.04.010
    [36] C. Huang, R. Su, J. Cao, S. Xiao, Asymptotically stable high-order neutral cellular neural networks with proportional delays and D operators, Math. Comput. Simulation, 171 (2020), 127-135. Available from: https://doi.org/10.1016/j.matcom.2019.06.001.
    [37] M. Iswarya, R. Raja, G. Rajchakit, J. Cao, C. Huang, Existence, Uniqueness and exponential stability of periodic solution for discrete-time delayed BAM neural networks based on coincidence degree theory and graph theoretic method, AIMS Math., 7 (2019), 1055.
    [38] X. Long, S. Gong, New results on stability of Nicholson's blowflies equation with multiple pairs of time-varying delays, Appl. Math. Lett. 2020 (2020), Available from: https://doi.org/10.1016/j.aml.2019.106027.
    [39] L. Yong, H. Ni, (µ, ν)-pseudo almost periodic solutions of Clifford-valued high-order HNNs with multiple discrete delays, Neurocomputing, 414 (2020), 1-9. Available from: https://doi.org/10.1016/j.neucom.2020.07.069.
    [40] C. Huang, R. Su, Y. Hu, Global convergence dynamics of almost periodic delay Nicholson's blowflies systems, J. Biol. Dynam., 14 (2020), 633-655. Available from: https://doi.org/10.1080/17513758.2020.1800841.
    [41] Y. Zhang, Right triangle and parallelogram pairs with a common area and a common perimeter, J. Number Theory, 164 (2016), 179-190. doi: 10.1016/j.jnt.2015.12.015
    [42] H. Zhang, Q. Cao, H. Yang, Asymptotically almost periodic dynamics on delayed Nicholson-type system involving patch structure, J. Inequal. Appl., 2020 (2020). Available from: https://doi.org/10.1186/s13660-020-02366-0.
    [43] L. Huang, H. Ma, J. Wang, Global dynamics of a Filippov plant disease model with an economic threshold of infected-susceptible ratio, J. Appl. Anal. Comput., 10 (2020), 1-15.
    [44] J. Wang, S. He, L. Huang, Limit cycles induced by threshold nonlinearity in planar piecewise linear systems of node-focus or node-center type, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30 (2020), 2050160. doi: 10.1142/S0218127420501606
    [45] H. Hu, T. Yi, X. Zou, On spatial-temporal dynamics of a fisher-kpp equation with a shifting environment, Proc. Amer. Math. Soc., 148 (2020), 213-221.
    [46] F. Yu, L. Liu, H. Shen, Z. Zhang, Y. Huang, C. Shi, Dynamic analysis, circuit design, and synchronization of a novel 6d memristive four-wing hyperchaotic system with multiple coexisting attractors, Complexity, 2020 (2020). Available from: https://doi.org/10.1155/ 2020/5904607.
    [47] Z. Gao, Y. Wang, J. Xiong, Y. Pan, Y. Huang, Structural balance control of complex dynamical networks based on state observer for dynamic connection relationships, Complexity, 2020 (2020). Available from: https://doi.org/10.1155/2020/5075487.
    [48] B. Li, F. Wang, K. Zha, Large time dynamics of 2d semi-dissipative boussinesq equations, Nonlinearity, 33 (2020), 2481-2501. Available from: https://doi.org/10.1088/1361-6544/ab74b1.
    [49] Y. Tan, L. Liu, Weighted boundedness of multilinear operator associated to singular integral operator with variable Calderón-Zygmund Kernel, Rev. R. Acad. Cienc. Exactas Fls. Nat., Ser. A Mat.. 111 (2017), 931-946.
    [50] W. Wang, Finite-time synchronization for a class of fuzzy cellular neural networks with timevarying coefficients and proportional delays, Fuzzy Sets Systems, 338 (2018), 40-49.
    [51] W. Wang, F. Liu, W. Chen, Exponential stability of pseudo almost periodic delayed Nicholson-type system with patch structure, Math. Meth. Appl. Sci., 42 (2019), 592-604. doi: 10.1002/mma.5364
    [52] X. Long, Novel stability criteria on a patch structure Nicholson's blowflies model with multiple pairs of time-varying delays, AIMS Math., 5 (2020), 7387-7401. DOI: 10.3934/math.2020473 doi: 10.3934/math.2020473
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2694) PDF downloads(187) Cited by(11)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog