Citation: Hedi Yang. Weighted pseudo almost periodicity on neutral type CNNs involving multi-proportional delays and D operator[J]. AIMS Mathematics, 2021, 6(2): 1865-1879. doi: 10.3934/math.2021113
[1] | L. O. Chua, L. Yang, Cellular neural networks: application, IEEE Trans Circuits Syst., 35 (1988), 1273-1290. doi: 10.1109/31.7601 |
[2] | A. Rawat, R. N. Yadav, S. C. Shrivastava, Neural network applications in smart antenna arrays, Int. J. Electron Commun., 66 (2012), 903-912. doi: 10.1016/j.aeue.2012.03.012 |
[3] | C. Huang, Y. Tan, Global begavior of a reaction-diffusion model with time delay and Dirichlet condition, J. Differ. Equ., 271 (2021), 186-215. Available from: https://doi.org/10.1016/j.jde.2020.08.008. |
[4] | K. Zhu, Y. Xie, F. Zhou, Attractors for the nonclassical reaction-diffusion equations on timedependent spaces, Boundary Value Problems, 2020 (2020), DOI: 10.1186/s13661-020-01392-7. |
[5] | Y. Tan, C. Huang, B. Sun, T. Wang, Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition, J. Math. Anal. Appl., 458 (2018), 1115-1130. doi: 10.1016/j.jmaa.2017.09.045 |
[6] | Y. Xu, Q. Cao, X. Guo, Stability on a patch structure Nicholson's blowflies system involving distinctive delays, Appl. Math. Lett., 106340 (2020), Available from: https://doi.org/10.1016/j.aml.2020.106340. |
[7] | H. L. Smith, An Introduction to Delay Differential Equations With Applications to the Life Sciences, Appl. Math., 2011. |
[8] | Y. Xie, Q. Li, K. Zhu, Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, Nonlinear Anal.: Real World Appl., 31 (2016), 23-37. doi: 10.1016/j.nonrwa.2016.01.004 |
[9] | C. Qian, Y. Hu, Novel stability criteria on nonlinear density-dependent mortality Nicholson's blowflies systems in asymptotically almost periodic environments, J. Inequal. Appl., 2020 (2020), Available from: https://doi.org/10.1186/s13660-019-2275-4. |
[10] | L. Li, W. Wang, L. Huang, J. Wu, Some weak flocking models and its application to target tracking, J. Math. Anal. Appl., 480 (2019), Available from: https://doi.org/10.1016/j.jmaa.2019.123404. |
[11] | J. Li, J. Ying, D. Xie, On the analysis and application of an ion size-modified Poisson-Boltzmann equation, Nonlinear Anal., Real World Appl., 47 (2019), 188-203. doi: 10.1016/j.nonrwa.2018.10.011 |
[12] | Y. Jiang, X. Xu, A monotone finite volume method for time fractional Fokker-Planck equations, Sci. China Math., 62 (2019), 783-794. doi: 10.1007/s11425-017-9179-x |
[13] | H. Chen, D. Xu, J. Zhou, A second-order accurate numerical method with graded meshes for an evolution equation with a weakly singular kernel, J. Comput. Appl. Math., 356 (2019), 152-163. doi: 10.1016/j.cam.2019.01.031 |
[14] | B. Li, F. Wang, K. Zhao, Large time dynamics of 2d semi-dissipative boussinesq equations, Nonlinearity, 33 (2020), 2481-2501. doi: 10.1088/1361-6544/ab74b1 |
[15] | L. Li, Q. Jin, B. Yao, Regularity of fuzzy convergence spaces, Open Math., 16 (2018), 1455-1465. doi: 10.1515/math-2018-0118 |
[16] | N. S. Al-Islam, S. M. Alsulami, T. Diagana, Existence of weighted pseudo anti-periodic solutions to some non-autonomous differential equations, Appl. Math. Comput., 218 (2012), 6536-6548. |
[17] | Z. Gao, L. Fang, The invariance principle for random sums of a double random sequence, Bull. Korean Math. Soc., 50 (2013), 1539-1554. doi: 10.4134/BKMS.2013.50.5.1539 |
[18] | T. Diagana, Weighted pseudo-almost periodic solutions to some differential equations, Nonlinear Anal., 68 (2008), 2250-2260. doi: 10.1016/j.na.2007.01.054 |
[19] | M. Shi, J. Guo, X. Fang, C. Huang, Global exponential stability of delayed inertial competitive neural networks, Adv. Differ. Equ., 2020 (2020), Available from: https://doi.org/10.1186/s13662-019-2476-7. |
[20] | Y. Xie, Y. Li, Y. Zeng, Uniform attractors for nonclassical diffusion equations with memory, J. Funct. Spaces., 5340489 (2016), 1-12. DOI:10.1155/2016/5340489. doi: 10.1155/2016/5340489 |
[21] | C. Huang, H. Yang, J. Cao, Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator, Discrete Contin. Dyn. Syst. Ser. S, (2020). DOI:10.3934/dcdss.2020372 doi: 10.3934/dcdss.2020372 |
[22] | G. Yang, W. Wan, Weighted pseudo almost periodic solutions for cellular neural networks with multi-proportional delays, Neural Process Lett., 49 (2019), 1125-1138. doi: 10.1007/s11063-018-9851-3 |
[23] | C. Huang, X. Zhao, J. Cao, F. E. Alsaadi, Global dynamics of neoclassical growth model with multiple pairs of variable delays, Nonlinearity, 33 (2020), 6819-6834. doi: 10.1088/1361-6544/abab4e |
[24] | B. Liu, Finite-time stability of CNNs with neutral proportional delays and time-varying leakage delays, Math. Methods Appl. Sci., 40 (2017), 167-174. doi: 10.1002/mma.3976 |
[25] | R. Wei, J. Cao, C. Huang, Lagrange exponential stability of quaternion-valued memristive neural networks with time delays, Math. Methods Appl. Sci., 43 (2020), 7269-7291. Available from: https://doi.org/10.1002/mma.6463. |
[26] | C. Huang, B. Liu, New studies on dynamic analysis of inertial neural networks involving nonreduced order method, Neurocomputing, 325 (2019), 283-287. doi: 10.1016/j.neucom.2018.09.065 |
[27] | C. Huang, H. Zhang, Periodicity of non-autonomous inertial neural networks involving proportional delays and non-reduced order method, Int. J. Biomath., 12 (2019), 1950016. doi: 10.1142/S1793524519500165 |
[28] | Y. Liu, J. Wu, Multiple solutions of ordinary differential systems with min-max terms and applications to the fuzzy differential equations, Adv. Differ. Equ., 379 (2015), Available from: https://doi.org/10.1186/s13662-015-0708-z. |
[29] | C. Huang, X. Long, J. Cao, Stability of anti-periodic recurrent neural networks with multiproportional delays, Math. Methods Appl. Sci., 43 (2020), 6093-6102. Available from: https://doi.org/10.1002/mma.6350. |
[30] | C. Huang, J. Wang, L. Huang, New results on asymptotically almost periodicity of delayed Nicholson-typesystem involving patch structure, Electron. J. Diff. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0 |
[31] | J. Zhang, C. Huang, Dynamics analysis on a class of delayed neural networks involving inertial terms, Adv. Difference Equ., 120 (2020), Available from: https://doi.org/10.1186/s13662-020-02566-4. |
[32] | Q. Cao, G. Wang, C. Qian, New results on global exponential stability for a periodic Nicholson's blowflies model involving time-varying delays, Adv. Difference Equ., 2020 (2020). Available from: https://doi.org/10.1186/s13662-020-2495-4. |
[33] | C. Huang, S. Wen, L. Huang, Dynamics of anti-periodic solutions on shunting inhibitory cellular neural networks with multi-proportional delays, Neurocomputing, 357 (2019), 47-52. doi: 10.1016/j.neucom.2019.05.022 |
[34] | H. Hu, X. Yuan, L. Huang, C. Huang, Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks, Math. Biosci. Eng., 16 (2019), 5729-5749. Available from: https://doi:10.3934/mbe.2019286. |
[35] | W. Tang, J. Zhang, Symmetric integrators based on continuous-stage Runge-Kutta-Nystrom methods for reversible systems, Appl. Math. Comput., 361 (2019), 1-12. doi: 10.1016/j.cam.2019.04.010 |
[36] | C. Huang, R. Su, J. Cao, S. Xiao, Asymptotically stable high-order neutral cellular neural networks with proportional delays and D operators, Math. Comput. Simulation, 171 (2020), 127-135. Available from: https://doi.org/10.1016/j.matcom.2019.06.001. |
[37] | M. Iswarya, R. Raja, G. Rajchakit, J. Cao, C. Huang, Existence, Uniqueness and exponential stability of periodic solution for discrete-time delayed BAM neural networks based on coincidence degree theory and graph theoretic method, AIMS Math., 7 (2019), 1055. |
[38] | X. Long, S. Gong, New results on stability of Nicholson's blowflies equation with multiple pairs of time-varying delays, Appl. Math. Lett. 2020 (2020), Available from: https://doi.org/10.1016/j.aml.2019.106027. |
[39] | L. Yong, H. Ni, (µ, ν)-pseudo almost periodic solutions of Clifford-valued high-order HNNs with multiple discrete delays, Neurocomputing, 414 (2020), 1-9. Available from: https://doi.org/10.1016/j.neucom.2020.07.069. |
[40] | C. Huang, R. Su, Y. Hu, Global convergence dynamics of almost periodic delay Nicholson's blowflies systems, J. Biol. Dynam., 14 (2020), 633-655. Available from: https://doi.org/10.1080/17513758.2020.1800841. |
[41] | Y. Zhang, Right triangle and parallelogram pairs with a common area and a common perimeter, J. Number Theory, 164 (2016), 179-190. doi: 10.1016/j.jnt.2015.12.015 |
[42] | H. Zhang, Q. Cao, H. Yang, Asymptotically almost periodic dynamics on delayed Nicholson-type system involving patch structure, J. Inequal. Appl., 2020 (2020). Available from: https://doi.org/10.1186/s13660-020-02366-0. |
[43] | L. Huang, H. Ma, J. Wang, Global dynamics of a Filippov plant disease model with an economic threshold of infected-susceptible ratio, J. Appl. Anal. Comput., 10 (2020), 1-15. |
[44] | J. Wang, S. He, L. Huang, Limit cycles induced by threshold nonlinearity in planar piecewise linear systems of node-focus or node-center type, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30 (2020), 2050160. doi: 10.1142/S0218127420501606 |
[45] | H. Hu, T. Yi, X. Zou, On spatial-temporal dynamics of a fisher-kpp equation with a shifting environment, Proc. Amer. Math. Soc., 148 (2020), 213-221. |
[46] | F. Yu, L. Liu, H. Shen, Z. Zhang, Y. Huang, C. Shi, Dynamic analysis, circuit design, and synchronization of a novel 6d memristive four-wing hyperchaotic system with multiple coexisting attractors, Complexity, 2020 (2020). Available from: https://doi.org/10.1155/ 2020/5904607. |
[47] | Z. Gao, Y. Wang, J. Xiong, Y. Pan, Y. Huang, Structural balance control of complex dynamical networks based on state observer for dynamic connection relationships, Complexity, 2020 (2020). Available from: https://doi.org/10.1155/2020/5075487. |
[48] | B. Li, F. Wang, K. Zha, Large time dynamics of 2d semi-dissipative boussinesq equations, Nonlinearity, 33 (2020), 2481-2501. Available from: https://doi.org/10.1088/1361-6544/ab74b1. |
[49] | Y. Tan, L. Liu, Weighted boundedness of multilinear operator associated to singular integral operator with variable Calderón-Zygmund Kernel, Rev. R. Acad. Cienc. Exactas Fls. Nat., Ser. A Mat.. 111 (2017), 931-946. |
[50] | W. Wang, Finite-time synchronization for a class of fuzzy cellular neural networks with timevarying coefficients and proportional delays, Fuzzy Sets Systems, 338 (2018), 40-49. |
[51] | W. Wang, F. Liu, W. Chen, Exponential stability of pseudo almost periodic delayed Nicholson-type system with patch structure, Math. Meth. Appl. Sci., 42 (2019), 592-604. doi: 10.1002/mma.5364 |
[52] | X. Long, Novel stability criteria on a patch structure Nicholson's blowflies model with multiple pairs of time-varying delays, AIMS Math., 5 (2020), 7387-7401. DOI: 10.3934/math.2020473 doi: 10.3934/math.2020473 |