Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

Common fixed point theorems on complex valued extended b-metric spaces for rational contractions with application

  • The purpose of this article is to establish common fixed point results on complex valued extended b-metric spaces for the mappings satisfying rational expressions on a closed ball. Our investigations generalize some well-known results of literature. Furthermore, we supply a significant example to show the authenticity of established results. As application, we solve Urysohn integral equations by our main results.

    Citation: Amer Hassan Albargi. Common fixed point theorems on complex valued extended b-metric spaces for rational contractions with application[J]. AIMS Mathematics, 2023, 8(1): 1360-1374. doi: 10.3934/math.2023068

    Related Papers:

    [1] Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977
    [2] Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Hassen Aydi, Manuel De La Sen . Rational contractions on complex-valued extended b-metric spaces and an application. AIMS Mathematics, 2023, 8(2): 3338-3352. doi: 10.3934/math.2023172
    [3] Afrah Ahmad Noman Abdou . A fixed point approach to predator-prey dynamics via nonlinear mixed Volterra–Fredholm integral equations in complex-valued suprametric spaces. AIMS Mathematics, 2025, 10(3): 6002-6024. doi: 10.3934/math.2025274
    [4] Asifa Tassaddiq, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Durdana Lateef, Farha Lakhani . On common fixed point results in bicomplex valued metric spaces with application. AIMS Mathematics, 2023, 8(3): 5522-5539. doi: 10.3934/math.2023278
    [5] Khaled Berrah, Abdelkrim Aliouche, Taki eddine Oussaeif . Applications and theorem on common fixed point in complex valued b-metric space. AIMS Mathematics, 2019, 4(3): 1019-1033. doi: 10.3934/math.2019.3.1019
    [6] Sudipta Kumar Ghosh, Ozgur Ege, Junaid Ahmad, Ahmad Aloqaily, Nabil Mlaiki . On elliptic valued b-metric spaces and some new fixed point results with an application. AIMS Mathematics, 2024, 9(7): 17184-17204. doi: 10.3934/math.2024835
    [7] Joginder Paul, Mohammad Sajid, Naveen Chandra, Umesh Chandra Gairola . Some common fixed point theorems in bipolar metric spaces and applications. AIMS Mathematics, 2023, 8(8): 19004-19017. doi: 10.3934/math.2023969
    [8] Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Manar A. Alqudah, Thabet Abdeljawad . Fixed point theory in complex valued controlled metric spaces with an application. AIMS Mathematics, 2022, 7(7): 11879-11904. doi: 10.3934/math.2022663
    [9] Afrah A. N. Abdou, Maryam F. S. Alasmari . Fixed point theorems for generalized α-ψ-contractive mappings in extended b-metric spaces with applications. AIMS Mathematics, 2021, 6(6): 5465-5478. doi: 10.3934/math.2021323
    [10] Abdullah Shoaib, Poom Kumam, Shaif Saleh Alshoraify, Muhammad Arshad . Fixed point results in double controlled quasi metric type spaces. AIMS Mathematics, 2021, 6(2): 1851-1864. doi: 10.3934/math.2021112
  • The purpose of this article is to establish common fixed point results on complex valued extended b-metric spaces for the mappings satisfying rational expressions on a closed ball. Our investigations generalize some well-known results of literature. Furthermore, we supply a significant example to show the authenticity of established results. As application, we solve Urysohn integral equations by our main results.



    The notion of complex valued metric space is introduced by Azam et al. [1] in 2011 and established common fixed points of self mappings satisfying rational contractions. Later on, Rouzkard et al. [2] gave generalized contraction and extended the leading theorem of Azam et al. [1]. Subsequently, Sintunavarat et al. [3] replaced the constants involved in the contraction with control functions of one variable and generalized the results of Azam et al. [1] and Rouzkard et al. [2]. Sitthikul et al. [4] used control functions of two vaiables in the contraction and established common fixed point theorems in context of complex valued metric space. Although many researchers [5,6,7,8,9,10] worked in this space and proved different generalized results. Mukheimer [11] gave the notion of complex valued b-metric space (CVbMS) by involving a constant π1 in the triangle inequality and generalized the concept of complex valued metric space (CVMS). Kumar [12] and Rao et al. [13] proved common fixed point results in CVbMS for generalized contractions. Naimatullah et al. [14] replaced contant with a control function and extended the concept of complex valued b-metric space (CVbMS) to complex valued extended b-metric space (CVEbMS). They proved fixed points of multivalued mappings for contractions involving rational expressions in CVEbMS. For more details in this direction, we refer the readers to [15,16,17,18,19,20,21,22].

    In this paper, we obtain common fixed point theorems in complex valued extended b-metric spaces (CVEbMS) for rational contractions with contractiveness on a closed ball. We also provide a significant example to show the originality of obtained results.

    Azam et al. [1] gave the notion of complex valued metric space (CVMS) in this way.

    Definition 1. (See [1])Let ω1,ω2C (set of complex numbers). A partial order  on C is defined as follows

    ω1ω2   Re(ω1) Re(ω2),  Im(ω1) Im(ω2).

    It follows that

    ω1ω2,

    if one of these assertions is satisfied:

    (a)  Re(ω1)=Re(ω2), Im(ω1)<Im(ω2),(b) Re(ω1)<Re(ω2), Im(ω1)=Im(ω2),(c) Re(ω1)<Re(ω2), Im(ω1)<Im(ω2),(d) Re(ω1)=Re(ω2), Im(ω1)=Im(ω2).

    Definition 2. (See [1]) Let W and d:W×WC satisfy

    (i) 0d(ω,ϱ) and d(ω,ϱ)=0 if and only if ω=ϱ;

    (ii) d(ω,ϱ)=d(ϱ,ω);

    (iii) d(ω,ϱ)d(ω,ν)+d(ν,ϱ);

    for all ω,ϱ,νW, then (W,d) is said to be complex valued metric space (CVMS).

    Example 3. (See [1]) Let W=[0,1]. Define d:W×WC by

    d(ω,ϱ)={0, if ω=ϱ,i2, if ωϱ,

    for all ω,ϱW, then (W,d) is CVMS.

    Mukheimer [11] gave the conception of complex valued b-metric space (CVbMS) in this way.

    Definition 4. (See [11]) Let W and π1 be a real number. If a mapping d:W×WC satisfy

    (i) 0d(ω,ϱ) and d(ω,ϱ)=0 if and only if ω=ϱ;

    (ii) d(ω,ϱ)=d(ϱ,ω);

    (iii) d(ω,ϱ)π[d(ω,ν)+d(ν,ϱ)];

    for all ω,ϱ,νW, then (W,d) is called a complex valued b- metric space (CVbMS).

    Example 5. (See [11]) Let W=[0,1]. Define d:W×WC by

    d(ω,ϱ)=|ωϱ|2+i|ωϱ|2,

    for all ω,ϱW, then (W,d) is CVbMS with π=2.

    Recently, Naimatullah et al. [14] defined the notion of complex valued extended b-metric space (CVEbMS) in this way.

    Definition 6. (See [14]) Let W and φ:W×W[1,). If a mapping d:W×WC satisfy

    (i) 0d(ω,ϱ) and d(ω,ϱ)=0 if and only if ω=ϱ;

    (ii) d(ω,ϱ)=d(ϱ,ω);

    (iii) d(ω,ϱ)φ(ω,ϱ)[d(ω,ν)+d(ν,ϱ)];

    for all ω,ϱ,νW, then (W,d) is called CVEbMS.

    Example 7. (See [14]) Let W and φ:W×W[1,) be defined by

    φ(ω,ϱ)=1+ω+ϱω+ϱ,

    and d:W×WC by

    (i) d(ω,ϱ)=iωϱ, for all 0<ω,ϱ1;

    (ii) d(ω,ϱ)=0 if and only if ω=ϱ, for all 0ω,ϱ1;

    (iii) d(ω,0)=d(0,ω)=iω, for all 0<ω1.

    Then (W,d) is a CVEbMS.

    Example 8. Let W=[0,) and φ:W×W[1,) be a function defined by φ(ω,ϱ)=1+ω+ϱ and d:W×WC by

    d(ω,ϱ)={0, if ω=ϱ,i, if ωϱ.

    Then (W,d) is a CVEbMS.

    Lemma 9. (See [14]) Let (W,d) be a CVEbMS and {ωn} W, then {ωn} converges to ω if and only if |d(ωn,ω)|0, as n.

    Lemma 10. (See [14]) Let (W,d) be a CVEbMS and {ωn} W, then {ωn} is a Cauchy sequence if and only if  |d(ωn,ωm)|0 as n,m.

    Now we state our main result in this way.

    Theorem 11. Let (W,d) be a complete CVEbMS with φ:W×W[1,) and 1,2:WW. Suppose that there exist 1,2,3,4,5[0,1) with 1+2+3+24+25<1 such that

    d(1ω,2ϱ)1d(ω,ϱ)+2d(ω,1ω)d(ϱ,2ϱ)1+d(ω,ϱ)+3d(ϱ,1ω)d(ω,2ϱ)1+d(ω,ϱ)+4d(ω,1ω)d(ω,2ϱ)1+d(ω,ϱ)+5d(ϱ,1ω)d(ϱ,2ϱ)1+d(ω,ϱ), (3.1)

    for all ω0,ω,ϱ¯B(ω0,r), 0rC and

    |d(ω0,1ω0)|(1λ)|r|, (3.2)

    where λ=max{(1+4124),(1+5125)}. And for each ω0¯B(ω0,r) and limn,m+φ(ωn,ωm)λ<1, then there exists a unique point ω¯B(ω0,r) such that ω=1ω=2ω.

    Proof. Let ω0 W and define

    ω2n+1=1ω2n and ω2n+2=2ω2n+1,

    for all n=0,1,2,. Now we show that ωn¯B(ω0,r), for all nN. By the fact that λ=max{(1+4124),(1+5125)}<1 and inequality (3.2), we have

    |d(ω0,1ω0)||r|.

    It implies that ω1¯B(ω0,r). Let ω2,...,ωj¯B(ω0,r) for some jN. If j=2n+1, where n=0,1,2,j12 or j=2n+2, where n=0,1,2,,j22. By (3.1), we have 

    d(ω2n+1,ω2n+2)=d(1ω2n,2ω2n+1)1d(ω2n,ω2n+1)+2d(ω2n+1,2ω2n+1)d(ω2n,1ω2n)1+d(ω2n,ω2n+1)+3d(ω2n,2ω2n+1)d(ω2n+1,1ω2n)1+d(ω2n,ω2n+1)+4d(ω2n,2ω2n+1)d(ω2n,1ω2n)1+d(ω2n,ω2n+1)+5d(ω2n+1,2ω2n+1)d(ω2n+1,1ω2n)1+d(ω2n,ω2n+1).

    Now ω2n+1=1ω2n implies that d(ω2n+1,1ω2n)=0, so we have

    d(ω2n+1,ω2n+2)1d(ω2n,ω2n+1)+2d(ω2n+1,ω2n+2)d(ω2n,ω2n+1)1+d(ω2n,ω2n+1)+4d(ω2n,ω2n+2)d(ω2n,ω2n+1)1+d(ω2n,ω2n+1).

    This implies that

    |d(ω2n+1,ω2n+2)|1|d(ω2n,ω2n+1)|+2|d(ω2n+1,ω2n+2)||d(ω2n,ω2n+1)||1+d(ω2n,ω2n+1)|+4|d(ω2n,ω2n+2)||d(ω2n,ω2n+1)||1+d(ω2n,ω2n+1)|.

    Since |1+d(ω2n,ω2n+1)|>|d(ω2n,ω2n+1)|, so we have

    |d(ω2n+1,ω2n+2)|1|d(ω2n,ω2n+1)|+2|d(ω2n+1,ω2n+2)|+4|d(ω2n,ω2n+2)|.

    Which implies that by triangular inequality

    |d(ω2n+1,ω2n+2)|(1+4)(124)|d(ω2n,ω2n+1)|. (3.3)

    Similarly, we get 

    d(ω2n+2,ω2n+3)=d(1ω2n+2,2ω2n+1)1d(ω2n+2,ω2n+1)+2d(ω2n+1,2ω2n+1)d(ω2n+2,1ω2n+2)1+d(ω2n+2,ω2n+1)+3d(ω2n+2,2ω2n+1)d(ω2n+1,1ω2n+2)1+d(ω2n+2,ω2n+1)+4d(ω2n+2,2ω2n+1)d(ω2n+2,1ω2n+2)1+d(ω2n+2,ω2n+1)+5d(ω2n+1,2ω2n+1)d(ω2n+1,1ω2n+2)1+d(ω2n+2,ω2n+1).

    Now ω2n+2=2ω2n+1 implies that d(ω2n+2,2ω2n+1)=0, so we have

    d(ω2n+2,ω2n+3)1d(ω2n+2,ω2n+1)+2d(ω2n+1,ω2n+2)d(ω2n+2,ω2n+3)1+d(ω2n+2,ω2n+1)+5d(ω2n+1,ω2n+2)d(ω2n+1,ω2n+3)1+d(ω2n+2,ω2n+1).

    This implies that

    |d(ω2n+2,ω2n+3)|1|d(ω2n+2,ω2n+1)|+2|d(ω2n+1,ω2n+2)||d(ω2n+2,ω2n+3)||1+d(ω2n+1,ω2n+2)|+5|d(ω2n+1,ω2n+2)||d(ω2n+1,ω2n+3)||1+d(ω2n+2,ω2n+1)|.

    Since |1+d(ω2n+2,ω2n+1)|>|d(ω2n+2,ω2n+1)|, so we have

    |d(ω2n+2,ω2n+3)|1|d(ω2n+2,ω2n+1)|+2|d(ω2n+2,ω2n+3)|+5|d(ω2n+1,ω2n+3)|.

    Which implies that by triangular inequality

    |d(ω2n+2,ω2n+3)|(1+5)(125)|d(ω2n+2,ω2n+1)|. (3.4)

    Putting λ=max{(1+4124),(1+5125)}, we obtain that

    |d(ωj,ωj+1)|λj|d(ω0,ω1)| for some jN. (3.5)

    Now

    |d(ω0,ωj+1)||d(ω0,ω1)|+...+|d(ωj,ωj+1)||d(ω0,ω1)|+...+λj|d(ω0,ω1)|=|d(ω0,ω1)|[1+...+λj1+λj](1λ)(|r|)(1λj+1)1λ|r|,

    gives ωj+1¯B(ω0,r). Hence ωn¯B(ω0,r) for all nN. One can easily prove that

    |d(ωn, ωn+1)|λn|d(ω0, ω1)|,

    for all nN. Now for m>n and by triangular inequality, we have

    |d(ωn,ωm)|φ(ωn,ωm)λn|d(ω0,ω1)|+φ(ωn,ωm)φ(ωn+1,ωm)λn+1|d(ω0,ω1)|++φ(ωn,ωm)φ(ωn+1,ωm)φ(ωm2,ωm)φ(ωm1,ωm)λm1|d(ω0,ω1)||d(ω0,ω1)|[φ(ωn,ωm)λn+φ(ωn,ωm)φ(ωn+1,ωm)λn+1++φ(ωn,ωm)φ(ωn+1,ωm)φ(ωm2,ωm)φ(ωm1,ωm)λm1].

    Since limn,m+φ(ωn,ωm)λ<1, so the series n=1λnpi=1φ(ωi,ωm) converges by ratio test for each mN. Let

    =n=1λnpi=1φ(ωi,ωm),n=nj=1λjpi=1φ(ωi,ωm).

    Thus, for m>n, the above inequality can be written as

    |d(ωn,ωm)||d(ω0,ω1)|[m1n].

    Now, by taking the limit as n,m+, we get

    limn,m+|d(ωn,ωm)|0.

    By lemma (10), we conclude that the sequence {ωn} is a Cauchy sequence in ¯B(ω0,r). Consequently there exists ω¯B(ω0,r) such that limn+ωn=ω.  It follows that ω=1ω, otherwise d(ω,1ω)=υ0 and we would then have

    υφ(ω,1ω)(d(ω,ω2n+2)+d(ω2n+2,1ω)   )  =φ(ω,1ω)(d(ω,ω2n+2)+d(2ω2n+1,1ω)   )  φ(ω,1ω)(d(ω,ω2n+2)+1d(ω2n+1,ω)+2d(ω2n+1,2ω2n+1   )  d(ω,1ω   )  1+d(ω,ω2n+1   )  +3d(ω2n+1,1ω   )  d(ω,2ω2n+1   )  1+d(ω,ω2n+1   )  +4d(ω,2ω2n+1   )  d(ω,1ω   )  1+d(ω,ω2n+1   )  +5d(ω2n+1,2ω2n+1   )  d(ω2n+1,1ω   )  1+d(ω,ω2n+1   )     )  ,

    which implies that

    |υ|φ(ω,1ω)(|d(ω,ω2n+2)|+1|d(ω2n+1,ω)|+2|d(ω2n+1,ω2n+2   )  ||υ||1+d(ω,ω2n+1   )  |+3|d(ω2n+1,1ω   )  ||d(ω,ω2n+2   )  ||1+d(ω,ω2n+1   )  |+4|d(ω,ω2n+2   )  ||υ||1+d(ω,ω2n+1   )  |+5|d(ω2n+1,ω2n+2   )  ||d(ω2n+1,1ω   )  ||1+d(ω,ω2n+1   )  |   )  .

    That is |υ|=0, which is a contradiction. Thus ω=1ω.Similarly, we can prove that ω=2ω.

    Now we show uniqueness of common fixed point. We suppose ω/ in W is another common fixed point of 1 and 2 that is ω/=1ω/=2ω/ which is distinct from ω that is ωω/. Now by (3.1), we have

    d(ω,ω/)=d(1ω,2ω/)1d(ω,ω/)+2d(ω,1ω)d(ω/,2ω/)1+d(ω,ω/)+3d(ω/,1ω)d(ω,2ω/)1+d(ω,ω/)+4d(ω,1ω)d(ω,2ω/)1+d(ω,ω/)+5d(ω/,1ω)d(ω/,2ω/)1+d(ω,ω/)

    so that

    |d(ω,ω/)|1|d(ω,ω/)|+2|d(ω,1ω)||d(ω/,2ω/)||1+d(ω,ω/)|+3|d(ω/,1ω)||d(ω,2ω/)||1+d(ω,ω/)|+4|d(ω,1ω)||d(ω,2ω/)||1+d(ω,ω/)|+5|d(ω/,1ω)||d(ω/,2ω/)||1+d(ω,ω/)|.

    Since |1+d(ω,ω/)|>|d(ω,ω/)|, so we have

    |d(ω,ω/)|(1+3)|d(ω,ω/)|.

    This is contradiction to 1+3<1. Hence, ω/=ω. Therefore ω is a unique common fixed point of 1 and 2.

    Corollary 12. Let (W,d) be a complete CVEbMS with φ:W×W[1,) and :WW. Suppose that there exist 1,2,3,4, 5[0,1) with 1+2+3+24+25<1 such that

    d(ω,ϱ)1d(ω,ϱ)+2d(ω,ω)d(ϱ,ϱ)1+d(ω,ϱ)+3d(ϱ,ω)d(ω,ϱ)1+d(ω,ϱ)+4d(ω,ω)d(ω,ϱ)1+d(ω,ϱ)+5d(ϱ,ω)d(ϱ,ϱ)1+d(ω,ϱ),

    for all ω0,ω,ϱ¯B(ω0,r), 0rC and

    |d(ω0,1ω0)|(1λ)|r|,

    where λ=max{(1+4124),(1+5125)}. And for each ω0¯B(ω0,r) and limn,m+φ(ωn,ωm)λ<1, there exists a unique point ω¯B(ω0,r) such that ω=ω.

    Proof. Taking 1=2= in Theorem 11.

    Example 13. Suppose

    W1={υC: Re(υ)0,  Im(υ)=0},
    W2={υC: Im(υ)0,  Re(υ)=0},

    and W=W1W2. Consider complex valued extended b-metric d:W×WC  as follows:

    d(υ1,υ2)={23|ω1ω2|2+i2|ω1ω2|2,if  υ1,υ2W1,12|ϱ1ϱ2|2+i3|ϱ1ϱ2|2,if  υ1,υ2W2,29(ω1+ϱ2)2+i6(ω1+ϱ2)2,if  υ1W1, υ2W2,i3(ω2+ϱ1)2+2i9(ω2+ϱ1)2,if  υ1W2, υ2W1,

    and φ:W×W[1,) by φ(ω,ϱ)=2. Then (W,d) is complete CVEbMS. Take υ0=12+0i and r=13+14i. Then,

    ¯B(υ0,r)={υC:0Re(υ)1, Im(υ)=0 if υW1υC:0Im(υ)1, Re(υ)=0 if υW2.

    Define 1,2:WW as

    1υ={0+ω4iif υW1 with 0Re(υ)1, Im(υ)=0,5ω6+0iif υW1 with Re(υ)>1, Im(υ)=0,ϱ5+0iif υW2 with 0Im(υ)1, Re(υ)=0,0+4ϱ5iif υW2 with Im(υ)>1, Re(υ)=0.
    2υ={0+ω6iif υW1 with 0Re(υ)1, Im(υ)=0,4ω5+0iif υW1 withRe(υ)>1, Im(υ)=0,ϱ7+0iif υW2 with 0Im(υ)1, Re(υ)=0,0+5ϱ6iif υW2 with Im(υ)>1, Re(υ)=0.

    Then with 1=16,2=124,3=12,4=125 and 5=126, all the assumptions of Theorem 11 are satisfied and hence 0+0i¯B(υ0,r) is a unique common fixed point 1 and 2.

    Corollary 14. Let (W,d) be a complete CVEbMS with φ:W×W[1,) and 1,2:WW. Suppose that there exist 1,2,3,4[0,1) with 1+2+3+24<1 such that

    d(1ω,2ϱ)1d(ω,ϱ)+2d(ω,1ω)d(ϱ,2ϱ)1+d(ω,ϱ)+3d(ϱ,1ω)d(ω,2ϱ)1+d(ω,ϱ)+4d(ω,1ω)d(ω,2ϱ)1+d(ω,ϱ),

    for all ω0,ω,ϱ¯B(ω0,r), 0rC and

    |d(ω0,1ω0)|(1λ)|r|,

    where λ=max{1+4124,112}. And for each ω0¯B(ω0,r), limn,m+φ(ωn,ωm)λ<1, then there exists a unique point ω¯B(ω0,r) such that ω=1ω=2ω.

    Proof. Taking 5=0 in Theorem 11.

    Corollary 15. Let (W,d) be a complete CVEbMS with φ:W×W[1,) and :WW. Suppose that there exist 1,2,3,4[0,1) with 1+2+3+24<1 such that

    d(ω,ϱ)1d(ω,ϱ)+2d(ω,ω)d(ϱ,ϱ)1+d(ω,ϱ)+3d(ϱ,ω)d(ω,ϱ)1+d(ω,ϱ)+4d(ω,ω)d(ω,ϱ)1+d(ω,ϱ),

    for all ω0,ω,ϱ¯B(ω0,r), 0rC and

    |d(ω0,ω0)|(1λ)|r|,

    where λ=max{1+4124,112}. And for each ω0¯B(ω0,r) and limn,m+φ(ωn,ωm)λ<1, then there exists a unique point ω¯B(ω0,r) such that ω=ω.

    Proof. Taking 1=2= in Corollary 14.

    Corollary 16. Let (W,d) be a complete CVEbMS with φ:W×W[1,) and 1,2:WW. Suppose that there exist 1,2,3,5[0,1) with 1+2+3+25<1 such that

    d(1ω,2ϱ)1d(ω,ϱ)+2d(ω,1ω)d(ϱ,2ϱ)1+d(ω,ϱ)+3d(ϱ,1ω)d(ω,2ϱ)1+d(ω,ϱ)+5d(ϱ,1ω)d(ϱ,2ϱ)1+d(ω,ϱ),

    for all ω0,ω,ϱ¯B(ω0,r), 0rC and

    |d(ω0,1ω0)|(1λ)|r|,

    where λ=max{(112),(1+5125)}. And for each ω0¯B(ω0,r) and limn,m+φ(ωn,ωm)λ<1, then there exists a unique point ω¯B(ω0,r) such that ω=1ω=2ω.

    Proof. Taking 4=0 in Theorem 11.

    Corollary 17. Let (W,d) be a complete CVEbMS with φ:W×W[1,) and :WW. Suppose that there exist 1,2,3,5[0,1) with 1+2+3+25<1 such that

    d(ω,ϱ)1d(ω,ϱ)+2d(ω,ω)d(ϱ,ϱ)1+d(ω,ϱ)+3d(ϱ,ω)d(ω,ϱ)1+d(ω,ϱ)+5d(ϱ,ω)d(ϱ,ϱ)1+d(ω,ϱ),

    for all ω0,ω,ϱ¯B(ω0,r), 0rC and

    |d(ω0,ω0)|(1λ)|r|,

    where λ=max{(112),(1+5125)}. And for each ω0¯B(ω0,r) and limn,m+φ(ωn,ωm)λ<1, then there exists a unique point ω¯B(ω0,r) such that ω=ω.

    Proof. By setting 1=2= in Corollary 16.

    Corollary 18. Let (W,d) be a complete CVEbMS with φ:W×W[1,) and 1,2:WW. Suppose that there exist 1,2,3[0,1) with 1+2+3<1 such that

    d(1ω,2ϱ)1d(ω,ϱ)+2d(ω,1ω)d(ϱ,2ϱ)1+d(ω,ϱ)+3d(ϱ,1ω)d(ω,2ϱ)1+d(ω,ϱ),

    for all ω0,ω,ϱ¯B(ω0,r), 0rC and

    |d(ω0,1ω0)|(1λ)|r|,

    where λ=112. And for each ω0¯B(ω0,r) and limn,m+φ(ωn,ωm)λ<1, then there exists a unique point ω¯B(ω0,r) such that ω=1ω=2ω.

    Proof. By choosing 4=5=0 in Theorem 11.

    Corollary 19. Let (W,d) be a complete CVEbMS with φ:W×W[1,) and :WW. Suppose that there exist 1,2,3[0,1) with 1+2+3<1 such that

    d(ω,ϱ)1d(ω,ϱ)+2d(ω,ω)d(ϱ,ϱ)1+d(ω,ϱ)+3d(ϱ,ω)d(ω,ϱ)1+d(ω,ϱ),

    for all ω0,ω,ϱ¯B(ω0,r), 0rC and

    |d(ω0,ω0)|(1λ)|r|,

    where λ=112. And for each ω0¯B(ω0,r) and limn,m+φ(ωn,ωm)λ<1, then there exists a unique point ω¯B(ω0,r) such that ω=ω.

    Proof. Taking 1=2= in Corollary 18.

    Corollary 20. Let (W,d) be a complete CVEbMS with φ:W×W[1,) and 1,2:WW. Suppose that there exist 1,2[0,1) with 1+2<1 such that

    d(1ω,2ϱ)1d(ω,ϱ)+2d(ω,1ω)d(ϱ,2ϱ)1+d(ω,ϱ),

    for all ω0,ω,ϱ¯B(ω0,r), 0rC and

    |d(ω0,1ω0)|(1λ)|r|,

    where λ=112. And for each ω0¯B(ω0,r) and limn,m+φ(ωn,ωm)λ<1, then there exists a unique point ω¯B(ω0,r) such that ω=1ω=2ω.

    Proof. Taking 3=4=5=0 in Theorem 11.

    Corollary 21. Let (W,d) be a complete CVEbMS with φ:W×W[1,) and :WW. Suppose that there exist 1,2[0,1) with 1+2<1 such that

    d(ω,ϱ)1d(ω,ϱ)+2d(ω,ω)d(ϱ,ϱ)1+d(ω,ϱ),

    for all ω0,ω,ϱ¯B(ω0,r), 0rC and

    |d(ω0,ω0)|(1λ)|r|,

    where λ=112. And for each ω0¯B(ω0,r) and limn,m+φ(ωn,ωm)λ<1, then there exists a unique point ω¯B(ω0,r) such that ω=ω.

    Proof. Taking 1=2= in Corollary 20.

    Now we we establish the following result for two finite families of mappings as an application of Theorem 11.

    Theorem 22. If {i}m1 and {i}n1 are two finite pairwise commuting finite families of self-mapping defined on a complex valued extended b-metric space with φ:W×W[1,) such that the mappings and (with =12m and =12n) satisfy (3.1) and (3.2) then the component mappings of these {i}m1 and {i}n1 have a unique common fixed point.

    Proof. By Theorem 11, one can get ω=ω=ω, which is unique. Now by pairwise commutativity of {i}m1 and {i}n1, (for every 1km) one can write kω=kω=kω and kω=kω=kω which manifest that kω, for all k, is also a common fixed point of and . Now utilizing the uniqueness, one can write kω=ω (for every k) which shows that ω is a common fixed point of {i}m1. By doing the same strategy, we can prove that kω=ω (1kn). Hence {i}m1 and {i}n1 have a unique common fixed point.

    Corollary 23. Let (W,d) be a complete CVEbMS with φ:W×W[1,) and F,G:WW. Suppose that there exist 1,2,3,4, 5[0,1) with 1+2+3+24+25<1 such that

    d(Fmω,Gnϱ)1d(ω,ϱ)+2d(ω,Fmω)d(ϱ,Gnϱ)1+d(ω,ϱ)+3d(ϱ,Fmω)d(ω,Gnϱ)1+d(ω,ϱ)+4d(ω,Fmω)d(ω,Gnϱ)1+d(ω,ϱ)+5d(ϱ,Fmω)d(ϱ,Gnϱ)1+d(ω,ϱ),

    for all ω0,ω,ϱ¯B(ω0,r), 0rC and

    |d(ω0,Gnω0)|(1λ)|r|,

    where λ=max{(1+4124),(1+5125)}. And for each ω0¯B(ω0,r) and limn,m+φ(ωn,ωm)λ<1, then there exists a unique point ω¯B(ω0,r) such that ω=Fω=Gω.

    Proof. Taking 1=2==m=F and 1=2==n=G, in Theorem 18.

    Corollary 24. Let (W,d) be a complete CVEbMS with φ:W×W[1,) and :WW. Suppose that there exist 1,2,3,4, 5[0,1) with 1+2+3+24+25<1 such that

    d(nω,nϱ)1d(ω,ϱ)+2d(ωnω)d(ϱ,nϱ)1+d(ω,ϱ)+3d(ϱ,nω)d(ω,nϱ)1+d(ω,ϱ)+4d(ω,nω)d(ω,nϱ)1+d(ω,ϱ)+5d(ϱ,nω)d(ϱ,nϱ)1+d(ω,ϱ),

    for all ω0,ω,ϱ¯B(ω0,r), 0rC and

    |d(ω0,nω0)|(1λ)|r|,

    where λ=max{(1+4124),(1+5125)}. And for each ω0¯B(ω0,r) and limn,m+φ(ωn,ωm)λ<1, then there exists a unique point ω¯B(ω0,r) such that ω=ω.

    Taking m=n and F=G= in Corollary 23.

    Theorem 25. Let W=C([a,b],Rn), a>0 and d:W×WC be defined in this way

    d(ω,ϱ)=maxt[a,b]

    and \varphi :\mathcal{W}\times \mathcal{W}\rightarrow \lbrack 1, \infty) be defined by \varphi (\omega, \varrho) = 2. Then ( \mathcal{W}, d ) is complete CVE b MS. Consider the Urysohn integral equations

    \begin{equation} \omega (t) = \int_{a}^{b}K_{1}(t, s, \omega (s))ds+\phi (t), \end{equation} (4.1)
    \begin{equation} \omega (t) = \int_{a}^{b}K_{2}(t, s, \omega (s))ds+\psi (t), \end{equation} (4.2)

    for all t\in \lbrack a, b]\subset \mathbb{R} , \omega, \phi, \psi \in \mathcal{W} .

    Assume that K_{1}, K_{2}:[a, b]\times \lbrack a, b]\times \mathbb{R}^{n}\rightarrow \mathbb{R}^{n} are such that F_{\omega }, G_{\omega }\in \mathcal{W}\ \ for each \ \omega \in \mathcal{W}, \ where,

    \begin{equation*} F_{\omega }\left( t\right) = \int_{a}^{b}K_{1}(t, s, \omega (s))ds, \quad G_{\omega }\left( t\right) = \int_{a}^{b}K_{2}(t, s, \omega (s))ds. \end{equation*}

    for all t\in \lbrack a, b].

    If there exist \ \aleph _{1}\mathfrak{, }\aleph _{2}\in \lbrack 0, 1) with \aleph _{1}\mathfrak{+}\aleph _{2} < 1 such that for every \omega, \varrho \in \mathcal{W}

    \begin{equation*} \left \Vert F_{\omega }\left( t\right) -G_{\varrho }\left( t\right) +\phi (t)-\psi (t)\right \Vert ^{2}\sqrt{1+a^{2}}e^{i\tan ^{-1}a}\precsim \aleph _{1}A\left( \omega , \varrho \right) \left( t\right) +\aleph _{2}B\left( \omega , \varrho \right) \left( t\right), \end{equation*}

    where

    \begin{eqnarray*} A\left( \omega , \varrho \right) \left( t\right) & = &\left \Vert \omega (t)-\varrho (t)\right \Vert ^{2}\sqrt{1+a^{2}}e^{i\tan ^{-1}a}, \\ B\left( \omega , \varrho \right) \left( t\right) & = &\frac{\left \Vert F_{\omega }\left( t\right) +\phi (t)-\omega (t)\right \Vert ^{2}\left \Vert G_{\varrho }\left( t\right) +\psi (t)-\varrho (t)\right \Vert ^{2}}{1+ \underset{t\in \left[ a, b\right] }{\max }A\left( \omega , \varrho \right) \left( t\right) }\sqrt{1+a^{2}}e^{i\tan ^{-1}a}, \end{eqnarray*}

    then Urysohn integral equations (4.1) and (4.2) have a unique common solution.

    Proof. Define \Im _{1}, \Im _{2}:\mathcal{W}\rightarrow \mathcal{W} by

    \begin{equation*} \Im _{1}\omega = F_{\omega }+\phi , \quad \Im _{2}\omega = G_{\omega }+\psi . \end{equation*}

    Then

    \begin{equation*} d\left( \Im _{1}\omega , \Im _{2}\varrho \right) = \underset{t\in \left[ a, b \right] }{\max }\left \Vert F_{\omega }\left( t\right) -G_{\varrho }\left( t\right) +\phi (t)-\psi (t)\right \Vert ^{2}\sqrt{1+a^{2}}e^{i\tan ^{-1}a}, \end{equation*}
    \begin{equation*} d\left( \omega , \varrho \right) = \underset{t\in \left[ a, b\right] }{\max } A\left( \omega , \varrho \right) \left( t\right) , \end{equation*}
    \begin{equation*} \frac{d(\omega , \Im _{1}\omega )d(\varrho , \Im _{2}\varrho )}{1+d(\omega , \varrho )} = \underset{t\in \left[ a, b\right] }{\max }B\left( \omega , \varrho \right) \left( t\right). \end{equation*}

    It is easily seen that

    \begin{equation*} d\left( \Im _{1}\omega , \Im _{2}\varrho \right) \precsim \mathfrak{\aleph } _{1}d(\omega , \varrho )+\aleph _{2}\frac{d(\omega , \Im _{1}\omega )d(\varrho , \Im _{2}\varrho )}{1+d(\omega , \varrho )}, \end{equation*}

    for every \omega, \varrho \in \mathcal{W} . By Theorem 11 with \aleph _{3} = \aleph _{4} = \aleph _{5} = 0 , the Urysohn integral equations (4.1) and (4.2) have a unique common solution.

    In this article, we have utilized the notion of complex valued extended b -metric space (CVE b MS) and secured common fixed point results for rational contractions on a closed ball. We have derived common fixed points and fixed points of single valued mappings for contractions on a closed ball. We expect that the obtained consequences in this article will form up to date relations for researchers who are employing in CVE b MS.

    The future work in this way will target on studying the common fixed points of single valued and multivalued mappings in the setting of CVE b MS. Differential and integral equations can be solved as applications of these results.

    The author would like to thank the anonymous reviewers for their insightful suggestions and careful reading of the manuscript.

    The authors declare that they have no conflicts of interest.



    [1] A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Num. Funct.Anal. Optimiz., 32 (2011), 243–253. https://doi.org/10.1080/01630563.2011.533046 doi: 10.1080/01630563.2011.533046
    [2] F. Rouzkard, M. Imdad, Some common fixed point theorems on complex valued metric spaces, Comput. Math. Appl., 64 (2012), 1866–1874. https://doi.org/10.1016/j.camwa.2012.02.063 doi: 10.1016/j.camwa.2012.02.063
    [3] W. Sintunavarat, P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, J. Inequl. Appl., 2012 (2012), 84. https://doi.org/10.1186/1029-242X-2012-84 doi: 10.1186/1029-242X-2012-84
    [4] K. Sitthikul, S. Saejung, Some fixed point theorems in complex valued metric spaces, Fixed Point Theory Appl., 2012 (2012), 189. https://doi.org/10.1186/1687-1812-2012-189 doi: 10.1186/1687-1812-2012-189
    [5] J. Ahmad, C. Klin-Eeam, A. Azam, Common fixed points for multivalued mappings in complex valued metric spaces with applications, Abstr. Appl. Anal., 2013 (2013), 854965. https://doi.org/10.1155/2013/854965 doi: 10.1155/2013/854965
    [6] A. Azam, J. Ahmad, P. Kumam, Common fixed point theorems for multi-valued mappings in complex-valued metric spaces, J. Inequl. Appl., 2013 (2013), 578. https://doi.org/10.1186/1029-242X-2013-578 doi: 10.1186/1029-242X-2013-578
    [7] C. Klin-Eam, C. Suanoom, Some common fixed point theorems for generalized contractive type mappings on complex valued metric spaces, Abstr. Appl. Anal., 2013 (2013), 604215. https://doi.org/10.1155/2013/604215 doi: 10.1155/2013/604215
    [8] M. K. Kutbi, J. Ahmad, A. Azam, N. Hussain, On fuzzy fixed points for fuzzy maps with generalized weak property, J. Appl. Math., 2014 (2014), 1–12. https://doi.org/10.1155/2014/549504 doi: 10.1155/2014/549504
    [9] M. Humaira, G. Sarwar, N. V. Kishore, Fuzzy fixed point results for \varphi contractive Mapping with applications, Complexity, 2018 (2018), 5303815. https://doi.org/10.1155/2018/5303815 doi: 10.1155/2018/5303815
    [10] Humaira, M. Sarwar, P. Kumam, Common fixed point results for fuzzy mappings on complex-valued metric spaces with homotopy results, Symmetry, 11 (2019), 61. https://doi.org/10.3390/sym11010061 doi: 10.3390/sym11010061
    [11] A. A. Mukheimer, Some common fixed point theorems in complex valued b-metric spaces, Sci. World J., 2014 (2014), 587825. https://doi.org/10.1155/2014/587825 doi: 10.1155/2014/587825
    [12] S. Vashistha, J. Kumar, Common fixed point theorem for generalized contractive type paps on complex valued b-metric spaces, Int. J. Math. Anal., 9 (2015), 2327–2334. https://doi.org/10.12988/ijma.2015.57179 doi: 10.12988/ijma.2015.57179
    [13] K. P. Rao, N. Nagar, J. R. Prasad, A common fixed point theorem in complex valued b-metric spaces, Bull. Math. Stat. Res., 1 (2013), 1–8.
    [14] N. Ullah, M. S. Shagari, A. Azam, Fixed point theorems in complex valued extended b-metric spaces, Moroccan J. Pure. Appl. Anal., 5 (2019), 140–163. https://doi.org/10.2478/mjpaa-2019-0011 doi: 10.2478/mjpaa-2019-0011
    [15] A. H. Albargi, J. Ahmad, Common \alpha -fuzzy fixed point results for Kannan type contractions with application, J. Func. Spaces, 2022 (2022), 1–9. https://doi.org/10.1155/2022/5632119 doi: 10.1155/2022/5632119
    [16] R. J. C. Pushpa, A. A. Xavier, J. M. Joseph, M. Marudai, Common fixed point theorems under rational contractions in complex valued extended b-metric spaces, Int. J. Nonlinear Anal. Appl., 13 (2022), 3479–3490. https://doi.org/10.22075/IJNAA.2020.20025.2118 doi: 10.22075/IJNAA.2020.20025.2118
    [17] N. Ullah, M. S. Shagari, A. Tahir, A. U. Khan, Common fixed point theorems in complex valued non-negative extended b-metric space, J. Anal. Appl. Math., 2021 (2021), 35–47. https://doi.org/10.2478/ejaam-2021-0004 doi: 10.2478/ejaam-2021-0004
    [18] N. Ullah, M. S. Shagari, Fixed point results in complex valued extended b-metric spaces and related applications, Annal. Math. Comput. Sci., 1 (2021).
    [19] A. E. Shammaky, J. Ahmad, A. F. Sayed, On fuzzy fixed point results in complex valued extended b-metric spaces with application, J. Math., 2021 (2021), 9995897. https://doi.org/10.1155/2021/9995897 doi: 10.1155/2021/9995897
    [20] R. P. Agarwal, E. Karapınar, D. O'Regan, A. F. Roldán-López-de-Hierro, Fixed point theory in metric type spaces, Springer, 2015.
    [21] P. Debnath, N. Konwar, S. Radenović, Metric fixed point theory: Applications in science, engineering and behavioural sciences, Springer Verlag, 2021. https://doi.org/10.1007/978-981-16-4896-0
    [22] S. Aleksić, Z. Kadelburg, Z. D. Mitrovíć, S. N. Radenović, A new survey: Cone metric spaces, arXiv, 2018. https://doi.org/10.48550/arXiv.1805.04795
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1736) PDF downloads(92) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog