The notion of a fuzzy subset is used to introduce certain subclasses of analytic functions. Mainly, this article presents several inclusion results and integral preserving properties. Also, certain applications of the analytic functions in terms of fuzzy structure will be discussed.
Citation: Shujaat Ali Shah, Ekram Elsayed Ali, Asghar Ali Maitlo, Thabet Abdeljawad, Abeer M. Albalahi. Inclusion results for the class of fuzzy $ \alpha $-convex functions[J]. AIMS Mathematics, 2023, 8(1): 1375-1383. doi: 10.3934/math.2023069
The notion of a fuzzy subset is used to introduce certain subclasses of analytic functions. Mainly, this article presents several inclusion results and integral preserving properties. Also, certain applications of the analytic functions in terms of fuzzy structure will be discussed.
[1] | B. Ahmed, M. G. Khan, M. K. Aouf, W. K. Mashwani, Z. Salleh, H. Tang, Applications of a new-difference operator in Janowski-type meromorphic convex functions, J. Funct. Space., 2021 (2021). https://doi.org/10.1155/2021/5534357 doi: 10.1155/2021/5534357 |
[2] | J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math., 17 (1915), 12–22. https://doi.org/10.2307/2007212 doi: 10.2307/2007212 |
[3] | S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Mat. Soc., 135 (1969), 429–446. https://doi.org/10.1090/S0002-9947-1969-0232920-2 doi: 10.1090/S0002-9947-1969-0232920-2 |
[4] | S. G. Gal, A. I. Ban, Elemente de matematicǎ fuzzy, Romania: Editura Universitǎţii din Oradea, 1996. |
[5] | I. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138–147. https://doi.org/10.1006/jmaa.1993.1204 doi: 10.1006/jmaa.1993.1204 |
[6] | M. G. Khan, B. Ahmad, N. Khan, W. K. MAshwani, S. Arjika, B. Khan, et al., Applications of mittag-leffer type poisson distribution to a subclass of analytic functions involving conic-type regions, J. Funct. Space., 2021 (2021). https://doi.org/10.1155/2021/4343163 doi: 10.1155/2021/4343163 |
[7] | R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755–758. https://doi.org/10.1090/S0002-9939-1965-0178131-2 doi: 10.1090/S0002-9939-1965-0178131-2 |
[8] | A. A. Lupas, A note on special fuzzy differential subordinations using multiplier transformation and Ruschewehy derivative, J. Comput. Anal. Appl., 25 (2018), 1116–1124. |
[9] | G. I. Oros, Fuzzy differential subordinations obtained using a hypergeometric integral operator, Mathematics, 20 (2021), 2539. https://doi.org/10.3390/math9202539 doi: 10.3390/math9202539 |
[10] | G. I. Oros, New fuzzy differential subordinations, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 70 (2007), 229–240. https://doi.org/10.31801/cfsuasmas.784080 doi: 10.31801/cfsuasmas.784080 |
[11] | G. I. Oros, G. Oros, Briot-Bouquet fuzzy differential subordination, An. Univ. Oradea Fasc. Mat., 19 (2012), 83–87. |
[12] | G. I. Oros, G. Oros, Fuzzy differential subordination, Acta Univ. Apulensis, 3 (2012), 55–64. |
[13] | L. Shi, H. M. Srivastava, M. G. Khan, N. Khan, B. Ahmad, B. Khan, et al., Certain subclasses of analytic multivalent functions associated with petal-shape domain, Axioms, 10 (2021), 291. https://doi.org/10.3390/axioms10040291 doi: 10.3390/axioms10040291 |
[14] | H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integr. Transf. Spec. F., 18 (2007), 207–216. https://doi.org/10.1080/10652460701208577 doi: 10.1080/10652460701208577 |