Metric fixed-point theory has become an essential tool in computer science, communication engineering and complex systems to validate the processes and algorithms by using functional equations and iterative procedures. The aim of this article is to obtain common fixed point results in a bicomplex valued metric space for rational contractions involving control functions of two variables. Our theorems generalize some famous results from literature. We supply an example to show the originality of our main result. As an application, we develop common fixed point results for rational contractions involving control functions of one variable in the context of bicomplex valued metric space.
Citation: Asifa Tassaddiq, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Durdana Lateef, Farha Lakhani. On common fixed point results in bicomplex valued metric spaces with application[J]. AIMS Mathematics, 2023, 8(3): 5522-5539. doi: 10.3934/math.2023278
[1] | Afrah Ahmad Noman Abdou . Common fixed point theorems for multi-valued mappings in bicomplex valued metric spaces with application. AIMS Mathematics, 2023, 8(9): 20154-20168. doi: 10.3934/math.20231027 |
[2] | Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Hassen Aydi, Manuel De La Sen . Rational contractions on complex-valued extended b-metric spaces and an application. AIMS Mathematics, 2023, 8(2): 3338-3352. doi: 10.3934/math.2023172 |
[3] | Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977 |
[4] | Nabil Mlaiki, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Dania Santina . Common fixed points of locally contractive mappings in bicomplex valued metric spaces with application to Urysohn integral equation. AIMS Mathematics, 2023, 8(2): 3897-3912. doi: 10.3934/math.2023194 |
[5] | Afrah Ahmad Noman Abdou . A fixed point approach to predator-prey dynamics via nonlinear mixed Volterra–Fredholm integral equations in complex-valued suprametric spaces. AIMS Mathematics, 2025, 10(3): 6002-6024. doi: 10.3934/math.2025274 |
[6] | Gunaseelan Mani, Arul Joseph Gnanaprakasam, Khalil Javed, Muhammad Arshad, Fahd Jarad . Solving a Fredholm integral equation via coupled fixed point on bicomplex partial metric space. AIMS Mathematics, 2022, 7(8): 15402-15416. doi: 10.3934/math.2022843 |
[7] | Badriah Alamri, Jamshaid Ahmad . Fixed point results in b-metric spaces with applications to integral equations. AIMS Mathematics, 2023, 8(4): 9443-9460. doi: 10.3934/math.2023476 |
[8] | Zhenhua Ma, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei . Fixed point results for generalized contractions in controlled metric spaces with applications. AIMS Mathematics, 2023, 8(1): 529-549. doi: 10.3934/math.2023025 |
[9] | Tayebe Lal Shateri, Ozgur Ege, Manuel de la Sen . Common fixed point on the bv(s)-metric space of function-valued mappings. AIMS Mathematics, 2021, 6(2): 1065-1074. doi: 10.3934/math.2021063 |
[10] | Khaled Berrah, Abdelkrim Aliouche, Taki eddine Oussaeif . Applications and theorem on common fixed point in complex valued b-metric space. AIMS Mathematics, 2019, 4(3): 1019-1033. doi: 10.3934/math.2019.3.1019 |
Metric fixed-point theory has become an essential tool in computer science, communication engineering and complex systems to validate the processes and algorithms by using functional equations and iterative procedures. The aim of this article is to obtain common fixed point results in a bicomplex valued metric space for rational contractions involving control functions of two variables. Our theorems generalize some famous results from literature. We supply an example to show the originality of our main result. As an application, we develop common fixed point results for rational contractions involving control functions of one variable in the context of bicomplex valued metric space.
Metric fixed-point theory has newly emerging applications to study the internet topology [1] and modelling the cyberspace as a digital ecosystem [2]. Moreover, new researches in fixed-point theory determine the significance to find the solution of real-world problems. A routing problem, for example, can be solved using functional equations and iterative procedures. The capacitated vehicle routing problem (CVRP) [3] outlines a method for determining the best plan to meet the demand of a globally dispersed network of clients while distributing cohesive products from a pickup point that used a large number of (the same) automobiles with a specific adaptive capacity. Meanwhile, fixed point theory is used as a problem-solving tool in communication engineering. Other real-world applications include the solution of chemical equations, genetics, algorithm testing, and control theory. Such results offer delightful circumstances in the study of mathematical analysis to approximating the solutions of linear and nonlinear differential and integral equations [4]. Because the theory of fixed-point is an odd synthesis of analysis [5,6] and geometry [7,8,9,10]. Therefore, it has emerged as a powerful and crucial instrument for the investigation of nonlinear problems [11,12,13,14]. More recently, Işık and collaborators have discussed such results by using rational [15] as well as generalized Wardowski type contractive multi-valued mappings [16] and also investigated the common solutions to integral and functional equations [17,18]. The aim of this article is to obtain common fixed point results in a bicomplex valued metric space. Therefore, we first define the basic preliminaries involving bicomplex numbers and review further developments related to them in the following paragraphs.
The emergence of complex numbers was established in the 17th century by Sir Carl Fredrich Gauss, but his work was not on record. Later, in the year 1840 Augustin Louis Cauchy started doing analysis of complex numbers, who is known to be an effective founder of complex analysis. The theory of complex numbers has its source in the fact that the solution of the quadratic equation ax2+bx+c=0 was not worthwhile for b2−4ac<0, in the set of real numbers. Under this background, Euler was the first mathematician who presented the symbol i, for √−1 with the property, i2=−1.
On the other hand, the beginning of bicomplex numbers was set up by Segre [19] which provides a commutative substitute to the skew field of quaternions. These numbers generalize complex numbers more precisely to quaternions. We refer readers to [20] for a more in-depth examination of bicomplex numbers. In 2011, Azam et al. [21] gave the concept of a complex valued metric space (CVMS) as a special case of cone metric space. Since the concept to introduce complex valued metric spaces is designed to define rational expressions that cannot be defined in cone metric spaces and therefore several results of fixed point theory cannot be proved to cone metric spaces, so complex valued metric space form a special class of cone metric space. Actually, the definition of a cone metric space banks on the underlying Banach space which is not a division ring. However, we can study generalizations of many results of fixed point theory involving divisions in complex valued metric spaces. Moreover, this idea is also used to define complex valued Banach spaces [22] which offer a lot of scope for further investigation. In 2017, Choi et al. [23] combined the concepts of bicomplex numbers and CVMS and introduced the notion of bicomplex valued metric spaces (bi CVMS) and established common fixed point results for weakly compatible mappings. Later on, Jebril et al. [24], utilized this notion of newly introduced space and obtained common fixed point results under rational contractions for a pair of mappings in the background of bi CVMS. More specifically, CVMS [25,26] and bi CVMS [27,28] has been remained a focus point of recent and past researches. By taking motivation from these facts, we establish some common fixed point theorems in bi CVMS for rational contractions involving control functions of two variables. As an application, we investigate the solutions of integral equations.
We represent C0, C1 and C2 as the set of real numbers, complex numbers and bicomplex numbers respectively. Segre [19] defined the notion of bicomplex number as follows:
ϱ=a1+a2i1+a3i2+a4i1i2 |
where a1,a2,a3,a4∈C0, and the independent units i1,i2 are such that i21=i22=−1 and i1i2=i2i1, and C2 is defined as
C2={ϱ:ϱ=a1+a2i1+a3i2+a4i1i2:a1,a2,a3,a4∈C0} |
that is
C2={ϱ:ϱ=z1+i2z2:z1,z2∈C1} |
where z1=a1+a2i1∈C1 and z2=a3+a4i1∈C1. If ϱ=z1+i2z2 and ℏ=ω1+i2ω2, then the sum is
ϱ±ℏ=(z1+i2z2)±(ω1+i2ω2)=(z1±ω1)+i2(z2±ω2) |
and the product is
ϱ⋅ℏ=(z1+i2z2)⋅(ω1+i2ω2)=(z1ω1−z2ω2)+i2(z1ω2+z2ω1). |
There are four idempotent members in C2, which are, 0,1,e1=1+i1i22 and e2=1−i1i22 out of which e1 and e2 are nontrivial such that e1+e2=1 and e1e2=0. Every bicomplex number z1+i2z2 can uniquely be demonstrated as the mixture of e1and e2, namely
ϱ=z1+i2z2=(z1−i1z2)e1+(z1+i1z2)e2. |
This characterization of ϱ is familiar as the idempotent characterization of ϱ and the complex coefficients ϱ1 =(z1−i1z2) and ϱ2= (z1+i1z2) are called as idempotent components of ϱ.
An element ϱ=z1+i2z2∈C2 is called invertible if there exists ℏ∈C2 such that ϱℏ=1 and ℏ is called the inverse (multiplicative) of ϱ. Therefore ϱ is called the inverse of ℏ. An element ϱ=z1+i2z2∈C2 is nonsingular iff |z21+z22|≠0 and singular iff |z21+z22|=0. The inverse of ϱ is defined as
ϱ−1=ℏ=z1−i2z2z21+z22. |
Zero is the at most member in C0 that does not possess a multiplicative inverse and in C1, 0=0+i0 is the at most member that does not possess a multiplicative inverse. We represent the set of singular members of C0 and C1 by ℵ0 and ℵ1 in this order. There are many members in C2 that do not have multiplicative inverse. We represents this set by ℵ2 and evidently ℵ0 =ℵ1⊂ℵ2.
A bicomplex number ϱ=a1+a2i1+a3i2+a4i1i2∈C2 is said to be degenerated if the matrix
(a1a2a3a4)2×2 |
is degenerated. In this way ϱ−1 exists and it is degenerated too and ‖⋅‖:C2→C+0 is defined as
‖ϱ‖=‖z1+i2z2‖={|z1|2+|z2|2}12=[|(z1−i1z2)|2+|(z1+i1z2)|22]12=(a21+a22+a23+a24)12, |
where ϱ=a1+a2i1+a3i2+a4i1i2=z1+i2z2∈C2.
The space C2 with respect to the norm given above is a Banach space. If ϱ,ℏ∈C2, then
‖ϱℏ‖≤√2‖ϱ‖‖ℏ‖ |
holds instead of
‖ϱℏ‖≤‖ϱ‖‖ℏ‖. |
Therefore, C2 is not a Banach algebra. Let ϱ=z1+i2z2, ℏ=ω1+i2ω2∈C2, then we define
ϱ⪯i2ℏ⇔ Re(z1)⪯Re(ω1) and Im(z2)⪯Im(ω2). |
It implies
ϱ⪯i2ℏ, |
if one of these assertions hold:
(i) (z1)=ω1, z2≺ω2,(ii) z1≺ω1, z2=ω2,(iii) z1≺ω1, z2≺ω2,(iv) z1=ω1, z2=ω2. |
Specifically, ϱ⋨i2ℏ if ϱ⪯i2ℏ and ϱ≠ℏ, that is, one of (i), (ii) and (iii) holds. Also ϱ≺i2ℏ if only condition (iii) is satisfied. For ϱ, ℏ∈C2, we can prove the followings:
(i) ϱ⪯i2ℏ⟹‖ϱ‖≤‖ℏ‖,
(ii) ‖ϱ+ℏ‖≤‖ϱ‖+‖ℏ‖,
(iii) ‖aϱ‖≤a‖ℏ‖, where a is a non negative real number,
(iv) ‖ϱℏ‖≤√2‖ϱ‖‖ℏ‖,
(v) ‖ϱ−1‖=‖ϱ‖−1,
(vi) ‖ϱℏ‖=‖ϱ‖‖ℏ‖, if ℏ is a degenerated bicomplex number.
Azam et al. [21] gave the conception of CVMS in this way:
Definition 1. ([21]) Let L≠∅, ⪯ is a partial order on C and ς:L×L→C1 be a mapping satisfying
(i) 0⪯ς(ϱ,ℏ), for all ϱ,ℏ∈L and ς(ϱ,ℏ)=0 if and only if ϱ=ℏ;
(ii) ς(ϱ,ℏ)=ς(ℏ,ϱ) for all ϱ,ℏ∈L;
(iii) ς(ϱ,ℏ)⪯ς(ϱ,ν)+ς(ν,ℏ), for all ϱ,ℏ,ν∈L,
then (L,ς) is a CVMS.
Choi et al. [23] defined the bi CVMS as follows:
Definition 2. ([23]) Let L≠∅, ⪯i2 is a partial order on C2 and ς:L×L→C2 be a mapping satisfying
(i) 0⪯i2ς(ϱ,ℏ), for all ϱ,ℏ∈L and ς(ϱ,ℏ)=0 if and only if ϱ=ℏ;
(ii) ς(ϱ,ℏ)=ς(ℏ,ϱ) for all ϱ,ℏ∈L;
(iii) ς(ϱ,ℏ)⪯i2ς(ϱ,ν)+ς(ν,ℏ), for all ϱ,ℏ,ν∈L,
then (L,ς) is a bi CVMS.
Example 1. ([29]) Let L=C2 and ϱ,ℏ∈L. Define ς:L×L→C2 by
ς(ϱ,ℏ)=|z1−ω1|+i2|z2−ω2| |
where ϱ=z1+i2z2 and ℏ=ω1+i2ω2∈C2. Then (L,ς) is a bi CVMS.
Lemma 1. ([29]) Let (L,ς) be a bi CVMS and let {ϱr} ⊆L. Then {ϱr} converges to ϱ if and only if ‖ς(ϱr,ϱ)‖→0 as r→∞.
Lemma 2. ([29]) Let (L,ς) be a bi CVMS and let {ϱr} ⊆L.\ Then {ϱr} is a Cauchy sequence if and only if ‖ς(ϱr,ϱr+m)‖→0 as r→∞, where m∈N.
We state and prove the following proposition which is required in the sequel.
Proposition 1. Let (L,ς) be a bi CVMS and ℑ1,ℑ2:(L,ς)→(L,ς). Let ϱ0∈ L. Define the sequence {ϱr} by
ϱ2r+1=ℑ1ϱ2r and ϱ2r+2=ℑ2ϱ2r+1 | (3.1) |
for all r=0,1,2,...
Assume that there exist ρ:L×L→[0,1) satisfying
ρ(ℑ2ℑ1ϱ,ℏ)≤ρ(ϱ,ℏ) and ρ(ϱ,ℑ1ℑ2ℏ)≤ρ(ϱ,ℏ) |
for all ϱ,ℏ∈L. Then
ρ(ϱ2r,ℏ)≤ρ(ϱ0,ℏ) and ρ(ϱ,ϱ2r+1)≤ρ(ϱ,ϱ1) |
for all ϱ,ℏ∈L and r=0,1,2,...
Proof. Let ϱ,ℏ∈L and r=0,1,2,... Then we have
ρ(ϱ2r,ℏ)=ρ(ℑ2ℑ1ϱ2r−2,ℏ)≤ρ(ϱ2r−2,ℏ)= ρ(ℑ2ℑ1ϱ2r−4,ℏ)≤ρ(ϱ2r−4,ℏ)≤⋅⋅⋅≤ρ(ϱ0,ℏ). |
Similarly, we have
ρ(ϱ,ϱ2r+1)=ρ(ϱ,ℑ1ℑ2ϱ2r−1)≤ρ(ϱ,ϱ2r−1)=ρ(ϱ,ℑ1ℑ2ϱ2r−3)≤ρ(ϱ,ϱ2r−3)≤⋅⋅⋅≤ρ(ϱ,ϱ1). |
Lemma 3. Let ρ,κ:L×L→[0,1) and ϱ,ℏ∈ L. If ℑ1,ℑ2:L →L satisfy
ς(ℑ1ϱ,ℑ2ℑ1ϱ)⪯i2ρ(ϱ,ℑ1ϱ)ς(ϱ,ℑ1ϱ)+κ(ϱ,ℑ1ϱ)ς(ϱ,ℑ1ϱ)ς(ℑ1ϱ,ℑ2ℑ1ϱ)1+ς(ϱ,ℑ1ϱ) |
and
ς(ℑ1ℑ2ℏ,ℑ2ℏ)⪯i2ρ(ℑ2ℏ,ℏ)ς(ℑ2ℏ,ℏ)+κ(ℑ2ℏ,ℏ)ς(ℑ2ℏ,ℑ1ℑ2ℏ)ς(ℏ,ℑ2ℏ)1+ς(ℑ2ℏ,ℏ) |
then
‖ς(ℑ1ϱ,ℑ2ℑ1ϱ)‖≤ρ(ϱ,ℑ1ϱ)‖ς(ϱ,ℑ1ϱ)‖+√2κ(ϱ,ℑ1ϱ)‖ς(ℑ1ϱ,ℑ2ℑ1ϱ)‖ |
and
‖ς(ℑ1ℑ2ℏ,ℑ2ℏ)‖≤ρ(ℑ2ℏ,ℏ)‖ς(ℑ2ℏ,ℏ)‖+√2κ(ℑ2ℏ,ℏ)‖ς(ℑ2ℏ,ℑ1ℑ2ℏ)‖. |
Proof. We can write
‖ς(ℑ1ϱ,ℑ2ℑ1ϱ)‖≤‖ρ(ϱ,ℑ1ϱ)ς(ϱ,ℑ1ϱ)+κ(ϱ,ℑ1ϱ)ς(ϱ,ℑ1ϱ)ς(ℑ1ϱ,ℑ2ℑ1ϱ)1+ς(ϱ,ℑ1ϱ)‖≤ρ(ϱ,ℑ1ϱ)‖ς(ϱ,ℑ1ϱ)‖+√2κ(ϱ,ℑ1ϱ)‖ς(ϱ,ℑ1ϱ)1+ς(ϱ,ℑ1ϱ)‖‖ς(ℑ1ϱ,ℑ2ℑ1ϱ)‖≤ρ(ϱ,ℑ1ϱ)‖ς(ϱ,ℑ1ϱ)‖+√2κ(ϱ,ℑ1ϱ)‖ς(ℑ1ϱ,ℑ2ℑ1ϱ)‖. |
Similarly, we have
‖ς(ℑ1ℑ2ℏ,ℑ2ℏ)‖≤‖ρ(ℑ2ℏ,ℏ)ς(ℑ2ℏ,ℏ)+κ(ℑ2ℏ,ℏ)ς(ℑ2ℏ,ℑ1ℑ2ℏ)ς(ℏ,ℑ2ℏ)1+ς(ℑ2ℏ,ℏ)‖≤ρ(ℑ2ℏ,ℏ)‖ς(ℑ2ℏ,ℏ)‖+√2κ(ℑ2ℏ,ℏ)‖ς(ℏ,ℑ2ℏ)1+ς(ℑ2ℏ,ℏ)‖‖ς(ℑ2ℏ,ℑ1ℑ2ℏ)‖≤ρ(ℑ2ℏ,ℏ)‖ς(ℑ2ℏ,ℏ)‖+√2κ(ℑ2ℏ,ℏ)‖ς(ℑ2ℏ,ℑ1ℑ2ℏ)‖. |
Theorem 1. Let (L,ς) be a complete bi CVMS and ℑ1,ℑ2: L →L. If there exist mappings ρ,κ,ϖ:L×L→[0,1) such that for all ϱ,ℏ∈ L,
(a) ρ(ℑ2ℑ1ϱ,ℏ)≤ρ(ϱ,ℏ) and ρ(ϱ,ℑ1ℑ2ℏ)≤ρ(ϱ,ℏ), κ(ℑ2ℑ1ϱ,ℏ)≤κ(ϱ,ℏ) and κ(ϱ,ℑ1ℑ2ℏ)≤κ(ϱ,ℏ), ϖ(ℑ2ℑ1ϱ,ℏ)≤ϖ(ϱ,ℏ) and ϖ(ϱ,ℑ1ℑ2ℏ)≤ϖ(ϱ,ℏ),
(b) ρ(ϱ,ℏ)+√2κ(ϱ,ℏ)+√2ϖ(ϱ,ℏ)<1,
(c)
ς(ℑ1ϱ,ℑ2ℏ)⪯i2ρ(ϱ,ℏ)ς(ϱ,ℏ)+κ(ϱ,ℏ)ς(ϱ,ℑ1ϱ)ς(ℏ,ℑ2ℏ)1+ς(ϱ,ℏ)+ϖ(ϱ,ℏ)ς(ℏ,ℑ1ϱ)ς(ϱ,ℑ2ℏ)1+ς(ϱ,ℏ) , | (3.2) |
then ℑ1 and ℑ2 have a unique common fixed point.
Proof. Let ϱ,ℏ∈L. From (3.2), we have
ς(ℑ1ϱ,ℑ2ℑ1ϱ)⪯i2ρ(ϱ,ℑ1ϱ)ς(ϱ,ℑ1ϱ)+κ(ϱ,ℑ1ϱ)ς(ϱ,ℑ1ϱ)ς(ℑ1ϱ,ℑ2ℑ1ϱ)1+ς(ϱ,ℑ1ϱ) |
+ϖ(ϱ,ℑ1ϱ)ς(ℑ1ϱ,ℑ1ϱ)ς(ϱ,ℑ2ℑ1ϱ)1+ς(ϱ,ℑ1ϱ). |
By Lemma (3), we get
‖ς(ℑ1ϱ,ℑ2ℑ1ϱ)‖≤ρ(ϱ,ℑ1ϱ)‖ς(ϱ,ℑ1ϱ)‖+√2κ(ϱ,ℑ1ϱ)‖ς(ℑ1ϱ,ℑ2ℑ1ϱ)‖. | (3.3) |
Similarly, we have
ς(ℑ1ℑ2ℏ,ℑ2ℏ)⪯i2ρ(ℑ2ℏ,ℏ)ς(ℑ2ℏ,ℏ)+κ(ℑ2ℏ,ℏ)ς(ℑ2ℏ,ℑ1ℑ2ℏ)ς(ℏ,ℑ2ℏ)1+ς(ℑ2ℏ,ℏ) |
+ϖ(ϱ,ℏ)ς(ℏ,ℑ1ℑ2ℏ)ς(ℑ2ℏ,ℑ2ℏ)1+ς(ℑ2ℏ,ℏ) |
=ρ(ℑ2ℏ,ℏ)ς(ℑ2ℏ,ℏ)+κ(ℑ2ℏ,ℏ)ς(ℑ2ℏ,ℑ1ℑ2ℏ)ς(ℏ,ℑ2ℏ)1+ς(ℑ2ℏ,ℏ). |
By Lemma (3), we get
‖ς(ℑ1ℑ2ℏ,ℑ2ℏ)‖≤ρ(ℑ2ℏ,ℏ)‖ς(ℑ2ℏ,ℏ)‖+√2κ(ℑ2ℏ,ℏ)‖ς(ℑ2ℏ,ℑ1ℑ2ℏ)‖. | (3.4) |
Let ϱ0 ∈L and the sequence {ϱr} be defined by (3.1). From Proposition (1) and inequalities (3.3) and (3.4), we have
‖ς(ϱ2r+1,ϱ2r)‖=‖ς(ℑ1ℑ2ϱ2r−1,ℑ2ϱ2r−1)‖≤ρ(ℑ2ϱ2r−1,ϱ2r−1)‖ς(ℑ2ϱ2r−1,ϱ2r−1)‖+√2κ(ℑ2ϱ2r−1,ϱ2r−1)‖ς(ℑ2ϱ2r−1,ℑ1ℑ2ϱ2r−1)‖=ρ(ϱ2r,ϱ2r−1)‖ς(ϱ2r,ϱ2r−1)‖+√2κ(ϱ2r,ϱ2r−1)‖ς(ϱ2r,ϱ2r+1)‖≤ρ(ϱ0,ϱ2r−1)‖ς(ϱ2r,ϱ2r−1)‖+√2κ(ϱ0,ϱ2r−1)‖ς(ϱ2r,ϱ2r+1)‖≤ρ(ϱ0,ϱ1)‖ς(ϱ2r,ϱ2r−1)‖+√2κ(ϱ0,ϱ1)‖ς(ϱ2r,ϱ2r+1)‖ |
for all r=0,1,2,... This implies that
‖ς(ϱ2r+1,ϱ2r)‖≤ρ(ϱ0,ϱ1)1−√2κ(ϱ0,ϱ1)‖ς(ϱ2r,ϱ2r−1)‖. | (3.5) |
Similarly, we have
‖ς(ϱ2r+2,ϱ2r+1)‖=‖ς(ℑ2ℑ1ϱ2r,ℑ1ϱ2r)‖≤ρ(ϱ2r,ℑ1ϱ2r)‖ς(ϱ2r,ℑ1ϱ2r)‖+√2κ(ϱ2r,ℑ1ϱ2r)‖ς(ℑ1ϱ2r,ℑ2ℑ1ϱ2r)‖=ρ(ϱ2r,ϱ2r+1)‖ς(ϱ2r,ϱ2r+1)‖+√2κ(ϱ2r,ϱ2r+1)‖ς(ϱ2r+1,ϱ2r+2)‖≤ρ(ϱ0,ϱ2r+1)‖ς(ϱ2r,ϱ2r+1)‖+√2κ(ϱ0,ϱ2r+1)‖ς(ϱ2r+1,ϱ2r+2)‖≤ρ(ϱ0,ϱ1)‖ς(ϱ2r,ϱ2r+1)‖+√2κ(ϱ0,ϱ1)‖ς(ϱ2r+1,ϱ2r+2)‖, |
which implies that
‖ς(ϱ2r+2,ϱ2r+1)‖≤ρ(ϱ0,ϱ1)1−√2κ(ϱ0,ϱ1)‖ς(ϱ2r,ϱ2r+1)‖=ρ(ϱ0,ϱ1)1−√2κ(ϱ0,ϱ1)‖ς(ϱ2r+1,ϱ2r)‖. | (3.6) |
Let λ= ρ(ϱ0,ϱ1)1−√2κ(ϱ0,ϱ1)<1. Then from (3.5) and (3.6), we have
‖ς(ϱr+1,ϱr)‖≤λ‖ς(ϱr,ϱr−1)‖ |
for all r∈N. Inductively, we can construct a sequence {ϱr} in L such that
|ς(ϱr+1,ϱr)|≤λ|ς(ϱr,ϱr−1)||ς(ϱr+1,ϱr)|≤λ2|ς(ϱr−1,ϱr−2)|⋅⋅⋅|ς(ϱr+1,ϱr)|≤λr|ς(ϱ1,ϱ0)|=λr|ς(ϱ0,ϱ1)| |
for all r∈N. Now for m>r, we get
‖ς(ϱr,ϱm)‖≤λr‖ς(ϱ0,ϱ1)‖+λr+1‖ς(ϱ0,ϱ1)‖+⋅⋅⋅+λm−1‖ς(ϱ0,ϱ1)‖≤λr1−λ‖ς(ϱ0,ϱ1)‖. |
Now, by taking r,m→∞, we get
‖ς(ϱr,ϱm)‖→0. |
By Lemma 2, {ϱr} is a Cauchy sequence. As L is complete, so there exists ϱ∗∈L such that ϱr→ϱ∗ as r→∞.
Now, we show that ϱ∗ is a fixed point of ℑ1. From (3.2), we have
ς(ϱ∗,ℑ1ϱ∗)⪯i2ς(ϱ∗,ℑ2ϱ2r+1)+ς(ℑ2ϱ2r+1,ℑ1ϱ∗) |
=ς(ϱ∗,ℑ2ϱ2r+1)+ς(ℑ1ϱ∗,ℑ2ϱ2r+1) |
⪯i2(ς(ϱ∗,ϱ2r+2)+ρ(ϱ∗,ϱ2r+1)ς(ϱ∗,ϱ2r+1)+κ(ϱ∗,ϱ2r+1)ς(ϱ∗,ℑ1ϱ∗)ς(ϱ2r+1,ℑ2ϱ2r+1)1+ς(ϱ∗,ϱ2r+1)+ϖ(ϱ∗,ϱ2r+1)ς(ϱ2r+1,ℑ1ϱ∗)ς(ϱ∗,ℑ2ϱ2r+1)1+ς(ϱ∗,ϱ2r+1)) |
⪯i2(ς(ϱ∗,ϱ2r+2)+ρ(ϱ∗,ϱ2r+1)ς(ϱ∗,ϱ2r+1)+κ(ϱ∗,ϱ2r+1)ς(ϱ∗,ℑ1ϱ∗)ς(ϱ2r+1,ϱ2r+2)1+ς(ϱ∗,ϱ2r+1)+ϖ(ϱ∗,ϱ2r+1)ς(ϱ2r+1,ℑ1ϱ∗)ς(ϱ∗,ϱ2r+2)1+ς(ϱ∗,ϱ2r+1)). |
This implies that
‖ς(ϱ∗,ℑ1ϱ∗)‖≤(‖ς(ϱ∗,ϱ2r+2)‖+ρ(ϱ∗,ϱ2r+1)‖ς(ϱ∗,ϱ2r+1)‖+√2κ(ϱ∗,ϱ2r+1)‖ς(ϱ∗,ℑ1ϱ∗)‖‖ς(ϱ2r+1,ϱ2r+2)‖‖1+ς(ϱ∗,ϱ2r+1)‖+√2ϖ(ϱ∗,ϱ2r+1)‖ς(ϱ2r+1,ℑ1ϱ∗)‖‖ς(ϱ∗,ϱ2r+2)‖‖1+ς(ϱ∗,ϱ2r+1)‖). |
Letting r→∞, we have ‖ς(ϱ∗,ℑ1ϱ∗)‖=0. Thus ϱ∗=ℑ1ϱ∗. Now we prove that ϱ∗ is a fixed point of ℑ2. By (3.2), we have
ς(ϱ∗,ℑ2ϱ∗)⪯i2(ς(ϱ∗,ℑ1ϱ2r)+ς(ℑ1ϱ2r,ℑ2ϱ∗)) |
⪯i2(ς(ϱ∗,ℑ1ϱ2r)+ρ(ϱ2r,ϱ∗)ς(ϱ2r,ϱ∗)+κ(ϱ2r,ϱ∗)ς(ϱ2r,ℑ1ϱ2r)ς(ϱ∗,ℑ2ϱ∗)1+ς(ϱ2r,ϱ∗)+ϖ(ϱ2r,ϱ∗)ς(ϱ∗,ℑ1ϱ2r)ς(ϱ2r,ℑ2ϱ∗)1+ς(ϱ2r,ϱ∗)) |
⪯i2(ς(ϱ∗,ϱ2r+1)+ρ(ϱ2r,ϱ∗)ς(ϱ2r,ϱ∗)+κ(ϱ2r,ϱ∗)ς(ϱ2r,ϱ2r+1)ς(ϱ∗,ℑ2ϱ∗)1+ς(ϱ2r,ϱ∗)+ϖ(ϱ2r,ϱ∗)ς(ϱ∗,ϱ2r+1)ς(ϱ2r,ℑ2ϱ∗)1+ς(ϱ2r,ϱ∗)). |
This implies that
‖ς(ϱ∗,ℑ2ϱ∗)‖≤(‖ς(ϱ∗,ϱ2r+1)‖+ρ(ϱ2r,ϱ∗)‖ς(ϱ2r,ϱ∗)‖+√2κ(ϱ2r,ϱ∗)‖ς(ϱ2r,ϱ2r+1)‖‖ς(ϱ∗,ℑ2ϱ∗)‖‖1+ς(ϱ2r,ϱ∗)‖+√2ϖ(ϱ2r,ϱ∗)‖ς(ϱ∗,ϱ2r+1)‖‖ς(ϱ2r,ℑ2ϱ∗)‖‖1+ς(ϱ2r,ϱ∗)‖). |
Letting r→∞, we have ‖ς(ϱ∗,ℑ2ϱ∗)‖=0. Thus ϱ∗=ℑ2ϱ∗. Thus ϱ∗ is a common fixed point of ℑ1 and ℑ2. Now we prove that ϱ∗ is unique. We suppose that
ϱ/=ℑ1ϱ/=ℑ2ϱ/, |
but ϱ∗≠ϱ/. Now from (3.2), we have
ς(ϱ∗,ϱ/)=ς(ℑ1ϱ∗,ℑ2ϱ/) |
⪯i2ρ(ϱ∗,ϱ/)ς(ϱ∗,ϱ/)+κ(ϱ∗,ϱ/)ς(ϱ∗,ℑϱ∗)ς(ϱ/,ℑ2ϱ/)1+ς(ϱ∗,ϱ/) |
+ϖ(ϱ∗,ϱ/)ς(ϱ/,ℑ1ϱ∗)ς(ϱ∗,ℑ2ϱ/)1+ς(ϱ∗,ϱ/) |
=ρ(ϱ∗,ϱ/)ς(ϱ∗,ϱ/)+κ(ϱ∗,ϱ/)ς(ϱ∗,ϱ∗)ς(ϱ/,ϱ/)1+ς(ϱ∗,ϱ/) |
+ϖ(ϱ∗,ϱ/)ς(ϱ/,ϱ∗)ς(ϱ∗,ϱ/)1+ς(ϱ∗,ϱ/). |
This implies that
‖ς(ϱ∗,ϱ/)‖≤ρ(ϱ∗,ϱ/)‖ς(ϱ∗,ϱ/)‖+√2ϖ(ϱ∗,ϱ/)‖ς(ϱ∗,ϱ/)‖‖ς(ϱ∗,ϱ/)1+ς(ϱ∗,ϱ/)‖≤ρ(ϱ∗,ϱ/)‖ς(ϱ∗,ϱ/)‖+√2ϖ(ϱ∗,ϱ/)‖ς(ϱ∗,ϱ/)‖=(ρ(ϱ∗,ϱ/)+√2ϖ(ϱ∗,ϱ/))‖ς(ϱ∗,ϱ/)‖. |
As ρ(ϱ∗,ϱ/)+√2ϖ(ϱ∗,ϱ/)<1, we have
‖ς(ϱ∗,ϱ/)‖=0. |
Thus ϱ∗=ϱ/.
Corollary 1. Let (L,ς) be a complete bi CVMS and ℑ1,ℑ2:L →L. If there exist mappings ρ,κ:L×L→[0,1) such that
(a) ρ(ℑ2ℑ1ϱ,ℏ)≤ρ(ϱ,ℏ) and ρ(ϱ,ℑ1ℑ2ℏ)≤ρ(ϱ,ℏ), κ(ℑ2ℑ1ϱ,ℏ)≤κ(ϱ,ℏ) and κ(ϱ,ℑ1ℑ2ℏ)≤κ(ϱ,ℏ),
(b) ρ(ϱ,ℏ)+κ(ϱ,ℏ)<1,
(c) ς(ℑ1ϱ,ℑ2ℏ)⪯i2ρ(ϱ,ℏ)ς(ϱ,ℏ)+κ(ϱ,ℏ)ς(ϱ,ℑ1ϱ)ς(ℏ,ℑ2ℏ)1+ς(ϱ,ℏ),
for all ϱ,ℏ∈ L, then ℑ1 and ℑ2 have a unique common fixed point.
Proof. Setting ϖ:L×L→[0,1) by ϖ(ϱ,ℏ)=0 in Theorem 1.
Corollary 2. Let (L,ς) be a complete bi CVMS and ℑ1,ℑ2:L→L. If there exist mappings ρ,ϖ:L×L→[0,1) such that for all ϱ,ℏ∈ L,
(a) ρ(ℑ2ℑ1ϱ,ℏ)≤ρ(ϱ,ℏ) and ρ(ϱ,ℑ1ℑ2ℏ)≤ρ(ϱ,ℏ), ϖ(ℑ2ℑ1ϱ,ℏ)≤ϖ(ϱ,ℏ) and ϖ(ϱ,ℑ1ℑ2ℏ)≤ϖ(ϱ,ℏ),
(b) ρ(ϱ,ℏ)+ϖ(ϱ,ℏ)<1,
(c) ς(ℑ1ϱ,ℑ2ℏ)⪯i2ρ(ϱ,ℏ)ς(ϱ,ℏ)+ϖ(ϱ,ℏ)ς(ℏ,ℑ1ϱ)ς(ϱ,ℑ2ℏ)1+ς(ϱ,ℏ),
then ℑ1 and ℑ2 have a unique common fixed point.
Proof. Setting κ:L×L→[0,1) by κ(ϱ,ℏ)=0 in Theorem 1.
Corollary 3. Let (L,ς) be a complete bi CVMS and ℑ1,ℑ2: L →L. If there exists mapping ρ:L×L→[0,1) such that
(a) ρ(ℑ2ℑ1ϱ,ℏ)≤ρ(ϱ,ℏ) and ρ(ϱ,ℑ1ℑ2ℏ)≤ρ(ϱ,ℏ),
(b) ς(ℑ1ϱ,ℑ2ℏ)⪯i2ρ(ϱ,ℏ)ς(ϱ,ℏ),
for all ϱ,ℏ∈ L, then ℑ1 and ℑ2 have a unique common fixed point.
Proof. Setting κ,ϖ:L×L→[0,1) by κ(ϱ,ℏ)=ϖ(ϱ,ℏ)=0 in Theorem 1.
Corollary 4. Let (L,ς) be a complete bi CVMS and ℑ:L →L. If there exist mappings ρ,κ,ϖ:L×L→[0,1) such that
(a) ρ(ℑϱ,ℏ)≤ρ(ϱ,ℏ) and ρ(ϱ,ℑℏ)≤ρ(ϱ,ℏ), κ(ℑϱ,ℏ)≤κ(ϱ,ℏ) and κ(ϱ,ℑℏ)≤κ(ϱ,ℏ), ϖ(ℑϱ,ℏ)≤ϖ(ϱ,ℏ) and ϖ(ϱ,ℑℏ)≤ϖ(ϱ,ℏ),
(b) ρ(ϱ,ℏ)+κ(ϱ,ℏ)+ϖ(ϱ,ℏ)<1,
(c) ς(ℑϱ,ℑℏ)⪯i2ρ(ϱ,ℏ)ς(ϱ,ℏ)+κ(ϱ,ℏ)ς(ϱ,ℑϱ)ς(ℏ,ℑℏ)1+ς(ϱ,ℏ)+ϖ(ϱ,ℏ)ς(ℏ,ℑϱ)ς(ϱ,ℑℏ)1+ς(ϱ,ℏ),
for all ϱ,ℏ∈ L, then ℑ has a unique fixed point.
Proof. Setting ℑ1=ℑ2=ℑ in Theorem 1.
Example 2. Let L=[0,1] and ς:L×L→C defined by
ς(ϱ,ℏ)=|ϱ−ℏ|+i2|ϱ−ℏ| |
for all ϱ,ℏ∈ L. Then (L,ς) is a complete bi CVMS. Define ℑ1,ℑ2:L →L by
ℑ1ϱ=ϱ5 and ℑ2ϱ=ϱ4. |
Consider
ρ,κ,ϖ:L×L→[0,1) |
by
ρ(ϱ,ℏ)=ϱ3+ℏ4 |
and
κ(ϱ,ℏ)=ϱ2ℏ230 |
and
ϖ(ϱ,ℏ)=ϱ29+ℏ216. |
Then evidently,
ρ(ϱ,ℏ)+κ(ϱ,ℏ)+ϖ(ϱ,ℏ)<1. |
Now
ρ(ℑ2ℑ1ϱ,ℏ)=ρ(ℑ2(ϱ5),ℏ)=ρ(ϱ20,ℏ)=ϱ60+ℏ4≤ϱ3+ℏ4=ρ(ϱ,ℏ) |
and
ρ(ϱ,ℑ1ℑ2ℏ)=ρ(ϱ,ℑ1(ℏ4))=ρ(ϱ,ℏ20)=ϱ3+ℏ80≤ϱ3+ℏ4=ρ(ϱ,ℏ). |
Also,
κ(ℑ2ℑ1ϱ,ℏ)=κ(ℑ2(ϱ5),ℏ)=κ(ϱ20,ℏ)=ϱ2ℏ212000≤ϱ2ℏ230=κ(ϱ,ℏ) |
and
κ(ϱ,ℑ1ℑ2ℏ)=κ(ϱ,ℑ1(ℏ4))=κ(ϱ,ℏ20)=ϱ2ℏ212000≤ϱ2ℏ230=κ(ϱ,ℏ) |
and
ϖ(ℑ2ℑ1ϱ,ℏ)=ϖ(ℑ2(ϱ5),ℏ)=ϖ(ϱ20,ℏ)=ϱ23600+ℏ216≤ϱ29+ℏ216=ϖ(ϱ,ℏ) |
and
ϖ(ϱ,ℑ1ℑ2ℏ)=ϖ(ϱ,ℑ1(ℏ4))=ϖ(ϱ,ℏ20)=ϱ29+ℏ26400≤ϱ29+ℏ216=ϖ(ϱ,ℏ). |
Now
ς(ℑ1ϱ,ℑ2ℏ)=ς(ϱ5,ℏ4)=|ϱ5−ℏ4|+i2|ϱ5−ℏ4|=|4ϱ−5ℏ20|+i2|4ϱ−5ℏ20| |
⪯i2|4ϱ−4ℏ20|+i2|4ϱ−4ℏ20| |
=15(|ϱ−ℏ|+i2|ϱ−ℏ|) |
⪯i2712(|ϱ−ℏ|+i2|ϱ−ℏ|) |
⪯i2ρ(ϱ,ℏ)ς(ϱ,ℏ)+κ(ϱ,ℏ)ς(ϱ,ℑ1ϱ)ς(ℏ,ℑ2ℏ)1+ς(ϱ,ℏ) |
+ϖ(ϱ,ℏ)ς(ℏ,ℑ1ϱ)ς(ϱ,ℑ2ℏ)1+ς(ϱ,ℏ). |
Then it is very simple to prove that all the conditions of Theorem 1 are satisfied and 0 is a common fixed point of mappings ℑ1 and ℑ2.
Corollary 5. Let (L,ς) be a complete bi CVMS and let ℑ:L →L. If there exist ρ,κ,ϖ:L×L→[0,1) such that
(a) ρ(ℑϱ,ℏ)≤ρ(ϱ,ℏ) and ρ(ϱ,ℑℏ)≤ρ(ϱ,ℏ), κ(ℑϱ,ℏ)≤κ(ϱ,ℏ) and κ(ϱ,ℑℏ)≤κ(ϱ,ℏ), ϖ(ℑϱ,ℏ)≤ϖ(ϱ,ℏ) and ϖ(ϱ,ℑℏ)≤ϖ(ϱ,ℏ),
(b) ρ(ϱ,ℏ)+κ(ϱ,ℏ)+ϖ(ϱ,ℏ)<1,
(c)ς(ℑnϱ,ℑnℏ)⪯i2ρ(ϱ,ℏ)ς(ϱ,ℏ)+κ(ϱ,ℏ)ς(ϱ,ℑnϱ)ς(ℏ,ℑnℏ)1+ς(ϱ,ℏ)+ϖ(ϱ,ℏ)ς(ℏ,ℑnϱ)ς(ϱ,ℑnℏ)1+ς(ϱ,ℏ) , | (3.7) |
for all ϱ,ℏ∈ L, then ℑ has a unique fixed point.
Proof. From the Corollary (4), we have ϱ∈L such that ℑnϱ=ϱ. Now from
ς(ℑϱ,ϱ)=ς(ℑℑnϱ,ℑnϱ)=ς(ℑnℑϱ,ℑnϱ)⪯ρ(ℑϱ,ϱ)ς(ℑϱ,ϱ)+κ(ℑϱ,ϱ)ς(ℑϱ,ℑnℑϱ)ς(ϱ,ℑnϱ)1+ς(ℑϱ,ϱ)+ϖ(ℑϱ,ϱ)ς(ϱ,ℑnℑϱ)ς(ℑϱ,ℑnϱ)1+ς(ℑϱ,ϱ) ⪯i2ρ(ℑϱ,ϱ)ς(ℑϱ,ϱ)+κ(ℑϱ,ϱ)ς(ℑϱ,ℑϱ)ς(ϱ,ϱ)1+ς(ℑϱ,ϱ)+ϖ(ℑϱ,ϱ)ς(ϱ,ℑϱ)ς(ℑϱ,ϱ)1+ς(ℑϱ,ϱ)=ρ(ℑϱ,ϱ)ς(ℑϱ,ϱ)+ϖ(ℑϱ,ϱ)ς(ϱ,ℑϱ)ς(ℑϱ,ϱ)1+ς(ℑϱ,ϱ) |
which implies that
‖ς(ℑϱ,ϱ)‖≤ρ(ℑϱ,ϱ)‖ς(ℑϱ,ϱ)‖+ϖ(ℑϱ,ϱ)‖ς(ϱ,ℑϱ)‖‖ς(ℑϱ,ϱ)1+ς(ℑϱ,ϱ)‖≤ρ(ℑϱ,ϱ)‖ς(ℑϱ,ϱ)‖+ϖ(ℑϱ,ϱ)‖ς(ϱ,ℑϱ)‖=(ρ(ℑϱ,ϱ)+ϖ(ℑϱ,ϱ))‖ς(ϱ,ℑϱ)‖ |
which is possible only whenever |ς(ℑϱ,ϱ)|=0. Thus ℑϱ=ϱ.
Corollary 6. Let (L,ς) be a complete bi CVMS and let ℑ1,ℑ2:L →L. If there exist ρ,κ,ϖ:L→[0,1) such that for all ϱ,ℏ∈ L,
(a) ρ(ℑ2ℑ1ϱ)≤ρ(ϱ), κ(ℑ2ℑ1ϱ)≤κ(ϱ), ϖ(ℑ2ℑ1ϱ)≤ϖ(ϱ), (b) ρ(ϱ)+κ(ϱ)+ϖ(ϱ)<1,
(c) ς(ℑ1ϱ,ℑ2ℏ)⪯i2ρ(ϱ)ς(ϱ,ℏ)+κ(ϱ)ς(ϱ,ℑ1ϱ)ς(ℏ,ℑ2ℏ)1+ς(ϱ,ℏ)+ϖ(ϱ)ς(ℏ,ℑ1ϱ)ς(ϱ,ℑ2ℏ)1+ς(ϱ,ℏ),
Corollary 7. Let (L,ς) be a complete bi CVMS and let ℑ1,ℑ2:L →L. If there exist ρ,κ,ϖ:L→[0,1) such that for all ϱ,ℏ∈ L,
(a) ρ(ℑ2ℑ1ϱ)≤ρ(ϱ), κ(ℑ2ℑ1ϱ)≤κ(ϱ), ϖ(ℑ2ℑ1ϱ)≤ϖ(ϱ),
(b) ρ(ϱ)+κ(ϱ)+ϖ(ϱ)<1,
(c) ς(ℑ1ϱ,ℑ2ℏ)⪯i2ρ(ϱ)ς(ϱ,ℏ)+κ(ϱ)ς(ϱ,ℑ1ϱ)ς(ℏ,ℑ2ℏ)1+ς(ϱ,ℏ)+ϖ(ϱ)ς(ℏ,ℑ1ϱ)ς(ϱ,ℑ2ℏ)1+ς(ϱ,ℏ),
then ℑ1 and ℑ2 have a unique common fixed point.
Proof. Define ρ,κ,ϖ:L×L→[0,1) by
ρ(ϱ,ℏ)=ρ(ϱ), κ(ϱ,ℏ)=κ(ϱ) and ϖ(ϱ,ℏ)=ϖ(ϱ) |
for all ϱ,ℏ∈L. Then for all ϱ,ℏ∈L, we have
(a) ρ(ℑ2ℑ1ϱ,ℏ)=ρ(ℑ2ℑ1ϱ)≤ρ(ϱ)=ρ(ϱ,ℏ) and ρ(ϱ,ℑ1ℑ2ℏ)=ρ(ϱ)=ρ(ϱ,ℏ),
κ(ℑ2ℑ1ϱ,ℏ)=κ(ℑ2ℑ1ϱ)≤κ(ϱ)=κ(ϱ,ℏ) and κ(ϱ,ℑ1ℑ2ℏ)=κ(ϱ)=κ(ϱ,ℏ),
ϖ(ℑ2ℑ1ϱ,ℏ)=ϖ(ℑ2ℑ1ϱ)≤ϖ(ϱ)=ϖ(ϱ,ℏ) and ϖ(ϱ,ℑ1ℑ2ℏ)=ϖ(ϱ)=ϖ(ϱ,ℏ),
(b) ρ(ϱ,ℏ)+κ(ϱ,ℏ)+ϖ(ϱ,ℏ)=ρ(ϱ)+κ(ϱ)+ϖ(ϱ)<1,
(c) ς(ℑ1ϱ,ℑ2ℏ) ⪯i2ρ(ϱ)ς(ϱ,ℏ)+κ(ϱ)ς(ϱ,ℑ1ϱ)ς(ℏ,ℑ2ℏ)1+ς(ϱ,ℏ)+ϖ(ϱ)ς(ℏ,ℑ1ϱ)ς(ϱ,ℑ2ℏ)1+ς(ϱ,ℏ) = ρ(ϱ,ℏ)ς(ϱ,ℏ)+κ(ϱ,ℏ)ς(ϱ,ℑ1ϱ)ς(ℏ,ℑ2ℏ)1+ς(ϱ,ℏ)+ϖ(ϱ,ℏ)ς(ℏ,ℑ1ϱ)ς(ϱ,ℑ2ℏ)1+ς(ϱ,ℏ),
(d) λ=ρ(ϱ0,ϱ1)1−κ(ϱ0,ϱ1)=ρ(ϱ0)1−κ(ϱ0)<1.
By Theorem 1, ℑ1 and ℑ2 have a unique common fixed point.
Corollary 8. Let (L,ς) be a complete bi CVMS and let ℑ1,ℑ2:L →L. If there exist ρ,κ,ϖ∈[0,1) with ρ+κ+ϖ<1 such that
ς(ℑ1ϱ,ℑ2ℏ)⪯i2ρς(ϱ,ℏ)+κς(ϱ,ℑ1ϱ)ς(ℏ,ℑ2ℏ)1+ς(ϱ,ℏ)+ϖς(ℏ,ℑ1ϱ)ς(ϱ,ℑ2ℏ)1+ς(ϱ,ℏ) , |
for all ϱ,ℏ∈ L, then ℑ1 and ℑ2 have a unique common fixed point.
Proof. Taking ρ(⋅)=ρ, κ(⋅)=κ and ϖ(⋅)=ϖ in Corollary (6).
Corollary 9. Let (L,ς) be a complete bi CVMS and let ℑ1,ℑ2:L →L. If there exist ρ,κ∈[0,1) with ρ+κ<1 such that
ς(ℑ1ϱ,ℑ2ℏ)⪯i2ρς(ϱ,ℏ)+κς(ϱ,ℑ1ϱ)ς(ℏ,ℑ2ℏ)1+ς(ϱ,ℏ) |
for all ϱ,ℏ∈ L, then ℑ1 and ℑ2 have a unique common fixed point.
Let L=C([a,b],R), (a>0) where C[a,b] denotes the set of all real continuous functions defined on the closed interval [a,b] and d:L×L→C2 be defined in this way
d(ϱ,ℏ)=maxt∈[a,b](1+i)(|ϱ(t)−ℏ(t)|) |
for all ϱ,ℏ∈ L and t∈[a,b], where |⋅| is the usual real modulus. Then (L,d) is complete bi CVMS. Consider the integral equations of Urysohn type
ϱ(t)=∫baK1(t,s,ϱ(s))ds+g(t), | (5.1) |
ϱ(t)=∫baK2(t,s,ϱ(s))ds+g(t), | (5.2) |
where g: [a,b]→R and K1,K2:[a,b]×[a,b]×R→R are continuous for t∈[a,b]. We define partial order ⪯i2 in C2 as follows ϱ(t)⪯i2ℏ(t) if and only if ϱ≤ℏ.
Theorem 2. Suppose the following condition
|K1(t,s,ϱ(s))−K2(t,s,ℏ(s))|≤ρ(ϱ,ℏ)|ϱ(s)−ℏ(s)| |
holds, for all ϱ,ℏ∈L with ϱ≠ℏ and for some control function ρ:L×L→[0,1), then the integral operators defined by (5.1) and (5.2) have a unique common solution.
Proof. Define continuous mappings ℑ1,ℑ2: L →L by
ℑ1ϱ(t)=1b−a∫baK1(t,s,ϱ(s))ds+g(t), |
ℑ2ϱ(t)=1b−a∫baK2(t,s,ϱ(s))ds+g(t), |
for all t∈[a,b]. Consider
d(ℑ1ϱ,ℑ2ℏ)=maxt∈[a,b](1+i2)|ℑ1ϱ(t)−ℑ2h(t)|=maxt∈[a,b](1+i2)(1b−a|∫baK1(t,s,ϱ(s))ds−∫baK2(t,s,h(s))ds|) |
⪯i2maxt∈[a,b](1+i2)(1b−a∫ba|K1(t,s,ϱ(s))−K2(t,s,h(s))|ds) |
⪯i2maxt∈[a,b](1+i2)(ρ(ϱ,ℏ)b−a∫ba|ϱ(s)−ℏ(s)|ds). |
Thus
d(ℑ1ϱ,ℑ2ℏ)⪯i2ρ(ϱ,ℏ)d(ϱ,ℏ). |
Now with κ,ϖ:L×L→[0,1) defined by
κ(ϱ,ℏ)=ϖ(ϱ,ℏ)=0 |
for every ϱ,ℏ∈L, all the assumptions of Theorem (1) are satisfied and the integral equations (5.1) and (5.2) have a unique common solution.
In this article, we have utilized the notion of bicomplex valued metric space (bi CVMS) and obtained common fixed point results for rational contractions involving control functions of two variables. We have derived common fixed points and fixed points of single valued mappings for contractions involving control functions of one variable and constants. We anticipate that the obtained theorems in this article will establish new relationships for those who use bi CVMS. Still there are some open problems that can be addressed in future work. For example:
1) Can the notion of bi complex valued metric space be extended to hypercomplex valued metric space?
2) Can the results proved in this article be extended to multivalued mappings and fuzzy set valued mappings [30]?
3) Can differential and integral inclusions can be solved as applications of fixed point results for multivalued mappings in the setting of bi complex valued metric space?
The authors extend their appreciation to the deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through project number (IFP-2020-106).
The authors declare that they have no conflicts of interest.
[1] |
M. Camelo, D. Papadimitriou, L. Fàbrega, P. Vilà, Geometric routing with word-metric spaces, IEEE Commun. Lett., 18 (2014), 2125–2128. https://doi.org/10.1109/LCOMM.2014.2364213 doi: 10.1109/LCOMM.2014.2364213
![]() |
[2] |
K. J. Lippert, R. Cloutier, Cyberspace: a digital ecosystem, Systems, 9 (2021), 48. https://doi.org/10.3390/systems9030048 doi: 10.3390/systems9030048
![]() |
[3] |
M. Y. Khachay, Y. Y. Ogorodnikov, Efficient approximation of the capacitated vehicle routing problem in a metric space of an arbitrary fixed doubling dimension, Dokl. Math., 102 (2020), 324–329. https://doi.org/10.1134/S1064562420040080 doi: 10.1134/S1064562420040080
![]() |
[4] |
S. K. Panda, A. Tassaddiq, R. P. Agarwal, A new approach to the solution of non-linear integral equations via various FBe-contractions, Symmetry, 11 (2019), 206 https://doi.org/10.3390/sym11020206 doi: 10.3390/sym11020206
![]() |
[5] |
A. Tassaddiq, S. Kanwal, S. Perveen, R. Srivastava, Fixed points of single-valued and multi-valued mappings in sb-metric spaces, J. Inequal. Appl., 2022 (2022), 85. https://doi.org/10.1186/s13660-022-02814-z doi: 10.1186/s13660-022-02814-z
![]() |
[6] |
A. Shoaib, S. Kazi, A. Tassaddiq, S. S Alshoraify, T. Rasham, Double controlled quasi-metric type spaces and some results, Complexity, 2020 (2020), 3460938. https://doi.org/10.1155/2020/3460938 doi: 10.1155/2020/3460938
![]() |
[7] |
A. Tassaddiq, General escape criteria for the generation of fractals in extended Jungck–Noor orbit, Math. Comput. Simul., 196 (2022), 1–14. https://doi.org/10.1016/j.matcom.2022.01.003 doi: 10.1016/j.matcom.2022.01.003
![]() |
[8] |
D. Li, A. A. Shahid, A. Tassaddiq, A.Khan, X. Guo, M. Ahmad, CR iteration in generation of antifractals with s-convexity, IEEE Access, 8 (2020), 61621–61630. https://doi.org/10.1109/ACCESS.2020.2983474 doi: 10.1109/ACCESS.2020.2983474
![]() |
[9] |
C. Zou, A. Shahid, A. Tassaddiq, A. Khan, M. Ahmad, Mandelbrot sets and Julia sets in Picard-Mann orbit, IEEE Access, 8 (2020), 64411–64421. https://doi.org/10.1109/ACCESS.2020.298468 doi: 10.1109/ACCESS.2020.298468
![]() |
[10] |
A. Tassaddiq, M. Tanveer, M. Azhar, W. Nazeer, S. Qureshi, A four step feedback iteration and its applications in fractals, Fractal Fract., 6 (2022), 662. https://doi.org/10.3390/fractalfract6110662 doi: 10.3390/fractalfract6110662
![]() |
[11] |
A. Tassaddiq, M. S. Shabbir, Q. Din, H. Naaz, Discretization, bifurcation, and control for a class of predator-prey interactions, Fractal Fract., 6 (2022), 31. https://doi.org/10.3390/fractalfract6010031 doi: 10.3390/fractalfract6010031
![]() |
[12] |
A. Tassaddiq, M. S. Shabbir, Q. Din, K. Ahmad, S. Kazi, A ratio-dependent nonlinear predator-prey model with certain dynamical results, IEEE Access, 8 (2020), 195074–195088. https://doi.org/10.1109/ACCESS.2020.3030778 doi: 10.1109/ACCESS.2020.3030778
![]() |
[13] |
M. S. Shabbir, Q. Din, K. Ahmad, A. Tassaddiq, A. H. Soori, M. A. Khan, Stability, bifurcation, and chaos control of a novel discrete-time model involving Allee effect and cannibalism, Adv. Differ. Equ., 2020 (2020), 379. https://doi.org/10.1186/s13662-020-02838-z doi: 10.1186/s13662-020-02838-z
![]() |
[14] |
M. S. Shabbir, Q. Din, R. Alabdan, A. Tassaddiq, K. Ahmad, Dynamical complexity in a class of novel discrete-time predator-prey interaction with cannibalism, IEEE Access, 8 (2020), 100226–100240. https://doi.org/10.1109/ACCESS.2020.2995679 doi: 10.1109/ACCESS.2020.2995679
![]() |
[15] |
N. Hussain, H. Işık, M. Abbas, Common fixed point results of generalized almost rational contraction mappings with an application, J. Nonlinear Sci. Appl., 9 (2016), 2273–2288. http://dx.doi.org/10.22436/jnsa.009.05.30 doi: 10.22436/jnsa.009.05.30
![]() |
[16] |
H. Işık, V. Parvaneh, B. Mohammadi, I. Altun, Common fixed point results for generalized Wardowski type contractive multi-valued mappings, Mathematics, 7 (2019), 1130. https://doi.org/10.3390/math7111130 doi: 10.3390/math7111130
![]() |
[17] |
H. Işık, W. Sintunavarat, An investigation of the common solutions for coupled systems of functional equations arising in dynamic programming, Mathematics, 7 (2019), 977. https://doi.org/10.3390/math7100977 doi: 10.3390/math7100977
![]() |
[18] |
H. Işık, Existence of a common solution to systems of integral equations via fixed point results, Open Math., 18 (2020), 249–261. https://doi.org/10.1515/math-2020-0024 doi: 10.1515/math-2020-0024
![]() |
[19] |
C. Segre, Le rappresentazioni reali delle forme complesse a gli enti iperalgebrici, Math. Ann., 40 (1892), 413–467. https://doi.org/10.1007/BF01443559 doi: 10.1007/BF01443559
![]() |
[20] | G. B. Price, An introduction to multicomplex spaces and functions, CRC Press, 1991. https://doi.org/10.1201/9781315137278 |
[21] | A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32 (2011), 243–253. |
[22] |
G. A. Okeke, Iterative approximation of fixed points of contraction mappings in complex valued Banach spaces, Arab J. Math. Sci., 25 (2019), 83–105. https://doi.org/10.1016/j.ajmsc.2018.11.001 doi: 10.1016/j.ajmsc.2018.11.001
![]() |
[23] |
J. Choi, S. K. Datta, T. Biswas, N. Islam, Some fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces, Honam Math. J., 39 (2017), 115–126. https://doi.org/10.5831/HMJ.2017.39.1.115 doi: 10.5831/HMJ.2017.39.1.115
![]() |
[24] |
I. H. Jebril, S. K. Datta, R. Sarkar, N. Biswas, Common fixed point theorems under rational contractions for a pair of mappings in bicomplex valued metric spaces, J. Interdiscip. Math., 22 (2019), 1071–1082. https://doi.org/10.1080/09720502.2019.1709318 doi: 10.1080/09720502.2019.1709318
![]() |
[25] | M. S. Abdullahi, A. Azam, Multivalued fixed points results via rational type contractive conditions in complex valued metric spaces, J. Int. Math. Virtual Inst., 7 (2017), 119–146 |
[26] |
A. Azam, J. Ahmad, P. Kumam, Common fixed point theorems for multi-valued mappings in complex-valued metric spaces, J. Inequal. Appl., 2013 (2013), 578. https://doi.org/10.1186/1029-242X-2013-578 doi: 10.1186/1029-242X-2013-578
![]() |
[27] |
A. J. Gnanaprakasam, S. M. Boulaaras, G. Mani, B. Cherif, S. A. Idris, Solving system of linear equations via bicomplex valued metric space, Demonstr. Math., 54 (2021), 474–487. https://doi.org/10.1515/dema-2021-0046 doi: 10.1515/dema-2021-0046
![]() |
[28] |
Z. Gu, G. Mani, A. J. Gnanaprakasam, Y. Li, Solving a system of nonlinear integral equations via common fixed point theorems on bicomplex partial metric space, Mathematics, 9 (2021), 1584. https://doi.org/10.3390/math9141584 doi: 10.3390/math9141584
![]() |
[29] |
I. Beg, S. K. Datta, D. Pal, Fixed point in bicomplex valued metric spaces, Int. J. Nonlinear Anal. Appl., 12 (2021), 717–727. https://doi.org/10.22075/IJNAA.2019.19003.2049 doi: 10.22075/IJNAA.2019.19003.2049
![]() |
[30] |
R. Tabassum, M. S. Shagari, A. Azam, O. M. Kalthum S. K. Mohamed, A. A. Bakery, Intuitionistic fuzzy fixed point theorems in complex valued b -metric spaces with applications to fractional differential equations, J. Funct. Spaces, 2022 (2022), 1–17. https://doi.org/10.1155/2022/2261199 doi: 10.1155/2022/2261199
![]() |
1. | Gunaseelan Mani, Arul Joseph Gnanaprakasam, Ozgur Ege, Nahid Fatima, Nabil Mlaiki, Solution of Fredholm Integral Equation via Common Fixed Point Theorem on Bicomplex Valued B-Metric Space, 2023, 15, 2073-8994, 297, 10.3390/sym15020297 | |
2. | Afrah Ahmad Noman Abdou, Common fixed point theorems for multi-valued mappings in bicomplex valued metric spaces with application, 2023, 8, 2473-6988, 20154, 10.3934/math.20231027 | |
3. | Badriah Alamri, Fixed Point Theory in Bicomplex Metric Spaces: A New Framework with Applications, 2024, 12, 2227-7390, 1770, 10.3390/math12111770 | |
4. | Afrah Ahmad Noman Abdou, Solving the Fredholm Integral Equation by Common Fixed Point Results in Bicomplex Valued Metric Spaces, 2023, 11, 2227-7390, 3249, 10.3390/math11143249 | |
5. | A. Murali, K. Muthunagai, A. Tassaddiq, 2025, Chapter 35, 978-3-031-58640-8, 513, 10.1007/978-3-031-58641-5_35 |