Processing math: 65%
Research article

A novel approach of multi-valued contraction results on cone metric spaces with an application

  • Received: 05 December 2022 Revised: 12 March 2023 Accepted: 15 March 2023 Published: 27 March 2023
  • MSC : 47H07, 47H10, 54H25

  • In this paper, we present some generalized multi-valued contraction results on cone metric spaces. We use some maximum and sum types of contractions for a pair of multi-valued mappings to prove some common fixed point theorems on cone metric spaces without the condition of normality. We present an illustrative example for multi-valued contraction mappings to support our work. Moreover, we present a supportive application of nonlinear integral equations to validate our work. This new theory, can be modified in different directions for multi-valued mappings to prove fixed point, common fixed point and coincidence point results in the context of different types of metric spaces with the application of different types of integral equations.

    Citation: Saif Ur Rehman, Iqra Shamas, Shamoona Jabeen, Hassen Aydi, Manuel De La Sen. A novel approach of multi-valued contraction results on cone metric spaces with an application[J]. AIMS Mathematics, 2023, 8(5): 12540-12558. doi: 10.3934/math.2023630

    Related Papers:

    [1] Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817
    [2] Xun Ge, Songlin Yang . Some fixed point results on generalized metric spaces. AIMS Mathematics, 2021, 6(2): 1769-1780. doi: 10.3934/math.2021106
    [3] Yan Han, Shaoyuan Xu, Jin Chen, Huijuan Yang . Fixed point theorems for b-generalized contractive mappings with weak continuity conditions. AIMS Mathematics, 2024, 9(6): 15024-15039. doi: 10.3934/math.2024728
    [4] Hasanen A. Hammad, Hassen Aydi, Choonkil Park . Fixed point approach for solving a system of Volterra integral equations and Lebesgue integral concept in FCM-spaces. AIMS Mathematics, 2022, 7(5): 9003-9022. doi: 10.3934/math.2022501
    [5] Muhammad Riaz, Umar Ishtiaq, Choonkil Park, Khaleel Ahmad, Fahim Uddin . Some fixed point results for ξ-chainable neutrosophic and generalized neutrosophic cone metric spaces with application. AIMS Mathematics, 2022, 7(8): 14756-14784. doi: 10.3934/math.2022811
    [6] Anam Arif, Muhammad Nazam, Aftab Hussain, Mujahid Abbas . The ordered implicit relations and related fixed point problems in the cone b-metric spaces. AIMS Mathematics, 2022, 7(4): 5199-5219. doi: 10.3934/math.2022290
    [7] Zhenhua Ma, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei . Fixed point results for generalized contractions in controlled metric spaces with applications. AIMS Mathematics, 2023, 8(1): 529-549. doi: 10.3934/math.2023025
    [8] Nashat Faried, Sahar Mohamed Ali Abou Bakr, H. Abd El-Ghaffar, S. S. Solieman Almassri . Towards coupled coincidence theorems of generalized admissible types of mappings on partial satisfactory cone metric spaces and some applications. AIMS Mathematics, 2023, 8(4): 8431-8459. doi: 10.3934/math.2023425
    [9] Asifa Tassaddiq, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Durdana Lateef, Farha Lakhani . On common fixed point results in bicomplex valued metric spaces with application. AIMS Mathematics, 2023, 8(3): 5522-5539. doi: 10.3934/math.2023278
    [10] Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977
  • In this paper, we present some generalized multi-valued contraction results on cone metric spaces. We use some maximum and sum types of contractions for a pair of multi-valued mappings to prove some common fixed point theorems on cone metric spaces without the condition of normality. We present an illustrative example for multi-valued contraction mappings to support our work. Moreover, we present a supportive application of nonlinear integral equations to validate our work. This new theory, can be modified in different directions for multi-valued mappings to prove fixed point, common fixed point and coincidence point results in the context of different types of metric spaces with the application of different types of integral equations.



    It was recognized that in 1922, Banach proved a "contraction mapping principle for fixed points (FPs)" in his Ph.D. dissertation; see also [1]. It is one of the most significant results in functional analysis and its applications in other branches of mathematics. Specifically, this principle is considered as the basic source of metric FP theory. The study of FP and common fixed point (CFP) results satisfying a certain metric contraction condition has received the attention of many authors; see, for instance [2,3,4,5,6,7,8,9,10].

    Huang and Zhang [11] in 2007, introduced the notion of a cone metric space (CM-space) which generalized the notion of a metric space (M-space). They presented some basic properties and proved a cone Banach contraction theorem for FPs in terms of the interior points of the underlying cone. After the publication of this article, many researchers contributed their work to the problems on CM-spaces. Abbas and Jungck [12], Ilić and Rakocević [13] and Vetro [14] generalized the concept of Huang and Zhang [11] and proved some FP, CFP and coincidence point results on CM-spaces by using different types of contraction conditions. Abbas et al. [15], Abdeljawad et al. [16,17], Altun et al. [18], Janković et al. [19], Karapinar [20,21,22], Khamsi [23], Kumar and Rathee [24], and Rezapour and Hamlbarani [25] proved different contractive-type FP and CFP results on CM-spaces.

    In 1969, Nadler [26] initially introduced the concept of multi-valued contraction mappings in the theory of FP by using the Hausdorff metric. He proved some multi-valued FP results on complete M-spaces. In other papers [28,29,30,31], the authors contributed their ideas to the theory of FP and established multi-valued contraction results in the context of M-spaces. In [32], Rezapour and Haghi proved FP results for multi-functions on CM-spaces. Later on, Klim and Wardowski [33] established some FP results for set-valued nonlinear contraction mappings on CM-spaces. After that, Latif and Shaddad [34] proved some FP results for multi-valued maps on CM-spaces. Cho and Bae [35] presented modified FP theorems for multi-valued mappings on CM-spaces. Meanwhile, Wardowski [36] proved some Nadler type contraction results for set-valued mappings on CM-spaces. Mehmood et al. [37,38], proved some multi-valued contraction results for FPs on CM-space and order CM-spaces with an application. In 2015, Fierro [39] established some FP theorems on topological vector spaces valued CM-spaces for set-valued mappings. Recently, Rehman et al. [40] proved some multi-valued contraction theorems for FPs and CFPs on HCM-spaces.

    In this paper, we study some new types of generalized multi-valued contraction results on complete CM-spaces. We prove some CFP theorems for a pair of multi-valued contraction mappings on CM-spaces with the condition of normality of the cone. We present an illustrative example to support our work. Further, we present an application of nonlinear integral equations to validate our work. This concept can be extended for different types of multi-valued contraction mappings in the context of M-spaces with the application of different types of integral equations and differential equations. This paper is organized as follows: in Section 2, we introduce the preliminary concepts related to our main work. In Section 3, we establish some CFP theorems for a pair of multi-valued contraction mappings on CM-spaces with an illustrative example. In Section 4, we present a supportive application of nonlinear integral equations to unify our main work. Finally, in Section 5, we present the conclusion of our work.

    Definition 2.1. [11] Let E be a real Banach space. A subset PE is called a cone if the following are satisfied:

    (ⅰ) P is closed, nonempty and P{θ}, where θ is the zero element of E;

    (ⅱ) If 0b1,b2< and u1,u2P, then b1u1+b2u2P;

    (ⅲ) PP={θ}.

    Given a cone PE, define a partial ordering on E with respect to P by u1u2 if and only if u2u1P. We shall write u1<u2 if u1u2 and u1u2 while u1u2, and if and only if u2u1int(P), where int(P) denotes the interior of P. A nonempty cone P is called normal if there is K>1 such that  u1,u2E, u1Ku2, whenever θu1u2.

    A cone P is known as regular if every non-decreasing sequence which is bounded from above is convergent, i.e., if {un} is a sequence such that for some vE, we have u1u2v. Then there exists uE such that

    limn+unu=0.

    Equivalently, a cone P is regular if and only if every non-increasing sequence which is bounded from below is convergent.

    Throughout this paper, we assume that E is a real Banach space, P is a cone in E with int(P) and is the partial ordering on E with respect to P.

    Definition 2.2. [11] Let U be a nonempty set. Let δ: U×UE be called a cone metric if the following hold

    (ⅰ) δ(u1,u2)θ and δ(u1,u2)=θu1=u2;

    (ⅱ) δ(u1,u2)=δ(u2,u1);

    (ⅲ) δ(u1,u2)δ(u1,u3)+δ(u3,u2);

    for all u1,u2,u3U. The a pair (U,δ) is called a CM-space.

    Definition 2.3. [11] Let (U,δ) be a CM-space. Let υU and {un} be a sequence in U. Then the following are true:

    (ⅰ) {un} is said to be convergent to υ if for every ζE with ζθ, there is a positive integer N such that δ(un,υ)ζ for nN. We denote this by limn+un=υ or unυ as n+.

    (ⅱ) {un} is said to be a Cauchy sequence if for every ζE with ζθ, there is a positive integer N such that δ(un,um)ζ for m,nN.

    (ⅲ) (U,δ) is called complete if every Cauchy sequence is convergent in U.

    Lemma 2.4. [11] Let (U,δ) be a CM-space and P be a normal cone. Let {un} be a sequence in U and u,vU. Then the following are true:

    (ⅰ) limn+un=ulimn+δ(un,u)=θ.

    (ⅱ) {un} is a Cauchy sequence iff limm,n+δ(un,um)=θ.

    (ⅲ) If limn+un=u and limn+un=v, then u=v.

    In what follows, B denotes (resp. B(U), CB(U)) the set of nonempty (resp. bounded, sequentially closed and bounded) subsets of (U,δ).

    Let (U,δ) be a CM-space and we denote

    s(u1)={u2E: u1u2}

    for u1E, and

    s(x,B)=yB s(δ(x,y))

    for xU and BB. For A,BB(U), we represent

    s(A,B)=(xA s(x,B))(yB s(y,A)).

    Lemma 2.5. [35] Let (U,δ) be a CM-space and P be a cone in Banach space E. Then the following are true:

    (ⅰ) For all u1,u2E, if u1u2, then s(u2)s(u1).

    (ⅱ) For all uU and AB, if θs(u,A), then uA.

    (ⅲ) For all u1P and A,BB(U) and xA, if u1s(A,B), then u1s(x,B).

    (ⅳ) If unE with unθ, then for each ζint(P) there exists N such that unζ for all n>N.

    Remark 2.6. [35] Let (U,δ) be a CM-space.

    (ⅰ) If E=R and P=[0,+), then (U,δ) is an M-space. Moreover, for A,BCB(U), Hδ(A,B)=infs(A,B) is the Hausdorff distance induced by δ.

    (ⅱ) s({x},{y})=s(δ(x,y)) for x,yU.

    Definition 2.7. Let T: UCB(U) be a multi-valued map. An element u0U is called an FP of T if u0Tu0.

    Theorem 2.8. [26] Let (U,δ) be a complete M-space. Let T: UCB(U) satisfy

    Hδ(Tμ,Tν)ηδ(μ,ν),  μ,νU, (2.1)

    where η[0,1). Then T has an FP.

    Definition 2.9. [28] An element u0U is a CFP of the mappings S,T: UCB(U) if u0Tu0Su0.

    First we define that δ(u,A):=infνAδ(u,ν). Now, we present our first main result.

    Theorem 3.1. Let (U,δ) be a complete CM-space. Let S,T: UCB(U) be a pair of multi-valued mappings satisfying

    (b1δ(μ,ν)+b2[δ(μ,Sμ)+δ(ν,Tν)]+b3[δ(ν,Sμ)+δ(μ,Tν)])s(Sμ,Tν) (3.1)

    for all μ,νU, b1(0,1) and b2,b30 with b1+2b2+2b3<1. Then S and T have a CFP in U.

    Proof. Fix μ0U and let there exists μ1U such that μ1Sμ0. Then, from (3.1), we have

    (b1δ(μ0,μ1)+b2[δ(μ0,Sμ0)+δ(μ1,Tμ1)]+b3[δ(μ1,Sμ0)+δ(μ0,Tμ1)])s(Sμ0,Tμ1).

    Since μ1Sμ0 and by Lemma 2.5(ⅲ), we have

    (b1δ(μ0,μ1)+b2[δ(μ0,μ1)+δ(μ1,Tμ1)]+b3[δ(μ1,μ1)+δ(μ0,Tμ1)])s(μ1,Tμ1).

    Then there exists μ2Tμ1 such that

    (b1δ(μ0,μ1)+b2[δ(μ0,Sμ0)+δ(μ1,μ2)]+b3[δ(μ1,Sμ0)+δ(μ0,μ2)])s(δ(μ1,μ2)).

    This implies that

    δ(μ1,μ2)b1δ(μ0,μ1)+b2[δ(μ0,μ1)+δ(μ1,μ2)]+b3δ(μ0,μ2)b1δ(μ0,μ1)+b2[δ(μ0,μ1)+δ(μ1,μ2)]+b3[δ(μ0,μ1)+δ(μ1,μ2)].

    After simplification, we obtain

    δ(μ1,μ2)βδ(μ0,μ1),where β=b1+b2+b31(b2+b3)<1. (3.2)

    Again from (3.1), we have

    (b1δ(μ2,μ1)+b2[δ(μ2,Sμ2)+δ(μ1,Tμ1)]+b3[δ(μ1,Sμ2)+δ(μ2,Tμ1)])s(Sμ2,Tμ1).

    Since μ2Tμ1, and by Lemma 2.5(ⅲ), we have

    (b1δ(μ2,μ1)+b2[δ(μ2,Sμ2)+δ(μ1,μ2)]+b3[δ(μ1,Sμ2)+δ(μ2,μ2)])s(μ2,Sμ2).

    Then there exists μ3Sμ2 such that

    (b1δ(μ2,μ1)+b2[δ(μ2,μ3)+δ(μ1,μ2)]+b3[δ(μ1,μ3)+δ(μ2,μ2)])s(δ(μ2,μ3)).

    This implies that

    δ(μ2,μ3)b1δ(μ2,μ1)+b2[δ(μ2,μ3)+δ(μ1,μ2)]+b3δ(μ1,μ3)b1δ(μ2,μ1)+b2[δ(μ2,μ3)+δ(μ1,μ2)]+b3[δ(μ1,μ2)+δ(μ2,μ3)].

    After simplification, we obtain

    δ(μ2,μ3)βδ(μ1,μ2), (3.3)

    where

    β=b1+b2+b31(b2+b3)<1.

    From (3.2) and (3.3), we have

    δ(μ2,μ3)βδ(μ2,μ1)β2δ(μ0,μ1).

    By repeatedly applying the above arguments we construct a sequence {μn} in U such that

    μ2n+1Sμ2n, and  μ2n+2Tμ2n+1,  nN.

    And

    δ(μn,μn+1)βδ(μn1,μn), (3.4)

    where β is as in (3.3). Thus, by induction, we obtain

    δ(μn,μn+1)βnδ(μ0,μ1). (3.5)

    We claim that {μn} is a Cauchy sequence. Let m>n; then, by the triangular inequality and from (3.5), we have

    δ(μn,μm)δ(μn,μn+1)+δ(μn+1,μn+2)++δ(μm1,μm)βnδ(μ0,μ1)+βn+1δ(μ0,μ1)++βm1δ(μ0,μ1)βn(1+β+β2++βmn1+)δ(μ0,μ1)βn1βδ(μ0,μ1)θas n+.

    By Lemma 2.4(ⅱ), {μn} is a Cauchy sequence in (U,δ). Since (U,δ) is complete, there exists ω1U such that μnω1 as n+. Therefore,

    limn+μ2n+1=limn+μ2n+2=ω1. (3.6)

    Now, we have to prove that ω1Sω1. From (3.1), we have

    (b1δ(ω1,μ2n+1)+b2[δ(ω1,Sω1)+δ(μ2n+1,Tμ2n+1)]+b3[δ(ω1,Tμ2n+1)+δ(μ2n+1,Sω1)])s(Tμ2n+1,Sω1).

    Since μ2n+2Tμ2n+1 and by Lemma 2.5(ⅲ), we have

    (b1δ(ω1,μ2n+1)+b2[δ(ω1,Sω1)+δ(μ2n+1,μ2n+2)]+b3[δ(ω1,μ2n+2)+δ(μ2n+1,Sω1)])s(μ2n+2,Sω1).

    Then there exists vnSw1 such that

    (b1δ(ω1,μ2n+1)+b2[δ(ω1,vn)+δ(μ2n+1,μ2n+2)]+b3[δ(ω1,μ2n+2)+δ(μ2n+1,vn)])s(δ(μ2n+2,vn)).

    This implies that

    δ(μ2n+2,vn)b1δ(ω1,μ2n+1)+b2[δ(ω1,vn)+δ(μ2n+1,μ2n+2)]+b3[δ(ω1,μ2n+2)+δ(μ2n+1,vn)]b1δ(ω1,μ2n+1)+b2[δ(ω1,μ2n+2)+δ(μ2n+2,vn)+δ(μ2n+1,ω1)+δ(ω1,μ2n+2)]+b3[δ(ω1,μ2n+2)+δ(μ2n+1,ω1)+δ(ω1,μ2n+2)+δ(μ2n+2,vn)]=2(b2+b3)δ(ω1,μ2n+2)+(b1+b2+b3)δ(ω1,μ2n+1)+(b2+b3)δ(μ2n+2,vn).

    After simplification, we get that

    δ(μ2n+2,vn)2(b2+b3)1b2b3δ(ω1,μ2n+2)+b1+b2+b31b2b3δ(ω1,μ2n+1).

    Now, by taking the limit as n+, we get that

    limn+δ(μ2n+2,vn)=θ.

    Therefore, since

    δ(ω1,vn)δ(ω1,μ2n+2)+δ(μ2n+2,vn)

    by Lemma 2.4, we deduce that limn+vn=ω1. Since Sω1 is closed, sequentially, we obtain ω1Sω1.

    Similarly, we can prove that ω1Tω1. Hence, it is proved that the mappings S and T have a CFP in U, that is, ω1Sω1Tω1.

    By putting the constants b3=0 and b2=0 in Theorem 3.1, we get the following two corollaries, respectively.

    Corollary 3.2. Let (U,δ) be a complete CM-space. Let S,T: UCB(U) be a pair of multi-valued mappings satisfying

    b1δ(μ,ν)+b2[δ(μ,Sμ)+δ(ν,Tν)]s(Sμ,Tν) (3.7)

    for all μ,νU, b1(0,1) and b20 with (b1+2b2)<1. Then S and T have a CFP in U.

    Corollary 3.3. Let (U,δ) be a complete CM-space. Let S,T: UCB(U) be a pair of multi-valued mappings satisfying

    b1δ(μ,ν)+b3[δ(ν,Sμ)+δ(μ,Tν)]s(Sμ,Tν) (3.8)

    for all μ,νU, b1(0,1) and b30 with (b1+2b3)<1. Then S and T have a CFP in U.

    If we put S=T in Theorem 3.1, we get the following corollary:

    Corollary 3.4. Let (U,δ) be a complete CM-space. Let S: UCB(U) be a multi-valued mapping such that

    (b1δ(μ,ν)+b2[δ(μ,Sμ)+δ(ν,Sν)]+b3[δ(ν,Sμ)+δ(μ,Sν)])s(Sμ,Sν) (3.9)

    for all μ,νU, b1(0,1) and b2,b30 with (b1+2b2+2b3)<1. Then S has an FP in U.

    Remark 3.5. In the context of complete M-spaces instead of complete CM-spaces, if we put b2=b3=0 and S=T in Theorem 3.1, then we obtain Nadler's result [26].

    In the sense of Nadler's multi-valued concept [26], Theorem 3.1 can be stated as follows:

    Corollary 3.6. Let (U,δ) be a complete CM-space. Let S,T: UCB(U) be a pair of multi-valued mappings such that:

    Hδ(Sμ,Tν)b1δ(μ,ν)+b2[δ(μ,Sμ)+δ(ν,Tν)]+b3[δ(ν,Sμ)+δ(μ,Tν)] (3.10)

    for all μ,νU, b1(0,1), and b2,b30 with (b1+2b2+2b3)<1. Then S and T have a CFP in U.

    Now, we present our second main result.

    Theorem 3.7. Let (U,δ) be a complete CM-space. Let S,T: UCB(U) be a pair of multi-valued mappings verifying

    (b1δ(μ,ν)+b2max{δ(μ,Sμ),δ(ν,Tν),δ(ν,Sμ),δ(μ,Tν)})s(Sμ,Tν) (3.11)

    for all μ,νU, b1[0,1) and b20 with (b1+2b2)<1. Then S and T have a CFP in U.

    Proof. Fix μ0U and μ1Sμ0. Then, from (3.11), we have

    (b1δ(μ0,μ1)+b2max{δ(μ0,Sμ0),δ(gμ1,Tμ1),δ(μ1,Sμ0),δ(μ0,Tμ1)})s(Sμ0,Tμ1).

    Thus by Lemma 2.5(ⅲ), we have

    (b1δ(μ0,μ1)+b2max{δ(μ0,μ1),δ(gμ1,Tμ1),δ(μ1,μ1),δ(μ0,Tμ1)})s(μ1,Tμ1).

    Then there exists μ2Tμ1 such that

    (b1δ(μ0,μ1)+b2max{δ(μ0,μ1),δ(μ1,μ2),δ(μ0,μ2)})s(δ(μ1,μ2)).

    This implies that

    δ(μ1,μ2)b1δ(μ0,μ1)+b2max{δ(μ0,μ1),δ(μ1,μ2),δ(μ0,μ2)}. (3.12)

    We may have the following three cases:

    (a) If δ(μ0,μ1) is the maximum term of {δ(μ0,μ1),δ(μ1,μ2),δ(μ0,μ2)}, then, from (3.12), we get that

    δ(μ1,μ2)(b1+b2)δ(μ0,μ1). (3.13)

    (b) If δ(μ1,μ2) is the maximum term of {δ(μ0,μ1),δ(μ1,μ2),δ(μ0,μ2)}, then, from (3.12), we get that

    δ(μ1,μ2)b11b2δ(μ0,μ1). (3.14)

    (c) If δ(μ0,μ2) is the maximum term of {δ(μ0,μ1),δ(μ1,μ2),δ(μ0,μ2)}, then, from (3.12) and the triangle inequality, we get that

    δ(μ1,μ2)b1+b21b2δ(μ0,μ1). (3.15)

    Let us define

    β:=max{(b1+b2),(b11b2),(b1+b21b2)}<1,

    where (b1+2b2)<1; then, from (3.13)–(3.15), we have that

    δ(μ1,μ2)βδ(μ0,μ1). (3.16)

    Again from (3.11), we have

    (b1δ(μ2,μ1)+b2max{δ(μ2,Sμ2),δ(μ1,Tμ1),δ(μ1,Sμ2),δ(μ2,Tμ1)})s(Sμ2,Tμ1).

    Since μ2Tμ1, and by Lemma 2.5(ⅲ), we have

    (b1δ(μ1,μ2)+b2max{δ(μ2,Sμ2),δ(μ1,μ2),δ(μ1,Sμ2),δ(μ2,μ2)})s(μ2,Sμ2).

    Then there exists μ3Sμ2 such that

    (b1δ(μ1,μ2)+b2max{δ(μ2,μ3),δ(μ1,μ2),δ(μ1,μ3)})s(δ(μ3,μ2)).

    This implies that

    δ(μ2,μ3)b1δ(μ1,μ2)+b2max{δ(μ1,μ2),δ(μ2,μ3),δ(μ1,μ3)}. (3.17)

    Then, we may have the following three cases:

    (a) If δ(μ1,μ2) is the maximum term of {δ(μ1,μ2),δ(μ2,μ3),δ(μ1,μ3)}, then, from (3.17), we get that

    δ(μ2,μ3)(b1+b2)δ(μ1,μ2). (3.18)

    (b) If δ(μ2,μ3) is the maximum term of {δ(μ1,μ2),δ(μ2,μ3),δ(μ1,μ3)}, then, from (3.17), we have

    δ(μ2,μ3)b11b2δ(μ1,μ2). (3.19)

    (c) If δ(μ1,μ3) is the maximum term of {δ(μ1,μ2),δ(μ2,μ3),δ(μ1,μ3)}, then, from (3.17) and the triangle inequality, we get that

    δ(μ2,μ3)b1+b21b2δ(μ1,μ2). (3.20)

    Then from (3.18)–(3.20), we find that

    δ(μ2,μ3)βδ(μ1,μ2), (3.21)

    where β is as in (3.16). From (3.16) and (3.21), we have

    δ(μ2,μ3)βδ(μ2,μ1)β2δ(μ0,μ1).

    By repeatedly applying the above arguments we construct a sequence {μn} in U such that

    μ2n+1Sμ2n, and  μ2n+2Tμ2n+1,  nN.

    And

    δ(μn,μn+1)βδ(μn1,μn), (3.22)

    where β is as in (3.16).

    Thus, by induction, we obtain

    δ(μn,μn+1)βnδ(μ0,μ1),  nN. (3.23)

    Now, we have to show that {μn} is a Cauchy sequence. Let m>n; then, by the triangular inequality and from (3.22), we have

    δ(μn,μm)δ(μn,μn+1)+δ(μn+1,μn+2)++δ(μm1,μm)βnδ(μ0,μ1)+βn+1δ(μ0,μ1)++βm1δ(μ0,μ1)βn(1+β+β2++βmn1+)δ(μ0,μ1)βn1βδ(μ0,μ1)θas n+.

    By Lemma 2.4(ⅱ), {μn} is a Cauchy sequence in (U,δ). Since (U,δ) is complete, there exists ω1U such that μnω1 as n+. Therefore,

    limn+μ2n+1=limn+μ2n+2=ω1. (3.24)

    Now, we have to prove that ω1Sω1. From (3.11), we have

    (b1δ(ω1,μ2n+1)+b2max{δ(ω1,Sω1),δ(μ2n+1,Tμ2n+1),δ(ω1,Tμ2n+1),δ(μ2n+1,Sω1)})s(Sω1,Tμ2n+1).

    Since μ2n+2Tμ2n+1 and by Lemma 2.5(ⅲ), we have

    (b1δ(ω1,μ2n+1)+b2max{δ(ω1,Sω1),δ(μ2n+1,μ2n+2),δ(ω1,μ2n+2),δ(μ2n+1,Sω1)})s(μ2n+2,Sω1).

    Then, there exists v_n\in S\omega_1 such that

    \begin{equation*} \label{T2-Vs} \left( \begin{array}{c l} b_1 \delta(\omega_1, \mu_{2n+1})+b_2\max \left\{ \begin{array}{c l} \delta(\omega_1, v_n) , \delta(\mu_{2n+1}, \mu_{2n+2}),\\ \delta(\omega_1, \mu_{2n+2}), \delta(\mu_{2n+1}, v_n) \end{array}\right\} \end{array}\right)\in s(\delta(\mu_{2n+2}, v_n)). \end{equation*}

    This implies that

    \begin{equation} \begin{split} \delta(\mu_{2n+2}, v_n)\leq b_1 \delta(\omega_1, \mu_{2n+1})+b_2\max \left\{ \begin{array}{c l} \delta(\omega_1, v_n) , \delta(\mu_{2n+1}, \mu_{2n+2}),\\ \delta(\omega_1, \mu_{2n+2}), \delta(\mu_{2n+1}, v_n) \end{array}\right\}. \end{split} \end{equation} (3.25)

    Then, we may have the following four cases:

    (a) If \delta(\omega_1, v_n) is the maximum term of \{\delta(\omega_1, v_n), \delta(\mu_{2n+1}, \mu_{2n+2}), \delta(\omega_1, \mu_{2n+2}), \delta(\mu_{2n+1}, v_n)\} , then, from (3.25) and the triangle inequality, we get that

    \begin{equation} \delta(\mu_{2n+2}, v_n) \leq \frac{b_1}{1-b_2} \delta(\omega_1, \mu_{2n+1}) + \frac{b_2}{1-b_2}\delta(\omega_1, \mu_{2n+2}). \end{equation} (3.26)

    (b) If \delta(\mu_{2n+1}, \mu_{2n+2}) is the maximum term of \{\delta(\omega_1, v_n), \delta(\mu_{2n+1}, \mu_{2n+2}), \delta(\omega_1, \mu_{2n+2}), \delta(\mu_{2n+1}, v_n)\} , then, from (3.25) and the triangle inequality, we get that

    \begin{equation} \delta(\mu_{2n+2}, v_n) \leq (b_1+ b_2) \delta(\omega_1, \mu_{2n+1}) + b_2\delta(\omega_1, \mu_{2n+2}). \end{equation} (3.27)

    (c) If \delta(\omega_1, \mu_{2n+2}) is the maximum term of \{\delta(\omega_1, v_n), \delta(\mu_{2n+1}, \mu_{2n+2}), \delta(\omega_1, \mu_{2n+2}), \delta(\mu_{2n+1}, v_n)\} , then, from (3.25), we get that

    \begin{equation} \delta(\mu_{2n+2}, v_n) \leq b_1 \delta(\omega_1, \mu_{2n+1}) + b_2\delta(\omega_1, \mu_{2n+2}). \end{equation} (3.28)

    (d) If \delta(\mu_{2n+1}, v_n) is the maximum term of \{\delta(\omega_1, v_n), \delta(\mu_{2n+1}, \mu_{2n+2}), \delta(\omega_1, \mu_{2n+2}), \delta(\mu_{2n+1}, v_n)\} , then, from (3.25) and the triangle inequality, we get that

    \begin{equation} \delta(\mu_{2n+2}, v_n) \leq \frac{b_1+b_2}{1-b_2} \delta(\omega_1, \mu_{2n+1}) + \frac{b_2}{1-b_2}\delta(\omega_1, \mu_{2n+2}). \end{equation} (3.29)

    Then, we define

    \lambda_1: = \max\left\{ \frac{b_1}{1-b_2}, (b_1+b_2), b_1, \frac{b_1+b_2}{1-b_2} \right\}

    and

    \lambda_2: = \max\left\{ \frac{b_2}{1-b_2}, b_2 \right\}.

    Then, from (3.26)–(3.29), we have that

    \begin{align*} \delta(\mu_{2n+2}, v_n) \leq \lambda_1\delta(\omega_1, \mu_{2n+1}) + \lambda_2 \delta(\omega_1, \mu_{2n+2}). \end{align*}

    Now, by taking the limit as n\to+\infty , we get that

    \lim\limits_{n\to +\infty} \delta(\mu_{2n+2}, v_n) = \theta.

    As in the proof of Theorem (3.1), this implies that

    \lim\limits_{n\to +\infty} v_n = \omega_1.

    Since S\omega_1 is closed, sequentially we deduce that \omega_1\in S\omega_1 . Similarly, we can prove that \omega_1\in T\omega_1 . Hence, it is proved that the mappings S and T have a CFP in U , that is, \omega_1\in S \omega_1\cap T\omega_1 .

    By reducing the maximum term in Theorem 3.7, we get the following corollaries:

    Corollary 3.8. Let (U, \delta) be a complete CM-space. Let S, T : U\to CB(U) be a pair of multi-valued mappings satisfying

    \begin{equation} b_1\delta(\mu,\nu)+ b_2\max\left\{\delta(\mu, S\mu), \delta(\nu, T\nu)\right\} \in s(S\mu,T \nu) \end{equation} (3.30)

    for all \mu, \nu\in U , b_1\in (0, 1) and b_2\geq 0 with (b_1+b_2) < 1 . Then S and T have a CFP in U .

    Corollary 3.9. Let (U, \delta) be a complete CM-space. Let S, T : U\to CB(U) be a pair of multi-valued mappings satisfying

    \begin{equation} b_1\delta(\mu,\nu)+ b_2\max\left\{\delta(\nu, S\mu), \delta(\mu, T\nu)\right\} \in s(S\mu,T \nu) \end{equation} (3.31)

    for all \mu, \nu\in U , b_1\in (0, 1) and b_2\geq 0 with (b_1+2b_2) < 1 . Then S and T have a CFP in U .

    If we put S = T in Theorem 3.7, we get the following corollary:

    Corollary 3.10. Let (U, \delta) be a complete CM-space. Let S : U\to CB(U) be a multi-valued mapping such that

    \begin{equation} \begin{split} \left( \begin{array}{c l} b_1\delta(\mu,\nu)+ b_2\max\left\{ \begin{array}{c l} \delta(\mu, S\mu), \delta(\nu, S\nu),\\ \delta(\nu, S\mu), \delta(\mu, S\nu) \end{array} \right\} \end{array} \right) \in s(S\mu, S\nu) \end{split} \end{equation} (3.32)

    for all \mu, \nu\in U , b_1\in (0, 1) and b_2\geq 0 with (b_1+2b_2) < 1 . Then S has an FP in U .

    In the sense of Nadler's multi-valued concept [26], Theorem 3.7 can be stated as follows:

    Corollary 3.11. Let (U, \delta) be a complete CM-space. Let S, T : U\to CB(U) be a pair of multi-valued mappings so that

    \begin{equation} \begin{split} H_\delta(S\mu,T \nu)\leq b_1\delta(\mu,\nu)+ b_2\max\left\{\delta(\mu, S\mu), \delta(\nu, T\nu),\delta(\nu, S\mu), \delta(\mu, T\nu)\right\} \end{split} \end{equation} (3.33)

    for all \mu, \nu\in U , b_1\in (0, 1) and b_2\geq 0 with (b_1+2b_2) < 1 . Then S and T have a CFP in U .

    Example 3.12. Let U = [0, 1] and the cone

    \mathbb{P}: = \{u\in \mathbb{E}: u(t)\geq 0,\ {\text{for}}\ t\in [0,1]\}

    on \mathbb{E} where

    \mathbb{E} = C([0,1],\mathbb{R})

    denoting continuous functions on [0, 1]. Then \mathbb{P} is a normal cone with respect to the norm of the space \mathbb{E} with the constant K = 1 . A cone metric \delta : U\times U\to \mathbb{E} is defined as

    \delta(u_1,u_2) = |u_1 - u_2|

    for all u_1, u_2\in U . Let \mathfrak{B} be a family of nonempty closed and bounded subsets of U of the form

    \mathfrak{B} = \{[0,u]: u\in U\}.

    Now, we define a pair of multi-valued mappings S, T:U\to \mathfrak{B} by

    Su = Tu = \left[0, \frac{2u}{7} \right].

    Moreover, for u_1, u_2 \in U(u_1 \neq u_2) and u_1, u_2 \neq 0 , let

    b_1 = \frac27 \ \ {\text{and}}\ \ b_2 = b_3 = \frac{2}{21}.

    Then, we have that

    \begin{align*} \left( \begin{array}{c l} \frac27\delta(\mu,\nu) \\ + \frac{2}{21} [\delta(\mu, S\mu)+ \delta(\nu, T\nu)]\\[.9em] + \frac{2}{21} [\delta(\nu, S\mu)+ \delta(\mu, T\nu)] \end{array}\right)&\in s(S\mu,T \nu)\Leftrightarrow \frac{62}{147}(\mu+\nu)\in s(S\mu,T \nu)\\ &\Leftrightarrow \frac{62}{147}(\mu+\nu)\in \left(\bigcap\limits_{x\in S\mu}\bigcup\limits_{y\in T\nu} s\left( \delta(x,y) \right) \right) \cap \left(\bigcap\limits_{y\in T\nu}\bigcup\limits_{x\in S\mu} s\left( \delta(x,y) \right) \right)\\ &\Leftrightarrow (\exists x\in S\mu) (\exists y\in T\nu)\frac{62}{147}(\mu+\nu)\in s\left( \delta(x,y) \right)\\ &\Leftrightarrow s\left( \delta(x,y) \right) \leq \frac{62}{147}(\mu+\nu) = \left( \begin{array}{c l} b_1\delta(\mu,\nu) \\ + b_2 [\delta(\mu, S\mu)+ \delta(\nu, T\nu)] \\ + b_3 [\delta(\nu, S\mu)+ \delta(\mu, T\nu)] \end{array}\right). \end{align*}

    Now, by taking

    x = \frac27 \mu,\ y = \frac27 \nu

    and

    (b_1+ 2b_2 + 2b_3) = \frac23 < 1,

    all hypothesis of Theorem 3.1 are satisfied, and the pair of multi-valued mappings S and T have a CFP in U , that is, "0".

    In this section, we present a supportive application of integral equations for this new theory. A number of researchers have used various applications in differential and integral equations in the context of M-spaces for FP results. Some of their works can be found in [4,41,42,43] and the references therein. Here in this section, we develop an approach for solving the nonlinear integral type problems represented by the following integral equations:

    \begin{align} \mu(\xi) = \int_{0}^{a}K_1(\xi,s, \mu(s))ds, \ \ {\text{and}}\ \ \nu(\xi) = \int_{0}^{a}K_2(\xi,s, \nu(s))ds, \end{align} (4.1)

    where K_1, K_2 : [0, a]\times [0, a] \times \mathbb{R} \to \mathbb{R} are continuous with a > 0 . Let U = C([0, a], \mathbb{R}) be the Banach space of all continuous functions defined on [0, a] and endowed with the usual supremum norm:

    \|\mu\|_\infty = \max\limits_{\xi\in[0, a]}|\mu(\xi)|, \ {\text{where}}\ \mu\in C([0, a],\mathbb{R}),

    and the induced metric (U, \delta) is defined by

    \delta(\mu,\nu) = \|\mu-\nu\|_\infty

    for all \mu, \nu\in U . Now, we are in the position to present the integral type application to support our work.

    Theorem 4.1. Suppose that the following hypotheses are satisfied:

    (1) Let K_1, K_2 : [0, a]\times [0, a] \times \mathbb{R} \to \mathbb{R} be continuous; for \mu, \nu\in U let B_{\mu}, B_{\nu}\in U be defined as

    \begin{align} B_\mu(\xi) = \int_{0}^{a}K_1(\xi,s, \mu(s))ds\quad and \quad B_\nu(\xi) = \int_{0}^{a}K_2(\xi,s, \nu(s))ds. \end{align} (4.2)

    Suppose that there exists a mapping

    \Gamma:[0, a]\times [0, a]\to [0,+\infty)\ with\ \ \Gamma(\xi,\cdot)\in L^1([0, a])

    for all \xi\in [0, a] such that

    |K_1(\xi, s, \mu(s))- K_2(\xi, s, \nu(s))|\leq \Gamma(\xi, s)N^*( \mu,\nu),\quad \forall \mu,\nu\in U,\ and\ \xi,s\in [0, a],

    where

    \begin{equation} \begin{split} N^*( \mu(s),\nu(s)) = N^*( \mu,\nu) = \min\left\{\|\mu-\nu\|_\infty,\max\left\{ \begin{array}{c l} \|B_{\mu}-\mu\|_\infty , \|B_{\nu}-\nu\|_\infty,\\ \|B_{\mu}-\nu\|_\infty, \|B_{\nu}-\mu\|_\infty\\ \end{array}\right\}\right\}. \end{split} \end{equation} (4.3)

    (2) Suppose also that

    |K_\mu(\xi, s, \mu(s))|\leq \Gamma(\xi, s)|\mu(s)|,\ and\ \ |K_\nu(\xi, s, \nu(s))|\leq \Gamma(\xi, s)|\nu(s)|,\ \forall \mu,\nu \in U.

    (3) Suppose further that there exists \beta\in(0, 1) such that

    \begin{equation} \beta N^*(\mu,\nu)\in s(A,B)\quad for \ \mu\in A,\ \nu\in B,\quad \mathit{{\text{and}}}\ A,B\subseteq CB(U) \end{equation} (4.4)

    where \sup\limits_{\xi\in[0, a]}\int_{0}^{\xi}\Gamma(\xi, s)ds = \beta < 1 .

    (4) Finally, suppose that there exists \mu_0\in U such that

    \begin{align} \mu_0\leq \int_{0}^{a}K_1(\xi,s,\mu_0(s))ds,\ \forall\ \xi\in [0,a]. \end{align}

    Then the integral equations in (4.1) have a common solution in U .

    Proof. Define the integral operators S, T : U\to CB(U) by

    \begin{equation} B_{\mu}(\xi)\in S\mu(\xi) = A\ \ {\text{and}}\ \ B_{\nu}(\xi)\in T\nu(\xi) = B, \end{equation} (4.5)

    for \mu(\xi)\in A, \ \nu(\xi)\in B and A, B\subseteq CB(U) . Notice that S and T are well defined and the equations of (4.1) have a common solution if and only if S and T have a common solution, that is the CFP of the mappings S and T in U . Precisely, we have to prove that Theorem 3.7 is applicable to the operators defined in (4.5). Then, we may have the following two main cases:

    (1) If \|\mu-\nu\|_\infty is the minimum term in (4.3), then N^*(\mu, \nu) = \|\mu-\nu\|_\infty . Now, from (4.4) and (4.5), we have

    \begin{equation} \begin{split} \beta\|\mu-\nu\|_\infty = \beta \delta(\mu, \nu)\in s(A,B) = s(S\mu, T\nu)\ \ {\text{for}}\ \mu\in A,\ \nu\in B\ {\text{and}}\ A, B\subseteq CB(U). \end{split} \end{equation} (4.6)

    The integral operators defined in (4.5) satisfy all of the hypotheses of Theorem 3.7 with \beta = b_1 and b_2 = 0 in (3.11). Thus, the integral equations in (4.1) have a common solution in U .

    (2) If \max\left\{\|B_{\mu}-\mu\|_\infty, \|B_{\nu}-\nu\|_\infty, \|B_{\mu}-\nu\|_\infty, \|B_{\nu}-\mu\|_\infty\right\} is the minimum term in (4.3), then

    \begin{equation} N^*(\mu,\nu) = \max\left\{\|B_{\mu}-\mu\|_\infty , \|B_{\nu}-\nu\|_\infty, \|B_{\mu}-\nu\|_\infty, \|B_{\nu}-\mu\|_\infty\right\}. \end{equation} (4.7)

    Then again we may have the following four subcases:

    (ⅰ) If \|B_{\mu}-\mu\|_\infty is the maximum term in (4.7), then N^*(\mu, \nu) = \|B_{\mu}-\mu\|_\infty . Now, from (4.4) and (4.5), we have

    \begin{equation} \beta\|B_{\mu}-\mu\|_\infty\in s\left(\delta(\mu, A)\right) \in s(A,B) = s(S\mu, T\nu)\ \ {\text{for}}\ \mu\in A,\ \nu\in B\ {\text{and}}\ A, B\subseteq CB(U). \end{equation} (4.8)

    (ⅱ) If \|B_{\nu}-\nu\|_\infty is the maximum term in (4.7), then N^*(\mu, \nu) = \|B_{\nu}-\nu\|_\infty . Now, from (4.4) and (4.5), we have

    \begin{equation} \beta\|B_{\nu}-\nu\|_\infty\in s\left(\delta(\nu, B)\right) \in s(A,B) = s(S\mu, T\nu)\ \ {\text{for}}\ \mu\in A,\ \nu\in B\ {\text{and}}\ A, B\subseteq CB(U). \end{equation} (4.9)

    (ⅲ) If \|B_{\mu}-\nu\|_\infty is the maximum term in (4.7), then N^*(\mu, \nu) = \|B_{\mu}-\nu\|_\infty . Now, from (4.4) and (4.5), we have

    \begin{equation} \beta\|B_{\mu}-\nu\|_\infty\in s\left(\delta(\nu, A)\right) \in s(A,B) = s(S\mu, T\nu)\ \ {\text{for}}\ \mu\in A,\ \nu\in B\ {\text{and}}\ A, B\subseteq CB(U). \end{equation} (4.10)

    (ⅳ) If \|B_{\nu}-\mu\|_\infty is the maximum term in (4.7), then N^*(\mu, \nu) = \|B_{\nu}-\mu\|_\infty . Now, from (4.4) and (4.5), we have

    \begin{equation} \beta\|B_{\nu}-\mu\|_\infty\in s\left(\delta(\mu, A)\right) \in s(A,B) = s(S\mu, T\nu)\ \ {\text{for}}\ \mu\in A,\ \nu\in B\ {\text{and}}\ A, B\subseteq CB(U). \end{equation} (4.11)

    Hence, from (4.8)–(4.11), the integral operators S and T , satisfy all of the hypotheses of Theorem 3.7 with \beta = b_2 and b_1 = 0 in (3.11). Thus, the integral equations in (4.1) have a common solution in U .

    In this paper, we have proved some new types of multi-valued contraction results for a pair of multi-valued mappings on CM-spaces. In support of our work, we presented an illustrative example. Our main results improved and modified many results published in the last few decades. In addition, we established a supportive application of nonlinear integral equations to unify our work. This new theory will play a very good role in the theory of FPs. This new concept has a potency to modify in different directions and prove different types of multi-valued contraction results for FPs, CFPs and coincidence points in the context of different types of M-spaces with different types of nonlinear integral equations and differential equations. Furthermore, we shall present a problem, i.e., whether the said theory in this paper is applicable or not to the theory of fractional derivatives (especially in the sense of Abu-Shady and Kaabar [44,45]).

    This work was supported by the Basque Government under Grant IT1555-22.

    The authors declare that they have no conflicts of interest.



    [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
    [2] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., 30 (1989), 26–37.
    [3] A. Belhenniche, L. Guran, S. Benahmed, F. L. Pereira, Solving nonlinear and dynamic programming equations on extended b-metric spaces with the fixed-point technique, Fixed Point Theory Algorithms Sci. Eng., 2022 (2022), 1–22. http://doi.org/10.1186/s13663-022-00736-5 doi: 10.1186/s13663-022-00736-5
    [4] J. J. Nieto, R. Rodeígues-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. Engl. Ser., 23 (2007), 2205–2212. http://doi.org/10.1007/s10114-005-0769-0 doi: 10.1007/s10114-005-0769-0
    [5] D. Paesano, P. Vetro, Suzuki's type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topol. Appl., 159 (2012), 911–920. http://doi.org/10.1016/j.topol.2011.12.008 doi: 10.1016/j.topol.2011.12.008
    [6] A. C. M. Ran, M. C. B. Reurings, A fixed point theorems in partially ordered sets and some applications to matrix equations, Proc. Am. Math. Soc., 132 (2004), 1435–1443. http://doi.org/10.2307/4097222 doi: 10.2307/4097222
    [7] I. A. Rus, Genralized contractions and applications, Cluj University Press, 2001.
    [8] R. Saadati, S. M. Vaezpour, P. Vetro, B. E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Math. Comput. Modell., 52 (2010), 797–801. http://doi.org/10.1016/j.mcm.2010.05.009 doi: 10.1016/j.mcm.2010.05.009
    [9] I. Shamas, S. Ur Rehman, H. Aydi, T. Mahmood, E. Ameer, Unique fixed-point results in fuzzy metric spaces with an application to Fredholm integral equations, J. Funct. Spaces, 2021 (2021), 4429173. https://doi.org/10.1155/2021/4429173 doi: 10.1155/2021/4429173
    [10] I. Shamas, S. Ur Rehman, N. Jan, A. Gumaei, M. Al-Rakhami, A new approach to fuzzy differential equations using weakly-compatible self-mappings in fuzzy metric spaces, J. Funct. Spaces, 2021 (2021), 6123154. https://doi.org/10.1155/2021/6123154 doi: 10.1155/2021/6123154
    [11] G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive maps, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087
    [12] M. Abbas, G. Jungck, Common fixed point results for non-commuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341 (2008), 416–420. https://doi.org/10.1016/j.jmaa.2007.09.070 doi: 10.1016/j.jmaa.2007.09.070
    [13] D. Ilic, V. Rakovcevic, Common fixed points for maps on cone metric spaces, J. Math. Anal. Appl., 341 (2008), 876–882. https://doi.org/10.1016/j.jmaa.2007.10.065 doi: 10.1016/j.jmaa.2007.10.065
    [14] P. Vetro, Common fixed points in cone metric spaces, Rend. Cricolo Math. Palermo, 56 (2007), 464–468. https://doi.org/10.1007/BF03032097 doi: 10.1007/BF03032097
    [15] M. Abbas, M. A. Khan, S. Radenovic, Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Appl. Math. Comput., 217 (2010), 195–202. https://doi.org/10.1016/j.amc.2010.05.042 doi: 10.1016/j.amc.2010.05.042
    [16] T. Abdeljawad, E. Karapinar, K. Tas, Common fixed point theorems in cone Banach spaces, Hacettepe J. Math. Stat., 40 (2011), 211–217.
    [17] T. Abdeljawad, E. Karapinar, Quasi-cone metric spaces and generalizations of Caristi Kirk's theorem, Fixed Point Theory Appl., 2009 (2009), 574387. https://doi.org/10.1155/2009/574387 doi: 10.1155/2009/574387
    [18] I. Altun, B. Damjanovic, D. Djoric, Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett., 23 (2010), 310–316. https://doi.org/10.1016/j.aml.2009.09.016 doi: 10.1016/j.aml.2009.09.016
    [19] S. Jankovic, Z. Kadelburg, S. Radenovic, On cone metric spaces: a survey, Nonlinear Anal., 74 (2011), 2591–2601. https://doi.org/10.1016/j.na.2010.12.014 doi: 10.1016/j.na.2010.12.014
    [20] E. Karapinar, Fixed point theorems in cone Banach spaces, Fixed Point Theory Appl., 2009 (2009), 609281. https://doi.org/10.1155/2009/609281 doi: 10.1155/2009/609281
    [21] E. Karapinar, Some nonunique fixed point theorems of Ciric type on cone metric spaces, Abstr. Appl. Anal., 2010 (2010), 123094. https://doi.org/10.1155/2010/123094 doi: 10.1155/2010/123094
    [22] E. Karapinar, Couple fixed point theorems for nonlinear contractions in cone metric spaces, Comput. Math. Appl., 59 (2010), 3656–3668. https://doi.org/10.1016/j.camwa.2010.03.062 doi: 10.1016/j.camwa.2010.03.062
    [23] M. A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappins, Fixed Point Theory Appl., 2010 (2010), 315398. https://doi.org/10.1155/2010/315398 doi: 10.1155/2010/315398
    [24] A. Kumar, S. Rathee, Fixed point and common fixed point results in cone metric space and application to invariant approximation, Fixed Point Theory Appl., 2015 (2015), 45. https://doi.org/10.1186/s13663-015-0290-9 doi: 10.1186/s13663-015-0290-9
    [25] S. Rezapour, R. Hamlbarani, Some note on the paper "cone metric spaces and fixed point theorems of contractive mappings", J. Math. Anal. Appl., 345 (2008), 719–724. https://doi.org/10.1016/j.jmaa.2008.04.049 doi: 10.1016/j.jmaa.2008.04.049
    [26] S. B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475–488. https://doi.org/10.2140/PJM.1969.30.475 doi: 10.2140/PJM.1969.30.475
    [27] H. Covitz, S. B. Nadler, Multi-valued contraction mappings in generalized metric spaces, Isr. J. Math., 8 (1970), 5–11. https://doi.org/10.1007/BF02771543 doi: 10.1007/BF02771543
    [28] B. Damjanović, B. Samet, C. Vetro, Common fixed point theorems for multi-valued maps, Acta Math. Sci., 32 (2012), 818–824. https://doi.org/10.1016/S0252-9602(12)60063-0 doi: 10.1016/S0252-9602(12)60063-0
    [29] S. Radinovic, Z. Kadelburg, Some results on fixed points of multifunctions on abstract metric spaces, Math. Comput. Modell., 53 (2011), 746–754. https://doi.org/10.1016/j.mcm.2010.10.012 doi: 10.1016/j.mcm.2010.10.012
    [30] K. Neammanee, A. Kaewkhao, Fixed point theorems for multi-valued Zamfirescu mapping, J. Math. Res., 2010 (2010), 150–156. https://doi.org/10.5539/JMR.V2N2P150 doi: 10.5539/JMR.V2N2P150
    [31] S. Ur Rehman, H. Aydi, G. X. Chen, S. Jabeen, S. U. Khan, Some set-valued and multi-valued contraction results in fuzzy cone metric spaces, J. Ineqal. Appl., 2021 (2021), 110. https://doi.org/10.1186/s13660-021-02646-3 doi: 10.1186/s13660-021-02646-3
    [32] S. Rezapour, R. H. Haghi, Fixed point on multifunctions on cone metric spaces, Numer. Funct. Anal. Optim., 30 (2010), 825–832. https://doi.org/10.1080/01630560903123346 doi: 10.1080/01630560903123346
    [33] D. Klim, D. Wardowski, Dynamic processes and fixed points of set-valued nonlinear contractions in cone metric spaces, Nonlinear Anal., 71 (2009), 5170–5175. https://doi.org/10.1016/j.na.2009.04.001 doi: 10.1016/j.na.2009.04.001
    [34] A. Latif, F. Y. Shaddad, Fixed point results for multivalued maps in cone metric spaces, Fixed Point Theory Appl., 2010 (2010), 941371. https://doi.org/10.1155/2010/941371 doi: 10.1155/2010/941371
    [35] S. H. Cho, J. S. Bae, Fixed point theorems for multivalued maps in cone metric spaces, Fixed Point Theory Appl., 2011 (2011), 87. https://doi.org/10.1186/1687-1812-2011-87 doi: 10.1186/1687-1812-2011-87
    [36] D. Wardowaski, On set-valued contractions of nadler type in cone metric spaces, Appl. Math. Lett., 24 (2011), 275–278. https://doi.org/10.1016/j.aml.2010.10.003 doi: 10.1016/j.aml.2010.10.003
    [37] N. Mehmood, A. Azam, L. D. R. Ko\check{c}inac, Multivalued fixed point results in cone metric spaces, Topol. Appl., 179 (2015), 156–170. https://doi.org/10.1016/j.topol.2014.07.011 doi: 10.1016/j.topol.2014.07.011
    [38] N. Mehmood, A. Azam, L. D. R. Ko\check{c}inac, Multivalued \mathcal{R}_{\psi, \phi}-weakly contractive mappings in ordered cone metric spaces with applications, Fixed Point Theory, 18 (2017), 673–688. https://doi.org/10.24193/fpt-ro.2017.2.54 doi: 10.24193/fpt-ro.2017.2.54
    [39] R. Fierro, Fixed point theorems for set-valued mappings on TVS-cone metric spaces, Fixed Point Theory Appl., 2015 (2015), 221. https://doi.org/10.1186/s13663-015-0468-1 doi: 10.1186/s13663-015-0468-1
    [40] S. Ur Rehman, S. Jabeen, H. Ullah, Some multi-valued contraction theorems on H-cone metric, J. Adv. Stud. Topol., 10 (2019), 11–24.
    [41] R. P. Agarwal, N. Hussain, M. A. Taoudi, Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations, Abstr. Appl. Anal., 2012 (2012), 245872. https://doi.org/10.1155/2012/245872 doi: 10.1155/2012/245872
    [42] H. Aydi, M. Jellali, E. Karapinar, On fixed point results for \alpha-implicit contractions in quasi-metric spaces and consequences, Nonlinear Anal., 21 (2016), 40–56. https://doi.org/10.15388/NA.2016.1.3 doi: 10.15388/NA.2016.1.3
    [43] M. T. Waheed, S. Ur Rehman, N. Jan, A. Gumaei, M. Al-Khamsi, Some new coupled fixed-point findings depending on another function in fuzzy cone metric spaces, Math. Probl. Eng., 2021 (2021), 4144966. https://doi.org/10.1155/2021/4144966 doi: 10.1155/2021/4144966
    [44] M. Abu-Shady, M. K. A. Kaabar, A generalized definition of the fractional derivative with applications, Math. Probl. Eng., 2021 (2021), 9444803. https://doi.org/10.1155/2021/9444803 doi: 10.1155/2021/9444803
    [45] M. Abu-Shady, M. K. A. Kaabar, A novel computational tool for the fractional-order special functions arising from modeling scientific phenomena via Abu-Shady-Kaabar fractional derivative, Comput. Math. Methods Med., 2022 (2022), 2138775. https://doi.org/10.1155/2022/2138775 doi: 10.1155/2022/2138775
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1578) PDF downloads(90) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog