The purpose of this article is to establish some common fixed point results for generalized contractions including some precise control functions of two variables in the setting of controlled metric spaces. As consequences of our leading results, we derive common fixed point and fixed point results for contractions with control functions of one variable and constants. We also discuss controlled metric spaces endowed with a graph and obtain some common fixed point results in this newly introduced space. As an application of our leading result, we examine the solution of a Fredholm type integral equation.
Citation: Zhenhua Ma, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei. Fixed point results for generalized contractions in controlled metric spaces with applications[J]. AIMS Mathematics, 2023, 8(1): 529-549. doi: 10.3934/math.2023025
The purpose of this article is to establish some common fixed point results for generalized contractions including some precise control functions of two variables in the setting of controlled metric spaces. As consequences of our leading results, we derive common fixed point and fixed point results for contractions with control functions of one variable and constants. We also discuss controlled metric spaces endowed with a graph and obtain some common fixed point results in this newly introduced space. As an application of our leading result, we examine the solution of a Fredholm type integral equation.
[1] | E. Karapinar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Differ. Equ., 2019 (2019), 1–25. https://doi.org/10.1186/s13662-019-2354-3 doi: 10.1186/s13662-019-2354-3 |
[2] | A. A. Kilbas, M. H. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, Elsevier, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0 |
[3] | M. A. Khamsi, W. A. Kirk, An introduction to metric spaces and fixed point theory, John Willey Sons, 2001. https://doi.org/10.1002/9781118033074 |
[4] | S. G. Matthews, Partial metric topology, Ann. New York. Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x |
[5] | A. Branciari, A fixed point theorem of Banach-caccioppoli type on a class of generalized metric spaces, Publ. Math., 57 (2000), 31–37. |
[6] | Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex A., 7 (2006), 289–297. |
[7] | A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32 (2011), 243–253. https://doi.org/10.1080/01630563.2011.533046 doi: 10.1080/01630563.2011.533046 |
[8] | Z. D. Mitrović, S. Radenović, The Banach and Reich contractions in $b_{v}(s)$-metric spaces, J. Fix. Point Theory Appl., 19 (2017), 3087–3095. https://doi.org/10.1007/s11784-017-0469-2 doi: 10.1007/s11784-017-0469-2 |
[9] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostra. 1 (1993), 5–11. |
[10] | T. Kamran, M. Samreen, Q. U. Ain, A generalization of $b$-metric space and some fixed point theorems, Math., 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019 |
[11] | N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. https://doi.org/10.3390/math6100194 doi: 10.3390/math6100194 |
[12] | D. Lateef, Kannan fixed point theorem in $c$-metric spaces, J. Math. Anal., 10 (2019), 34–40. |
[13] | J. Ahmad, A. E. Al-Mazrooei, H. Aydi, M. D. l. Sen, On fixed point results in controlled metric spaces, J. Funct. Space., 2020 (2020), 1–7. https://doi.org/10.1155/2020/2108167 doi: 10.1155/2020/2108167 |
[14] | M. Abuloha, D. Rizk, K. Abodayeh, N. Mlaiki, T. Abdeljawad, New results in controlled metric type spaces, J. Math., 2021 (2021), 1–6. https://doi.org/10.1155/2021/5575512 doi: 10.1155/2021/5575512 |
[15] | N. Alamgir, Q. Kiran, H. Işık, H. Aydi, Fixed point results via a Hausdorff controlled type metric, Adv. Differ. Equ., 2020 (2020), 1–20. https://doi.org/10.1186/s13662-020-2491-8 doi: 10.1186/s13662-020-2491-8 |
[16] | T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. https://doi.org/10.3390/math6120320 doi: 10.3390/math6120320 |
[17] | R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76. https://doi.org/10.4064/FM-74-3-181-187 doi: 10.4064/FM-74-3-181-187 |
[18] | D. Lateef, Fisher type fixed point results in controlled metric spaces, J. Math. Comput. Sci., 20 (2020), 234–240. https://doi.org/10.22436/jmcs.020.03.06 doi: 10.22436/jmcs.020.03.06 |
[19] | S. Hussain, Fixed point theorems for nonlinear contraction in controlled metric type space, Appl. Math. E-Notes, 21 (2021), 2145–2165. |
[20] | N. Mlaiki, N. Souayah, T. Abdeljawad, H. Aydi, A new extension to the controlled metric type spaces endowed with a graph, Adv. Differ. Equ., 2021 (2021), 94. https://doi.org/10.1186/s13662-021-03252-9 doi: 10.1186/s13662-021-03252-9 |
[21] | W. Shatanawi, N. Mlaiki, N. Rizk, E. Onunwor, Fredholm-type integral equation in controlled metric-like spaces, Adv. Differ. Equ., 2021 (2021), 358. https://doi.org/10.1186/s13662-021-03516-4 doi: 10.1186/s13662-021-03516-4 |
[22] | M. S. Sezen, Controlled fuzzy metric spaces and some related fixed point results, Numer. Meth. Part. Differ. Eq., 37 (2020) 583–593. https://doi.org/10.1002/num.22541 doi: 10.1002/num.22541 |
[23] | S. Tasneem, K. Gopalani, T. Abdeljawad, A different approach to fixed point theorems on triple controlled metric type spaces with a numerical experiment, Dynam. Syst. Appl., 30 (2021), 111–130. https://doi.org/10.46719/dsa20213018 doi: 10.46719/dsa20213018 |
[24] | A. Asif, N. Hussain, H. Al-Sulami, M. Arshad, Some fixed point results in function weighted metric spaces, J. Math., 2021 (2021). https://doi.org/10.1155/2021/6636504 |
[25] | S. Furqan, H. Işık, N. Saleem, Fuzzy triple controlled metric spaces and related fixed point results, J. Funct. Space., 2021 (2021), 8. https://doi.org/10.1155/2021/9936992 doi: 10.1155/2021/9936992 |
[26] | N. Hussain, J. R. Roshan, V. Parvaneh, A. Latif, A unification of $G$-metric, partial metric, and $b$-metric spaces, Abstr. Appl. Anal., 2014 (2014), 1–14. https://doi.org/10.1155/2014/180698 doi: 10.1155/2014/180698 |
[27] | M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (2010), 3123–3129. https://doi.org/10.1016/j.na.2010.06.084 doi: 10.1016/j.na.2010.06.084 |
[28] | N. Saleem, H. Işık, S. Furqan, C. Park, Fuzzy double controlled metric spaces and related results, J. Intell. Fuzzy Syst., 40 (2021), 9977–9985. https://doi.org/10.3233/JIFS-202594 doi: 10.3233/JIFS-202594 |
[29] | Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Fixed point theorems for weakly $T$-Chatterjea and weakly $T$-Kannan contractions in $b$-metric spaces, J. Intell. Appl., 46 (2014), 1–14. https://doi.org/10.1186/1029-242X-2014-46 doi: 10.1186/1029-242X-2014-46 |
[30] | J. R. Roshan, N. Shobkolaei, S. Sedghi, V. Parvaneh, S. Radenović, Common fixed point theorems for three maps in discontinuous G$ _{b}$ metric spaces, Acta Math. Sci., 34 (2014), 1643–1654. https://doi.org/10.1016/S0252-9602(14)60110-7 doi: 10.1016/S0252-9602(14)60110-7 |
[31] | Z. Mustafa, V. Parvaneh, J. R. Roshan, Z. Kadelburg, $b_{2}$-Metric spaces and some fixed point theorems, Fixed Point Theory A., 2014 (2014), 23. https://doi.org/10.1186/1687-1812-2014-144 doi: 10.1186/1687-1812-2014-144 |
[32] | Z. Mustafa, V. Parvaneh, M. M. Jaradat, Z. Kadelburg, Extended rectangular $b$-metric spaces and some fixed point theorems for contractive mappings, Symmetry, 11 (2019), 594. https://doi.org/10.3390/sym11040594 doi: 10.3390/sym11040594 |
[33] | V. Parvaneh, N. Hussain, Z. Kadelburg, Generalized wardowski type fixed point theorems via $\alpha $-admissible $FG$-contractions in $b$-metric spaces, Acta Math. Sci., 36 (2016), 1445–1456. https://doi.org/10.1016/S0252-9602(16)30080-7 doi: 10.1016/S0252-9602(16)30080-7 |