The purpose of this article is to establish some common fixed point results for generalized contractions including some precise control functions of two variables in the setting of controlled metric spaces. As consequences of our leading results, we derive common fixed point and fixed point results for contractions with control functions of one variable and constants. We also discuss controlled metric spaces endowed with a graph and obtain some common fixed point results in this newly introduced space. As an application of our leading result, we examine the solution of a Fredholm type integral equation.
Citation: Zhenhua Ma, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei. Fixed point results for generalized contractions in controlled metric spaces with applications[J]. AIMS Mathematics, 2023, 8(1): 529-549. doi: 10.3934/math.2023025
[1] | Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Isra Manzoor, Thabet Abdeljawad, Dania Santina, Nabil Mlaiki . Complex-valued double controlled metric like spaces with applications to fixed point theorems and Fredholm type integral equations. AIMS Mathematics, 2023, 8(2): 4944-4963. doi: 10.3934/math.2023247 |
[2] | Afrah Ahmad Noman Abdou . A fixed point approach to predator-prey dynamics via nonlinear mixed Volterra–Fredholm integral equations in complex-valued suprametric spaces. AIMS Mathematics, 2025, 10(3): 6002-6024. doi: 10.3934/math.2025274 |
[3] | Asifa Tassaddiq, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Durdana Lateef, Farha Lakhani . On common fixed point results in bicomplex valued metric spaces with application. AIMS Mathematics, 2023, 8(3): 5522-5539. doi: 10.3934/math.2023278 |
[4] | Badriah Alamri, Jamshaid Ahmad . Fixed point results in b-metric spaces with applications to integral equations. AIMS Mathematics, 2023, 8(4): 9443-9460. doi: 10.3934/math.2023476 |
[5] | Fahim Uddin, Umar Ishtiaq, Naeem Saleem, Khaleel Ahmad, Fahd Jarad . Fixed point theorems for controlled neutrosophic metric-like spaces. AIMS Mathematics, 2022, 7(12): 20711-20739. doi: 10.3934/math.20221135 |
[6] | Wasfi Shatanawi, Taqi A. M. Shatnawi . New fixed point results in controlled metric type spaces based on new contractive conditions. AIMS Mathematics, 2023, 8(4): 9314-9330. doi: 10.3934/math.2023468 |
[7] | Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Hassen Aydi, Manuel De La Sen . Rational contractions on complex-valued extended b-metric spaces and an application. AIMS Mathematics, 2023, 8(2): 3338-3352. doi: 10.3934/math.2023172 |
[8] | Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977 |
[9] | Ahmed Alamer, Faizan Ahmad Khan . Boyd-Wong type functional contractions under locally transitive binary relation with applications to boundary value problems. AIMS Mathematics, 2024, 9(3): 6266-6280. doi: 10.3934/math.2024305 |
[10] | Hanadi Zahed, Ahmed Al-Rawashdeh, Jamshaid Ahmad . Common fixed point results in F-metric spaces with application to nonlinear neutral differential equation. AIMS Mathematics, 2023, 8(2): 4786-4805. doi: 10.3934/math.2023237 |
The purpose of this article is to establish some common fixed point results for generalized contractions including some precise control functions of two variables in the setting of controlled metric spaces. As consequences of our leading results, we derive common fixed point and fixed point results for contractions with control functions of one variable and constants. We also discuss controlled metric spaces endowed with a graph and obtain some common fixed point results in this newly introduced space. As an application of our leading result, we examine the solution of a Fredholm type integral equation.
The theory of fixed points has worldwide applications in distinct fields of science and Engineering [1,2,3]. M. Frechet is a principal researcher in this theory who defined the notion of metric space in 1906. Metric space methods have been employed for decades in numerous applications, for example in internet search engines, protein classification and image classification. The best applied fixed point result is the Banach contraction principle that has been extended by either changing the contractive condition or by functioning on a further generalized metric spaces [4,5,6,7,8]. In current years, some novel types of generalized metric spaces were presented and numerous spaces established as hybrids of the foregoing varieties were examined such as rectangular metric space, b -metric space, bvs-metric space, extended b-metric space. The key in creating these spaces is to generalize or extend the third axiom of metric space that is, its triangle property. In 1993, Czerwik [9] introduced the notion of b-metric space which extends the metric space by enhancing the triangle equality metric axiom by placing a constant s≥1 multiplied to the right-hand side, is one of the great applied extensions for metric spaces. Later on, Kamran et al. [10] gave a new kind of extended b-metric spaces by putting a function σ(ξ,ϱ) on the place of constant s and this function depends on the parameters used on left-hand side of the triangle inequality. Recently, Mlaiki et al. [11] replaced the constant s by a function σ(ξ,ϱ) which act separately on each term in the right-hand side of the triangle inequality and defined controlled metric space. They established Banach contraction principle in the background of this newly introduced space. Subsequently, Lateef [18] obtained Fisher type fixed point result and generalized the leading result of Mlaiki et al. [11]. For more characteristics, we assign the researchers to [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33]. In this article, we utilize the notion of controlled metric space to establish common fixed point theorems for rational contractive mappings dealing with some precise control functions of two variables in the background of controlled metric space. As an outcome of our pioneering theorems, we derive common fixed point and fixed point theorems for contractive mappings including control functions of one variable and constants. In this way, we generalize the main result of Lateef [18] as well as the leading theorem of Mlaiki et al. [11]. We also discuss controlled metric spaces equipped with a graph and obtain some common fixed point results in this newly introduced space.
In 1993, Czerwik [9] introduced the concept of b-metric space (b-MS) in this way.
Definition 1. ([9])Let U be a non empty set and s≥1. A function ℓ:U×U→ [0,∞) is said to be b-metric if following conditions hold:
(ℓ1) ℓ(ξ,ϱ)≥0 and ℓ(ξ,ϱ)=0 if and only if ξ=ϱ;
(ℓ2) ℓ(ξ,ϱ)=ℓ(ϱ,ξ);
(ℓ3)ℓ(ξ,ω)≤s[ℓ(ξ,ϱ)+ℓ(ϱ,ω)];
for all ξ,ϱ,ω∈U. The pair (U,ℓ) is said to be a b-metric space (b-MS).
In 2017, Kamran et al. [10] gave the notion of extended b-metric space (EbMS) as follows:
Definition 2. ([10]) Let U be a non empty set and σ:U×U→[1,∞). A function ℓ:U×U→ [0,∞) is said to be extended b-metric if following conditions hold:
(i) ℓ(ξ,ϱ)≥0 and ℓ(ξ,ϱ)=0 if and only if ξ=ϱ;
(ii) ℓ(ξ,ϱ)=ℓ(ϱ,ξ);
(iii) ℓ(ξ,ϱ)≤σ(ξ,ϱ)[ℓ(ξ,ω)+ℓ(ϱ,ω)];
for all ξ,ϱ,ω∈U, then (U,ℓ) is called an extended b-metric space (EbMS).
In 2018, a contemporary extended b-metric space was initiated by Mlaiki et al. [11] which is known as controlled metric space as follows:
Definition 3. ([11]) Let U be a non empty set and σ:U×U→[1,∞). A function ℓ:U×U→ [0,∞) is said to be controlled metric if following conditions hold:
(i) ℓ(ξ,ϱ)=0 if and only if ξ=ϱ;
(ii) ℓ(ξ,ϱ)=ℓ(ϱ,ξ);
(iii) ℓ(ξ,ϱ)≤σ(ξ,ω)ℓ(ξ,ω)+σ(ϱ,ω)ℓ(ϱ,ω);
for all ξ,ϱ,ω∈U, then (U,ℓ,σ) is said to be a controlled metric space (CMS).
Example 1. Let U={0,1,2}. Define the mapping ℓ:U×U→[0,∞) by
ℓ(0,0)=ℓ(1,1)=ℓ(2,2)=0 |
and
ℓ(0,1)=ℓ(1,0)=1, |
ℓ(0,2)=ℓ(2,0)=12, |
ℓ(1,2)=ℓ(2,1)=25. |
Define the symmetric control function σ:U×U→[1,∞) by
σ(0,0)=σ(1,1)=σ(2,2)=σ(0,2)=1, |
σ(1,2)=54,σ(0,1)=1110. |
Then (U,ℓ,σ) is CMS.
Theorem 1. ([11]) Let (U,σ,ℓ) be a complete CMS and ℘:U→U such that
ℓ(℘ξ,℘ϱ)≤τ(ℓ(ξ,ϱ)) |
for all ξ,ϱ∈U, where τ∈[0,1). For ξ0∈U, take ξȷ=℘ȷξ0. Assume that
supm≥1limi→∞σ(ξi+1,ξi+2)σ(ξi+1,ξm)σ (ξi,ξi+1)<1τ. |
In addition, assume that limȷ→+∞σ(ξȷ,ξ) and limȷ→+∞σ(ξ,ξȷ) exist and are finite, then there exists a unique point ξ∗∈U such that ℘ξ∗=ξ∗.
Lateef [12] obtained the following result in a complete CMS as follows:
Theorem 2. ([12]) Let (U,σ,ℓ) be a complete CMS and ℘:U→U be such that
ℓ(℘ξ,℘ϱ)≤τ(ℓ(ξ,℘ξ)+ℓ(ϱ,℘ϱ)) |
for all ξ,ϱ∈U, where τ∈(0,12). For ξ0∈U, take ξȷ=℘ȷξ0. Suppose that
supm≥1limi→∞σ(ξi+1,ξi+2)σ(ξi+1,ξm)σ(ξi,ξi+1)<1τ. |
In addition, assume that limȷ→+∞σ(ξȷ,ξ) and limȷ→+∞σ(ξ,ξȷ) exist and are finite, then there exists a unique point ξ∗∈U such that ℘ξ∗=ξ∗.
Later on, Lateef [18] established Fisher type fixed point result in this way.
Theorem 3. Let (U,σ,ℓ) be a complete CMS, ℘:U→U and there exist τ1,τ2∈[0,1) with τ=τ1+τ2<1 such that
ℓ(℘ξ,℘ϱ)≤τ1ℓ(ξ,ϱ)+τ2ℓ(ξ,℘1ξ)ℓ(ϱ,℘2ϱ)1+ℓ(ξ,ϱ) |
for all ξ,ϱ∈U. For ξ0∈U, take ξȷ=℘ȷξ0. Suppose that
supm≥1limi→∞σ(ξi+1,ξi+2)σ(ξi+1,ξm)σ (ξi,ξi+1)<1τ. |
Moreover, suppose that limȷ→+∞σ(ξȷ,ξ) and limȷ→+∞σ(ξ,ξȷ) exist and are finite, then there exists a unique point ξ∗∈U such that ℘ξ∗=ξ∗.
We give our leading result in this way.
Theorem 4. Let (U,σ,ℓ) be a complete CMS, ℘1,℘2:U→U and there exist the mappings τ1,τ2:U×U→[0,1) such that
(i) τ1(℘2℘1ξ,ϱ)≤τ1(ξ,ϱ) and τ1(ξ,℘1℘2ϱ)≤τ1(ξ,ϱ);
(ii) τ2(℘2℘1ξ,ϱ)≤τ2(ξ,ϱ) and τ2(ξ,℘1℘2ϱ)≤τ2(ξ,ϱ);
(iii) τ1(ξ,ϱ)+τ2(ξ,ϱ)<1;
(iv)
ℓ(℘1ξ,℘2ϱ)≤τ1(ξ,ϱ)ℓ(ξ,ϱ)+τ2(ξ,ϱ)ℓ(ξ,℘1ξ)ℓ(ϱ,℘2ϱ)1+ℓ(ξ,ϱ), | (3.1) |
for all ξ,ϱ∈U. For ξ0∈U, a sequence {ξȷ}ȷ≥0 is defined as ξ2ȷ+1=℘1ξ2ȷ and ξ2ȷ+2=℘2ξ2ȷ+1 for each ȷ≥0. Assume that
supm≥1limi→∞σ(ξi+1,ξi+2)σ(ξi+1,ξm)σ (ξi,ξi+1)<1τ, | (3.2) |
where τ1(ξ0,ξ1)1−τ2(ξ0,ξ1)=τ. In addition, suppose that limȷ→+∞σ(ξȷ,ξ) and limȷ→+∞σ(ξ,ξȷ) exist and are finite, then there exists a unique point ξ∗∈U such that ℘1ξ∗∩℘2ξ∗=ξ∗.
Proof. Let ξ0∈ U. We construct {ξȷ} in U by ξ2ȷ+1=℘1ξ2ȷ and ξ2ȷ+2=℘2ξ2ȷ+1 for each ȷ≥0. From assumption and (3.1) we get
ℓ(ξ2ȷ+1,ξ2ȷ+2)=ℓ(℘1ξ2ȷ,℘2ξ2ȷ+1)≤τ1(ξ2ȷ,ξ2ȷ+1)ℓ(ξ2ȷ,ξ2ȷ+1)+τ2(ξ2ȷ,ξ2ȷ+1)ℓ(ξ2ȷ,℘1ξ2ȷ)ℓ(ξ2ȷ+1,℘2ξ2ȷ+1)1+ℓ(ξ2ȷ,ξ2ȷ+1)=τ1(℘2℘1ξ2ȷ−2,ξ2ȷ+1)ℓ(ξ2ȷ,ξ2ȷ+1)+τ2(℘2℘1ξ2ȷ−2,ξ2ȷ+1)ℓ(ξ2ȷ,ξ2ȷ+1)ℓ(ξ2ȷ+1,ξ2ȷ+2)1+ℓ(ξ2ȷ,ξ2ȷ+1)≤τ1(ξ2ȷ−2,ξ2ȷ+1)ℓ(ξ2ȷ,ξ2ȷ+1)+τ2(ξ2ȷ−2,ξ2ȷ+1)ℓ(ξ2ȷ+1,ξ2ȷ+2)=τ1(℘2℘1ξ2ȷ−4,ξ2ȷ+1)ℓ(ξ2ȷ,ξ2ȷ+1)+τ2(℘2℘1ξ2ȷ−4,ξ2ȷ+1)ℓ(ξ2ȷ+1,ξ2ȷ+2)≤τ1(ξ2ȷ−4,ξ2ȷ+1)ℓ(ξ2ȷ,ξ2ȷ+1)+τ2(ξ2ȷ−4,ξ2ȷ+1)ℓ(ξ2ȷ+1,ξ2ȷ+2)≤⋅⋅⋅≤τ1(ξ0,ξ2ȷ+1)ℓ(ξ2ȷ,ξ2ȷ+1)+τ2(ξ0,ξ2ȷ+1)ℓ(ξ2ȷ+1,ξ2ȷ+2)=τ1(ξ0,℘1℘2ξ2ȷ−1)ℓ(ξ2ȷ,ξ2ȷ+1)+τ2(ξ0,℘1℘2ξ2ȷ−1)ℓ(ξ2ȷ+1,ξ2ȷ+2)≤τ1(ξ0,ξ2ȷ−1)ℓ(ξ2ȷ,ξ2ȷ+1)+τ2(ξ0,ξ2ȷ−1)ℓ(ξ2ȷ+1,ξ2ȷ+2)⋅⋅⋅≤τ1(ξ0,ξ1)ℓ(ξ2ȷ,ξ2ȷ+1)+τ2(ξ0,ξ1)ℓ(ξ2ȷ+1,ξ2ȷ+2). |
This implies that
ℓ(ξ2ȷ+1,ξ2ȷ+2)≤(τ1(ξ0,ξ1)1−τ2(ξ0,ξ1))ℓ(ξ2ȷ,ξ2ȷ+1). |
Similarly,
ℓ(ξ2ȷ+2,ξ2ȷ+3)=ℓ(℘2ξ2ȷ+1,℘1ξ2ȷ+2)=ℓ(℘1ξ2ȷ+2,℘2ξ2ȷ+1)≤τ1(ξ2ȷ+2,ξ2ȷ+1)ℓ(ξ2ȷ+2,ξ2ȷ+1)+τ2(ξ2ȷ+2,ξ2ȷ+1)ℓ(ξ2ȷ+2,℘1ξ2ȷ+2)ℓ(ξ2ȷ+1,℘1ξ2ȷ+1)1+ℓ(ξ2ȷ+2,ξ2ȷ+1)=τ1(ξ2ȷ+2,℘1℘2ξ2ȷ−1)(ξ2ȷ+2,ξ2ȷ+1)+τ2(ξ2ȷ+2,℘1℘2ξ2ȷ−1)ℓ(ξ2ȷ+2,ξ2ȷ+3)ℓ(ξ2ȷ+1,ξ2ȷ+2)1+ℓ(ξ2ȷ+2,ξ2ȷ+1)≤τ1(ξ2ȷ+2,ξ2ȷ−1)(ξ2ȷ+2,ξ2ȷ+1)+τ2(ξ2ȷ+2,ξ2ȷ−1)ℓ(ξ2ȷ+2,ξ2ȷ+3)=τ1(ξ2ȷ+2,℘1℘2ξ2ȷ−3)(ξ2ȷ+2,ξ2ȷ+1)+τ2(ξ2ȷ+2,℘1℘2ξ2ȷ−3)ℓ(ξ2ȷ+2,ξ2ȷ+3)≤τ1(ξ2ȷ+2,ξ2ȷ−3)(ξ2ȷ+2,ξ2ȷ+1)+τ2(ξ2ȷ+2,ξ2ȷ−3)ℓ(ξ2ȷ+2,ξ2ȷ+3)⋅⋅⋅≤τ1(ξ2ȷ+2,ξ0)(ξ2ȷ+2,ξ2ȷ+1)+τ2(ξ2ȷ+2,ξ0)ℓ(ξ2ȷ+2,ξ2ȷ+3)=τ1(℘2℘1ξ2ȷ,ξ0)(ξ2ȷ+2,ξ2ȷ+1)+τ2(℘2℘1ξ2ȷ,ξ0)ℓ(ξ2ȷ+2,ξ2ȷ+3)≤τ1(ξ2ȷ,ξ0)(ξ2ȷ+2,ξ2ȷ+1)+τ2(ξ2ȷ,ξ0)ℓ(ξ2ȷ+2,ξ2ȷ+3)...≤τ1(ξ1,ξ0)(ξ2ȷ+2,ξ2ȷ+1)+τ2(ξ1,ξ0)ℓ(ξ2ȷ+2,ξ2ȷ+3)=τ1(ξ0,ξ1)(ξ2ȷ+2,ξ2ȷ+1)+τ2(ξ0,ξ1)ℓ(ξ2ȷ+2,ξ2ȷ+3). |
This implies that
ℓ(ξ2ȷ+2,ξ2ȷ+3)≤(τ1(ξ0,ξ1)1−τ2(ξ0,ξ1))ℓ(ξ2ȷ+1,ξ2ȷ+2)=τℓ(ξ2ȷ+1,ξ2ȷ+2). |
By pursuing in this direction, we get
ℓ(ξȷ,ξȷ+1)≤τℓ(ξȷ−1,ξȷ)≤τ2ℓ(ξȷ−2,ξȷ−1)≤...≤τȷℓ(ξ0,ξ1). |
Thus
ℓ(ξȷ,ξȷ+1)≤τȷℓ(ξ0,ξ1). | (3.3) |
Now for all ȷ,m∈N with ȷ<m, we get
ℓ(ξȷ,ξm)≤σ(ξȷ,ξȷ+1)ℓ(ξȷ,ξȷ+1)+σ(ξȷ+1,ξm)ℓ(ξȷ+1,ξm)≤σ(ξȷ,ξȷ+1)ℓ(ξȷ,ξȷ+1)+σ(ξȷ+1,ξm)σ(ξȷ+1,ξȷ+2)ℓ(ξȷ+1,ξȷ+2)+σ(ξȷ+1,ξm)σ(ξȷ+2,ξm)ℓ(ξȷ+2,ξm)≤σ(ξȷ,ξȷ+1)ℓ(ξȷ,ξȷ+1)+σ(ξȷ+1,ξm)σ(ξȷ+1,ξȷ+2)ℓ(ξȷ+1,ξȷ+2)+σ(ξȷ+1,ξm)σ(ξȷ+2,ξm)σ(ξȷ+2,ξȷ+3)ℓ(ξȷ+2,ξȷ+3)+σ(ξȷ+1,ξm)σ(ξȷ+2,ξm)σ(ξȷ+3,ξm)ℓ(ξȷ+3,ξm)≤⋅⋅⋅≤σ(ξȷ,ξȷ+1)ℓ(ξȷ,ξȷ+1)+m−2∑i=ȷ+1(i∏k=ȷ+1σ(ξk,ξm))σ(ξi,ξi+1)ℓ(ξi,ξi+1)+m−1∏i=ȷ+1σ(ξi,ξm)ℓ(ξm−1,ξm) |
which further implies that
ℓ(ξȷ,ξm)≤σ(ξȷ,ξȷ+1)ℓ(ξȷ,ξȷ+1)+m−2∑i=ȷ+1(i∏k=ȷ+1σ(ξk,ξm))σ(ξi,ξi+1)ℓ(ξi,ξi+1)+(m−1∏i=ȷ+1σ(ξi,ξm))σ(ξm−1,ξm)ℓ(ξm−1,ξm)≤σ(ξȷ,ξȷ+1)τȷℓ(ξ0,ξ1)+m−2∑i=ȷ+1(i∏k=ȷ+1σ(ξk,ξm))σ(ξi,ξi+1)τiℓ(ξ0,ξ1)+(m−1∏i=ȷ+1σ(ξi,ξm))σ(ξm−1,ξm)τm−1ℓ(ξ0,ξ1)=σ(ξȷ,ξȷ+1)τȷℓ(ξ0,ξ1)+m−1∑i=ȷ+1(i∏k=ȷ+1σ(ξk,ξm))σ(ξi,ξi+1)τiℓ(ξ0,ξ1). |
Thus
ℓ(ξȷ,ξm)≤σ(ξȷ,ξȷ+1)τȷℓ(ξ0,ξ1)+m−1∑i=ȷ+1(i∏k=ȷ+1σ(ξk,ξm))σ(ξi,ξi+1)τiℓ(ξ0,ξ1). | (3.4) |
Let
Ψl=l∑i=0(i∏k=0σ(ξk,ξm))σ(ξi,ξi+1)τiℓ(ξ0,ξ1). |
From (3.4), we get
ℓ(ξȷ,ξm)≤ℓ(ξ0,ξ1)[τȷσ(ξȷ,ξȷ+1)+(Ψm−1−Ψȷ)]. | (3.5) |
Since σ(ξ,ϱ)≥1, and by employing the ratio test, limȷ→+∞Ψȷ exists. Thus {Ψȷ} is Cauchy sequence. Lastly, letting ȷ,m→+∞ in (3.5), we get that
limȷ,m→+∞ℓ(ξȷ,ξm)=0. | (3.6) |
Hence, {ξȷ} is a Cauchy sequence in (U,ℓ,σ). As (U,ℓ,σ) is complete, so there exists ξ∗∈U such that
limȷ→+∞ℓ(ξȷ,ξ∗)=0, | (3.7) |
that is ξȷ→ξ∗ as ȷ→+∞. Now, by (3.1) and assumption (iii), we have
ℓ(ξ∗,℘1ξ∗)≤σ(ξ∗,ξ2ȷ+2)ℓ(ξ∗,ξ2ȷ+2)+σ(ξ2ȷ+2,℘1ξ∗)ℓ(ξ2ȷ+2,℘1ξ∗)=σ(ξ∗,ξ2ȷ+2)ℓ(ξ∗,ξ2ȷ+2)+σ(ξ2ȷ+2,℘1ξ∗)ℓ(℘2ξ2ȷ+1,℘1ξ∗)=σ(ξ∗,ξ2ȷ+2)ℓ(ξ∗,ξ2ȷ+2)+σ(ξ2ȷ+2,℘1ξ∗)ℓ(℘1ξ∗,℘2ξ2ȷ+1)=σ(ξ∗,ξ2ȷ+2)ℓ(ξ∗,ξ2ȷ+2)+σ(ξ2ȷ+2,℘1ξ∗)[τ1(ξ∗,ξ2ȷ+1)ℓ(ξ∗,ξ2ȷ+1)+τ2(ξ∗,ξ2ȷ+1)ℓ(ξ∗,℘1ξ∗)ℓ(ξ2ȷ+1,ξ2ȷ+2)1+ℓ(ξ∗,ξ2ȷ+1)]=σ(ξ∗,ξ2ȷ+2)ℓ(ξ∗,ξ2ȷ+2)+σ(ξ2ȷ+2,℘1ξ∗)[τ1(ξ∗,ξ2ȷ+1)ℓ(ξ∗,ξ2ȷ+1)+τ2(ξ∗,ξ2ȷ+1)ℓ(ξ∗,℘1ξ∗)ℓ(ξ2ȷ+1,ξ2ȷ+2)1+ℓ(ξ∗,ξ2ȷ+1)]. |
Taking ȷ→+∞ and utilizing (3.7), we get a contradiction to the fact that ℓ(ξ∗,℘1ξ∗)>0. Thus ℓ(ξ∗,℘1ξ∗)=0. It implies that ξ∗=℘1ξ∗. Likewise, we can prove that ξ∗=℘2ξ∗.Thus, ξ∗ is a common fixed point of ℘1 and ℘2. In due course, we prove that ξ∗ is unique. Suppose that there exists another point ξ/∈U such that ξ/=℘1ξ/=℘2ξ/. It follows from
ℓ(ξ∗,ξ/)=ℓ(℘1ξ∗,℘2ξ/)≤τ1(ξ∗,ξ/)ℓ(ξ∗,ξ/)+τ2(ξ∗,ξ/)ℓ(ξ∗,℘1ξ∗)ℓ(ϱ,℘2ξ/)1+ℓ(ξ∗,ξ/)=τ1(ξ∗,ξ/)ℓ(ξ∗,ξ/). |
Since τ1(ξ∗,ξ/)∈[0,1), so we have ℓ(ξ∗,ξ/)=0. Thus, we get ξ∗=ξ/, which shows that ξ∗ is unique.
Example 2. Let U=[0,1]. Now we define ℓ:U×U→[0,∞) by
ℓ(ξ,ϱ)=(ξ+ϱ)2, |
where σ(ξ,ϱ)=2+ξ+ϱ, for all ξ,ϱ∈U. Now we define ℘1,℘2:U→U by
℘1ξ=ξ3 and ℘2ξ=ξ4, |
for ξ∈R. Choose τ1,τ2:U×U→[0,1) by
τ1(ξ,ϱ)=16+ξ+ϱ144≤ and τ2(ξ,ϱ)=15+ξ+ϱ144. |
Then evidently,
τ1(ξ,ϱ)+τ2(ξ,ϱ)<1. |
Now
τ1(℘2℘1ξ,ϱ)=19+ξ1726+ϱ144≤16+ξ+ϱ144=τ1(ξ,ϱ), |
and
τ1(ξ,℘1℘2ϱ)=19+ξ144+ϱ1726≤16+ξ+ϱ144=τ1(ξ,ϱ), |
also,
τ2(℘2℘1ξ,ϱ)=546+ξ1726+ϱ144≤15+ξ+ϱ144=τ1(ξ,ϱ), |
and
τ1(ξ,℘1℘2ϱ)=546+ξ144+ϱ1726≤15+ξ+ϱ144=τ1(ξ,℘1℘2ϱ). |
Take ξ0=0, so (3.2) is satisfied. Let ξ,ϱ∈U. Then
ℓ(℘1ξ,℘2ϱ)=(4ξ+3ϱ)2144≤(4ξ+4ϱ)2144≤16+ξ+ϱ144(ξ+ϱ)2+15+ξ+ϱ144(5ξ4)2(6ϱ4)21+(ξ+ϱ)2=τ1(ξ,ϱ)ℓ(ξ,ς)+τ2(ξ,ϱ)ℓ(ξ,℘1ξ)ℓ(ϱ,℘2ϱ)1+ℓ(ξ,ϱ). |
Thus all the assumption of Theorem 4 are satisfied and there exists ξ∗=0 ∈U such that ℘1ξ∗∩℘2ξ∗=ξ∗.
By setting ℘1 = ℘2=℘ in Theorem 4, we derive the following result.
Corollary 1. Let (U,σ,ℓ) be a complete CMS, ℘:U→U and there exist the mappings τ1,τ2:U×U→[0,1) such that
(i) τ1(℘ξ,ϱ)≤τ1(ξ,ϱ) and τ1(ξ,℘ϱ)≤τ1(ξ,ϱ);
(ii) τ2(℘ξ,ϱ)≤τ2(ξ,ϱ) and τ2(ξ,℘ϱ)≤τ2(ξ,ϱ);
(iii) τ1(ξ,ϱ)+τ2(ξ,ϱ)<1;
(iv)
ℓ(℘ξ,℘ϱ)≤τ1(ξ,ϱ)ℓ(ξ,ϱ)+τ2(ξ,ϱ)ℓ(ξ,℘ξ)ℓ(ϱ,℘ϱ)1+ℓ(ξ,ϱ), |
for all ξ,ϱ∈U. For ξ0∈U, a sequence {ξȷ}ȷ≥0 is generated as ξȷ+1=℘ξȷ for each ȷ≥0. Assume that
supm≥1limi→∞σ(ξi+1,ξi+2)σ(ξi+1,ξm)σ (ξi,ξi+1)<1τ, |
where τ1(ξ0,ξ1)1−τ2(ξ0,ξ1)=τ. Additionally, suppose that limȷ→+∞σ(ξȷ,ξ) and limȷ→+∞σ(ξ,ξȷ) exist and are finite, then there exists a unique point ξ∗∈U such that ℘ξ∗=ξ∗.
Theorem 5. Let (U,σ,ℓ) be a complete CMS, ℘1,℘2:U→U and there exist the mappings β1,β2:U→[0,1) such that
(i) β1(℘1ξ)≤β1(ξ) and β2(℘1ξ)≤β2(ξ);
(ii) β1(℘2ξ)≤β1(ξ) and β2(℘2ξ)≤β2(ξ);
(iii) (β1+β2)(ξ)<1;
(iv)
ℓ(℘1ξ,℘2ϱ)≤β1(ξ)ℓ(ξ,ϱ)+β2(ξ)ℓ(ξ,℘1ξ)ℓ(ϱ,℘2ϱ)1+ℓ(ξ,ϱ), |
for all ξ,ϱ∈U. For ξ0∈U, a sequence {ξȷ}ȷ≥0 is generated as ξ2ȷ+1=℘1ξ2ȷ and ξ2ȷ+2=℘2ξ2ȷ+1 for each ȷ≥0. Suppose that
supm≥1limi→∞σ(ξi+1,ξi+2)σ(ξi+1,ξm)σ (ξi,ξi+1)<1β, |
where β1(ξ0)1−β2(ξ0)=β. In addition, suppose that limȷ→+∞σ(ξȷ,ξ) and limȷ→+∞σ(ξ,ξȷ) exist and are finite, then there exists a unique point ξ∗∈U such that ℘1ξ∗∩℘2ξ∗=ξ∗.
Proof. Define τ1,τ2:U×U→[0,1) by
τ1(ξ,ϱ)=β1(ξ)andτ2(ξ,ϱ)=β2(ξ), |
for all ξ,ϱ∈U. Then for all ξ,ϱ∈U,
(i) τ1(℘2℘1ξ,ϱ)=β1(℘2℘1ξ)≤β1(℘1ξ)≤β1(ξ)=τ1(ξ,ϱ) and τ1(ξ,℘1℘2ϱ)=β1(ξ)=β1(ξ,ϱ);
(ii) τ2(℘2℘1ξ,ϱ)=β2(℘2℘1ξ)≤β2(℘1ξ)≤β2(ξ)=τ2(ξ,ϱ) and τ2(ξ,℘1℘2ϱ)=β2(ξ)=β2(ξ,ϱ);
(iii) τ1(ξ,ϱ)+τ2(ξ,ϱ)=β1(ξ)+β2(ξ)<1;
(iv)
ℓ(℘1ξ,℘2ϱ)≤β1(ξ)ℓ(ξ,ϱ)+β2(ξ)ℓ(ξ,℘1ξ)ℓ(ϱ,℘2ϱ)1+ℓ(ξ,ϱ)=τ1(ξ,ϱ)ℓ(ξ,ϱ)+τ2(ξ,ϱ)ℓ(ξ,℘1ξ)ℓ(ϱ,℘2ϱ)1+ℓ(ξ,ϱ). |
By Theorem 4, ℘1 and ℘2 have a unique common fixed point.
Corollary 2. Let (U,σ,ℓ) be a complete CMS, ℘:U→U and there exist the mappings β1,β2:U→[0,1) such that
(i) β1(℘ξ)≤β1(ξ) and β2(℘ξ)≤β2(ξ);
(ii) (β1+β2)(ξ)<1;
(iii)
ℓ(℘ξ,℘ϱ)≤β1(ξ)ℓ(ξ,ϱ)+β2(ξ)ℓ(ξ,℘ξ)ℓ(ϱ,℘ϱ)1+ℓ(ξ,ϱ), | (4.1) |
for all ξ,ϱ∈U. For ξ0∈U, we set β1(ξ0)1−β2(ξ0)=β. Assume that
supm≥1limi→∞σ(ξi+1,ξi+2)σ(ξi+1,ξm)σ (ξi,ξi+1)<1β, |
where ξȷ+1=℘ξȷ for each ȷ≥0. Furthermore, suppose that limȷ→+∞σ(ξȷ,ξ) and limȷ→+∞σ(ξ,ξȷ) exist and are finite, then there exists a unique point ξ∗∈U such that ℘ξ∗=ξ∗.
Proof. Taking ℘1= ℘2=℘ in the Theorem 5.
Theorem 6. Let (U,σ,ℓ) be a complete CMS and ℘:U→U. Let there exist β1,β2:U→[0,1) such that
(i) β1(℘ȷξ)≤β1(ξ) and β2(℘ȷξ)≤β2(ξ);
(ii) (β1+β2)(ξ)<1;
(iii)
ℓ(℘ȷξ,℘ȷϱ)≤β1(ξ)ℓ(ξ,ϱ)+β2(ξ)ℓ(ξ,℘ȷξ)ℓ(ϱ,℘ȷϱ)1+ℓ(ξ,ϱ), |
for all ξ,ϱ∈U and for some ȷ∈N. For ξ0∈U, we set β1(ξ0)1−β2(ξ0)=β. Suppose that
supm≥1limi→∞σ(ξi+1,ξi+2)σ(ξi+1,ξm)σ (ξi,ξi+1)<1β, |
where ξȷ+1=℘ξȷ for each ȷ≥0. In addition, suppose that limȷ→+∞σ(ξȷ,ξ) and limȷ→+∞σ(ξ,ξȷ) exist and are finite, then there exists a unique point ξ∗∈U such that ℘ξ∗=ξ∗.
Proof. By result 2, we get that ℘ȷ ξ∗=ξ∗. Now, as
℘ȷ(℘ξ∗)=℘(℘ȷξ∗)=℘ξ∗, |
so, ℘ξ∗ is a fixed point of ℘ȷ. Thus ℘ξ∗ = ξ∗. Since the fixed point of ℘ȷ is unique, so ξ∗ is also a fixed point of ℘.
Corollary 3. Let (U,σ,ℓ) be a complete CMS, ℘1, ℘2:U→U and there exist γ1,γ2∈[0,1) with γ1+γ2<1 such that
ℓ(℘1ξ,℘2ϱ)≤γ1ℓ(ξ,ϱ)+γ2ℓ(ξ,℘1ξ)ℓ(ϱ,℘2ϱ)1+ℓ(ξ,ϱ), |
for all ξ,ϱ∈U. For ξ0∈U, a sequence {ξȷ}ȷ≥0 is generated as ξ2ȷ+1=℘1ξ2ȷ and ξ2ȷ+2=℘2ξ2ȷ+1 for each ȷ≥0. Assume that
supm≥1limi→∞σ(ξi+1,ξi+2)σ(ξi+1,ξm)σ (ξi,ξi+1)<1γ, |
where γ11−γ2=γ. In addition, assume that limȷ→+∞σ(ξȷ,ξ) and limȷ→+∞σ(ξ,ξȷ) exist and are finite, then there exists a unique point ξ∗∈U such that ℘1ξ∗∩℘2ξ∗=ξ∗.
Proof. Taking γ1(⋅) = γ1 and γ2(⋅) = γ2 in Theorem 5.
Corollary 4. Let (U,σ,ℓ) be a complete CMS, ℘:U→U and there exist γ1,γ2∈[0,1) with γ1+γ2<1 such that
ℓ(℘ξ,℘ϱ)≤γ1ℓ(ξ,ϱ)+γ2ℓ(ξ,℘ξ)ℓ(ϱ,℘ϱ)1+ℓ(ξ,ϱ), |
for all ξ,ϱ∈U. For ξ0∈U, we set γ11−γ2=γ. Suppose that
supm≥1limi→∞σ(ξi+1,ξi+2)σ(ξi+1,ξm)σ(ξi,ξi+1)<1γ, |
where ξȷ+1=℘ξȷ, for all ȷ≥0. Furthermore, assume that limȷ→+∞σ(ξȷ,ξ) and limȷ→+∞σ(ξ,ξȷ) are finite and exist, then there exists a unique point ξ∗∈U such that ℘ξ∗=ξ∗.
Proof. Taking ℘1= ℘2=℘ in Theorem 3.
Corollary 5. Let (U,σ,ℓ) be a complete CMS, ℘:U→U and there exist γ1,γ2∈[0,1) with γ1+γ2<1 such that
ℓ(℘ȷξ,℘ȷϱ)≤γ1ℓ(ξ,ϱ)+γ2ℓ(ξ,℘ȷξ)ℓ(ϱ,℘ȷϱ)1+ℓ(ξ,ϱ), |
for all ξ,ϱ∈U. For ξ0∈U, with γ11−γ2=γ, suppose that
supm≥1limi→∞σ(ξi+1,ξi+2)σ(ξi+1,ξm)σ (ξi,ξi+1)<1γ, |
where ξȷ+1=℘ξȷ, for each ȷ≥0. Furthermore, assume that, limȷ→+∞σ(ξȷ,ξ) and limȷ→+∞σ(ξ,ξȷ) exist and are finite, then there exists a unique point ξ∗∈U such that ℘ξ∗=ξ∗.
Proof. Setting γ1(⋅)=γ1 and γ2(⋅)=γ2 in Theorem 6.
Corollary 6. Let (U,σ,ℓ) be a complete CMS, ℘:U→U and there exists γ1∈[0,1) such that
ℓ(℘ξ,℘ϱ)≤γ1ℓ(ξ,ϱ), |
for all ξ,ϱ∈U. For ξ0∈U, with γ11−γ1=γ, suppose that
supm≥1limi→∞σ(ξi+1,ξi+2)σ(ξi+1,ξm)σ(ξi,ξi+1)<1γ, |
where ξȷ+1=℘ξȷ for each ȷ≥0. Moreover, assume that, limȷ→+∞σ(ξȷ,ξ) and limȷ→+∞σ(ξ,ξȷ) exist and are finitet, then there exists a unique point ξ∗∈U such that ℘ξ∗=ξ∗.
Let (U,σ,ℓ) be a CMS and G be a directed graph. Let us represent by G−1, the graph achieved from G by changing the direction of E(G). Hence,
E(G−1)={(ξ,ϱ)∈U×U:(ϱ,ξ)∈E(G)}. |
Definition 4. An element ξ∈ U is claimed to be common fixed point of (℘1,℘2), if ℘1(ξ)=℘2(ξ)=ξ. We shall represent by CFix(℘1,℘2), the set of all common fixed points of (℘1,℘2), i.e.
CFix(℘1,℘2)={ξ∈U:℘1(ξ)=℘2(ξ)=ξ}. |
Definition 5. Suppose that ℘1,℘2 :U→U are two mappings on complete CMS (U,σ,ℓ) equipped with a directed graph G. Then (℘1,℘2) is said to be a G-orbital cyclic pair, if for any ξ∈ U
(ξ,℘1ξ)∈E(G)⟹(℘1ξ,℘2(℘1ξ))∈E(G), |
(ξ,℘2ξ)∈E(G)⟹(℘2ξ,℘1(℘2ξ))∈E(G). |
Let us consider the following sets
U℘1={ξ∈U:(ξ,℘1ξ)∈E(G)},U℘2={ξ∈U:(ξ,℘2ξ)∈E(G)}. |
Remark 1. If the pair (℘1,℘2) be a G -orbital-cyclic pair, then U℘1≠∅⟺U℘2≠∅.
Proof. Let ξ0∈U℘1. Then (ξ0,℘1ξ0)∈E(G)⟹(℘1ξ0,℘2(℘1ξ0))∈E(G). If we represent by ξ1=℘1ξ0, then we get that (ξ1,℘2(ξ1))∈E(G), thus U℘2≠∅.
Theorem 7. Let (U,σ,ℓ) be a complete CMS equipped with a directed graph G and ℘1,℘2 :U→U is G-orbital cyclic pair. Assume that there exists τ1∈[0,1) such that
(i) U℘1≠∅;
(ii) for all ξ∈U℘1 and ϱ∈U℘2,
ℓ(℘1ξ,℘2ϱ)≤τ1max{ℓ(ξ,ϱ),ℓ(ξ,℘1ξ),ℓ(ϱ,℘2ϱ)}; | (5.1) |
(iii) for all (ξȷ)ȷ∈N⊂U, one has (ξȷ,ξȷ+1)∈E(G),
supm≥1limi→∞σ(ξi+1,ξi+2)σ(ξi+1,ξm)σ(ξi,ξi+1)<1τ, | (5.2) |
where τ=τ11−τ1;
(iv) ℘1 and ℘2 are continuous, or for all (ξȷ)ȷ∈N⊂U, with ξȷ→ξ as ȷ→+∞, and (ξȷ,ξȷ+1)∈E(G) for ȷ∈N, we have ξ∈U℘1∩U℘2. In these conditions, CFix(℘1℘2)≠∅;
(v) for all ξ∈U, we have limȷ→+∞σ(ξȷ,ξ) and limȷ→+∞σ(ξ,ξȷ) exist and finite;
(vi) if (ξ∗,ξ/)∈CFix(℘1,℘2) implies ξ∗∈U℘1 and ξ/∈U℘2, then the pair (℘1,℘2) has a unique common fixed point.
Proof. Let ξ0∈U℘1. Thus (ξ0,℘1ξ0)∈E(G). As the pair (℘1,℘2) is G-orbital cyclic, we get (℘1ξ0,℘2℘1ξ0)∈E(G). Construct ξ1 by ξ1=℘1ξ0, we have (ξ1,℘2ξ1)∈E(G) and from here (℘2ξ1,℘1℘2ξ1)∈E(G). Denoting by ξ2=℘2ξ1, we have (ξ2,℘1ξ2)∈E(G). Continuing along these lines, we generate a sequence (ξȷ)ȷ∈N with ξ2ȷ=℘2ξ2ȷ−1 and ξ2ȷ+1=℘1ξ2ȷ, such that (ξ2ȷ,ξ2ȷ+1)∈E(G). We assume that ξȷ≠ξȷ+1. If, there exists ȷ0∈N, such that ξȷ0=ξȷ0+1, then in the view of the fact that Δ⊂E(G), (ξȷ0,ξȷ0+1)∈E(G) and thus ξ∗=ξȷ0 is a fixed point of ℘1. Now to manifest that ξ∗∈ CFix(℘1,℘2), we shall discuss these two cases for ȷ0. If ȷ0 is even, then ȷ0=2ȷ. Then, ξ2ȷ=ξ2ȷ+1=℘1ξ2ȷ and thus, ξ2ȷ is a fixed point of ℘1. Assume that ξ2ȷ=ξ2ȷ+1=℘1ξ2ȷ but ℓ(℘1ξ2ȷ,℘2ξ2ȷ+1)>0, and let ξ=ξ2ȷ∈U℘1 and ϱ=ξ2ȷ+1∈U℘2. So
0<ℓ(ξ2ȷ+1,ξ2ȷ+2)=ℓ(℘1ξ2ȷ,℘2ξ2ȷ+1)≤τ1max{ℓ(ξ2ȷ,ξ2ȷ+1),ℓ(ξ2ȷ,℘1ξ2ȷ),ℓ(ξ2ȷ+1,℘2ξ2ȷ+1)}=τ1max{ℓ(ξ2ȷ,ξ2ȷ+1),ℓ(ξ2ȷ,ξ2ȷ+1),ℓ(ξ2ȷ+1,ξ2ȷ+2)}=τ1ℓ(ξ2ȷ+1,ξ2ȷ+2) |
that is contradiction because τ1<1. Hence ξ2ȷ is a fixed point of ℘2 too. Likewise if ȷ0 is odd number, then there exists ξ∗∈U such that ℘1ξ∗∩℘2ξ∗=ξ∗. So we assume that ξȷ≠ξȷ+1 for all ȷ∈N. Now we shall show that (ξȷ)ȷ∈N is Cauchy sequence. We have these two possible cases to discuss:
Case 1. ξ=ξ2ȷ∈U℘1 and ϱ=ξ2ȷ+1∈U℘2.
0<ℓ(ξ2ȷ+1,ξ2ȷ+2)=ℓ(℘1ξ2ȷ,℘2ξ2ȷ+1)≤τ1max{ℓ(ξ2ȷ,ξ2ȷ+1),ℓ(ξ2ȷ,℘1ξ2ȷ),ℓ(ξ2ȷ+1,℘2ξ2ȷ+1)}=τ1max{ℓ(ξ2ȷ,ξ2ȷ+1),ℓ(ξ2ȷ,ξ2ȷ+1),ℓ(ξ2ȷ+1,ξ2ȷ+2)}=τ1max{ℓ(ξ2ȷ,ξ2ȷ+1),ℓ(ξ2ȷ+1,ξ2ȷ+2)}≤τ1[ℓ(ξ2ȷ,ξ2ȷ+1)+ℓ(ξ2ȷ+1,ξ2ȷ+2)] |
that is
(1−τ1)ℓ(ξ2ȷ+1,ξ2ȷ+2)≤τ1ℓ(ξ2ȷ,ξ2ȷ+1), |
which implies
ℓ(ξ2ȷ+1,ξ2ȷ+2)≤τ11−τ1ℓ(ξ2ȷ,ξ2ȷ+1). | (5.3) |
Case 2. ξ=ξ2ȷ∈U℘1 and ϱ=ξ2ȷ−1∈U℘2.
0<ℓ(ξ2ȷ+1,ξ2ȷ)=ℓ(℘1ξ2ȷ,℘2ξ2ȷ−1)≤τ1max{ℓ(ξ2ȷ,ξ2ȷ−1),ℓ(ξ2ȷ,℘1ξ2ȷ),ℓ(ξ2ȷ−1,℘2ξ2ȷ−1)}=τ1max{ℓ(ξ2ȷ,ξ2ȷ−1),ℓ(ξ2ȷ,ξ2ȷ+1),ℓ(ξ2ȷ−1,ξ2ȷ)}=τ1max{ℓ(ξ2ȷ−1,ξ2ȷ),ℓ(ξ2ȷ,ξ2ȷ+1)}≤τ1[ℓ(ξ2ȷ−1,ξ2ȷ)+ℓ(ξ2ȷ,ξ2ȷ+1)] |
that is
(1−τ1)ℓ(ξ2ȷ+1,ξ2ȷ)≤τ1ℓ(ξ2ȷ,ξ2ȷ−1), |
which implies
ℓ(ξ2ȷ,ξ2ȷ+1)≤τ11−τ1ℓ(ξ2ȷ−1,ξ2ȷ). | (5.4) |
Since τ=τ11−τ1, so we have
ℓ(ξȷ,ξȷ+1)≤τℓ(ξȷ−1,ξȷ). | (5.5) |
Thus, we have
ℓ(ξȷ,ξȷ+1)≤τℓ(ξȷ−1,ξȷ)≤τ2ℓ(ξȷ−2,ξȷ−1)≤⋅⋅⋅≤τȷℓ(ξ0,ξ1). |
For all ȷ,m∈N(ȷ<m), we have
ℓ(ξȷ,ξm)≤σ(ξȷ,ξȷ+1)ℓ(ξȷ,ξȷ+1)+σ(ξȷ+1,ξm)ℓ(ξȷ+1,ξm)≤σ(ξȷ,ξȷ+1)ℓ(ξȷ,ξȷ+1)+σ(ξȷ+1,ξm)σ(ξȷ+1,ξȷ+2)ℓ(ξȷ+1,ξȷ+2)+σ(ξȷ+1,ξm)σ(ξȷ+2,ξm)ℓ(ξȷ+2,ξm)≤σ(ξȷ,ξȷ+1)ℓ(ξȷ,ξȷ+1)+σ(ξȷ+1,ξm)σ(ξȷ+1,ξȷ+2)ℓ(ξȷ+1,ξȷ+2)+σ(ξȷ+1,ξm)σ(ξȷ+2,ξm)σ(ξȷ+2,ξȷ+3)ℓ(ξȷ+2,ξȷ+3)+σ(ξȷ+1,ξm)σ(ξȷ+2,ξm)σ(ξȷ+3,ξm)ℓ(ξȷ+3,ξm)≤⋅⋅⋅≤σ(ξȷ,ξȷ+1)ℓ(ξȷ,ξȷ+1)+m−2∑i=ȷ+1(i∏k=ȷ+1σ(ξk,ξm))σ(ξi,ξi+1)ℓ(ξi,ξi+1)+m−1∏i=ȷ+1σ(ξi,ξm)ℓ(ξm−1,ξm), |
which further implies that
ℓ(ξȷ,ξm)≤σ(ξȷ,ξȷ+1)ℓ(ξȷ,ξȷ+1)+m−2∑i=ȷ+1(i∏k=ȷ+1σ(ξk,ξm))σ(ξi,ξi+1)ℓ(ξi,ξi+1)+(m−1∏i=ȷ+1σ(ξi,ξm))σ(ξm−1,ξm)ℓ(ξm−1,ξm)≤σ(ξȷ,ξȷ+1)τȷℓ(ξ0,ξ1)+m−2∑i=ȷ+1(i∏k=ȷ+1σ(ξk,ξm))σ(ξi,ξi+1)τiℓ(ξ0,ξ1)+(m−1∏i=ȷ+1σ(ξi,ξm))σ(ξm−1,ξm)τm−1ℓ(ξ0,ξ1)=σ(ξȷ,ξȷ+1)τȷℓ(ξ0,ξ1)+m−1∑i=ȷ+1(i∏k=ȷ+1σ(ξk,ξm))σ(ξi,ξi+1)τiℓ(ξ0,ξ1). | (5.6) |
Let
Ψl=l∑i=0(i∏k=0σ(ξk,ξm))σ(ξi,ξi+1)τiℓ(ξ0,ξ1). |
From (5.6), we get
ℓ(ξȷ,ξm)≤ℓ(ξ0,ξ1)[τȷσ(ξȷ,ξȷ+1)+(Ψm−1−Ψȷ)]. | (5.7) |
Now as σ(ξ,ϱ)≥1, and by utilizing ratio test, limȷ→+∞Ψȷ exists. Clearly, if we let ȷ,m→+∞ in (5.7), we get that
limȷ,m→+∞ℓ(ξȷ,ξm)=0. | (5.8) |
Hence, {ξȷ} is a Cauchy sequence in (U,ℓ). So there exists ξ∗∈U such that
limȷ→+∞ℓ(ξȷ,ξ∗)=0. | (5.9) |
that is ξȷ→ξ∗ as ȷ→+∞. It is obvious that
limȷ→+∞ξ2ȷ=limȷ→+∞ξ2ȷ+1=ξ∗. | (5.10) |
As ℘1 and ℘2 are continuous, so we have
ξ∗=limȷ→+∞ξ2ȷ+1=limȷ→+∞℘1(ξ2ȷ)=℘1(ξ∗),ξ∗=limȷ→+∞ξ2ȷ+2=limȷ→+∞℘2(ξ2ȷ+1)=℘2(ξ∗). |
Now letting ξ=ξ∗∈U℘1 and ϱ=ξ2ȷ+2∈U℘2, we have
0<ℓ(℘1ξ∗,ξ2ȷ+2)=ℓ(℘1ξ∗,℘2(ξ2ȷ+1))≤τ1max{ℓ(ξ∗,ξ2ȷ+1),ℓ(ξ∗,℘1ξ∗),ℓ(ξ2ȷ+1,℘2(ξ2ȷ+1)}=τ1max{ℓ(ξ∗,ξ2ȷ+1),ℓ(ξ∗,℘1ξ∗),ℓ(ξ2ȷ+1,ξ2ȷ+2)}. |
Letting ȷ→+∞ and using (5.10), we can simply conclude that ℓ(ξ∗,℘1ξ∗)=0. This yields that ξ∗=℘1ξ∗. Similarly, suppose that ξ=ξ2ȷ+1∈U℘1 and ϱ=ξ∗∈U℘2, we have
0<ℓ(ξ2ȷ+2,℘2ξ∗)=ℓ(℘1(ξ2ȷ),℘2ξ∗)≤τ1max{ℓ(ξ2ȷ,ξ∗),ℓ(ξ2ȷ,℘1(ξ2ȷ)),ℓ(ξ∗,℘2ξ∗)}=τ1max{ℓ(ξ2ȷ,ξ∗),ℓ(ξ2ȷ,ξ2ȷ+1),ℓ(ξ∗,℘2ξ∗)}. |
Letting ȷ→+∞ and using (5.10), we can simply conclude that ℓ(ξ∗,℘2ξ∗)=0. This yields that ξ∗=℘2ξ∗.
Corollary 7. Let (U,σ,ℓ) be a complete CMS euipped with a directed graph G and ℘ :U→U is a G-orbital-cyclic. Suppose that there exists τ1∈[0,1) such that
(i) U℘≠∅;
(ii) for all ξ,ϱ∈U℘, we have
ℓ(℘ξ,℘ϱ)≤τ1max{ℓ(ξ,ϱ),ℓ(ξ,℘ξ),ℓ(ϱ,℘ϱ)}; |
(iii) for all (ξȷ)ȷ∈N⊂U one has (ξȷ,ξȷ+1)∈E(G),
supm≥1limi→∞σ(ξi+1,ξi+2)σ(ξi+1,ξm)σ(ξi,ξi+1)<1τ, |
where τ=τ11−τ1;
(iv) ℘ is continuous, or for each (ξȷ)ȷ∈N⊂U, with ξȷ→ξ as ȷ→+∞, and (ξȷ,ξȷ+1)∈E(G) for ȷ∈N, we have ξ∈U℘;
(v) for all ξ∈U, we have limȷ→+∞σ(ξȷ,ξ) and limȷ→+∞σ(ξ,ξȷ) exist and finite, then ℘ has a unique fixed point.
Example 3. Let U={0,1,2,3,4}. Define ℓ:U×U→[0,+∞) by
ℓ(ξ,ϱ)=|ξ−ϱ|2 |
and ℓ:U×U→[1,+∞) by
σ(ξ,ϱ)=1+ξ+ϱ |
for all ξ,ϱ∈U. Then (U,σ,ℓ) is complete CMS. Now define ℘ :U→U by
℘ξ=0,forξ∈{0,1}, |
and
℘ξ=1,forξ∈{2,3}. |
Also define G={(0,1),(0,2),(2,3),(0,0),(1,1),(2,2),(3,3)}, then G is directed graph. Then all assumptions of Corollary 3 are satisfied with τ1=13 and ξ∗=0 is the unique fixed point of ℘.
In this section, we investigate the solution of Fredholm-type integral equation
ξ(t)=1∫0K(t,s,ξ(t))ds, | (6.1) |
for all t∈[0,1], where K(t,s,ξ(t)) is a continuous function from [0,1]×[0,1] into R. Let U=C([0,1],(−∞,+∞)). Now we define ℓ:U×U→[1, ∞) by
ℓ(ξ,ϱ)=supt∈[0,1](|ξ(t)|+|ϱ(t)|2). |
Then (U,σ,ℓ) is a complete CMS with σ(ξ,ϱ)=2.
Theorem 8. Assume that
(a) |K(t,s,ξ(t))|+|K(t,s,ϱ(t))|≤τ1(supt∈[0,1]|ξ(t)|+|ϱ(t)|)(|ξ(t)|+|ϱ(t)|) for some τ1→U→[0,1);
(b) K(t,s,1∫0K(t,s,ξ(t))ds)<K(t,s,ξ(t));
for all t,s∈[0,1]. Then the integral equation (6.1) has a unique solution.
Proof. Define ℘:U→U by
℘ξ(t)=1∫0K(t,s,ξ(t))ds. |
Then
ℓ(℘ξ,℘ϱ)=supt∈[0,1](|℘ξ(t)|+|℘ϱ(t)|2). |
Now
ℓ(℘ξ(t),℘ϱ(t))=|℘ξ(t)|+|℘ϱ(t)|2=|1∫0K(t,s,ξ(t))ds|+|1∫0K(t,s,ϱ(t))ds|2≤1∫0|K(t,s,ξ(t))|ds+1∫0|K(t,s,ϱ(t))|ds2=1∫0(|K(t,s,ξ(t))|+|K(t,s,ϱ(t))|)ds2≤1∫0(τ1(supt∈[0,1]|ξ(t)|+|ϱ(t)|)(|ξ(t)|+|ϱ(t)|))ds2≤τ1(supt∈[0,1]|ξ(t)|+|ϱ(t)|)ℓ(ξ(t),ϱ(t)). |
Also we observe that
σ(ξ,ϱ)=1τ1(supt∈[0,1]|ξ(t)|+|ϱ(t)|). |
Thus all the conditions of result 6 are satisfied. Hence Eq (6.1) has a unique solution.
In the current work, we have utilized the notion of controlled metric space and proved common fixed point results of self mappings for generalized contractions involving control functions of two variables. We also established common fixed point results in controlled metric space equipped with a graph. We have derived common fixed point and fixed point results for contractions with control functions of one variable as consequences of our leading result. We also supply a non trivial example to support the obtained results As as application of our prime result, we have investigated the solution of Fredholm type integral equation.
Some related generalizations of such contractions for the multivalued mappings ℘ :U→CB(U) and for fuzzy mappings ℘ :U→F(U) would be a special field for future work. A distinct way of future study would be to employ our results in the solution of fractional differential inclusions.
First author acknowledges with thanks Natural Science Foundation of Hebei Province (Grant No. A2019404009) and The Major Project of Education Department of Hebei Province (No. ZD2021039) for financial support.
The authors declare no conflicts of interests.
[1] |
E. Karapinar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Differ. Equ., 2019 (2019), 1–25. https://doi.org/10.1186/s13662-019-2354-3 doi: 10.1186/s13662-019-2354-3
![]() |
[2] | A. A. Kilbas, M. H. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, Elsevier, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0 |
[3] | M. A. Khamsi, W. A. Kirk, An introduction to metric spaces and fixed point theory, John Willey Sons, 2001. https://doi.org/10.1002/9781118033074 |
[4] |
S. G. Matthews, Partial metric topology, Ann. New York. Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x
![]() |
[5] | A. Branciari, A fixed point theorem of Banach-caccioppoli type on a class of generalized metric spaces, Publ. Math., 57 (2000), 31–37. |
[6] | Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex A., 7 (2006), 289–297. |
[7] |
A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32 (2011), 243–253. https://doi.org/10.1080/01630563.2011.533046 doi: 10.1080/01630563.2011.533046
![]() |
[8] |
Z. D. Mitrović, S. Radenović, The Banach and Reich contractions in bv(s)-metric spaces, J. Fix. Point Theory Appl., 19 (2017), 3087–3095. https://doi.org/10.1007/s11784-017-0469-2 doi: 10.1007/s11784-017-0469-2
![]() |
[9] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostra. 1 (1993), 5–11. |
[10] |
T. Kamran, M. Samreen, Q. U. Ain, A generalization of b-metric space and some fixed point theorems, Math., 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
![]() |
[11] |
N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. https://doi.org/10.3390/math6100194 doi: 10.3390/math6100194
![]() |
[12] | D. Lateef, Kannan fixed point theorem in c-metric spaces, J. Math. Anal., 10 (2019), 34–40. |
[13] |
J. Ahmad, A. E. Al-Mazrooei, H. Aydi, M. D. l. Sen, On fixed point results in controlled metric spaces, J. Funct. Space., 2020 (2020), 1–7. https://doi.org/10.1155/2020/2108167 doi: 10.1155/2020/2108167
![]() |
[14] |
M. Abuloha, D. Rizk, K. Abodayeh, N. Mlaiki, T. Abdeljawad, New results in controlled metric type spaces, J. Math., 2021 (2021), 1–6. https://doi.org/10.1155/2021/5575512 doi: 10.1155/2021/5575512
![]() |
[15] |
N. Alamgir, Q. Kiran, H. Işık, H. Aydi, Fixed point results via a Hausdorff controlled type metric, Adv. Differ. Equ., 2020 (2020), 1–20. https://doi.org/10.1186/s13662-020-2491-8 doi: 10.1186/s13662-020-2491-8
![]() |
[16] |
T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. https://doi.org/10.3390/math6120320 doi: 10.3390/math6120320
![]() |
[17] |
R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76. https://doi.org/10.4064/FM-74-3-181-187 doi: 10.4064/FM-74-3-181-187
![]() |
[18] |
D. Lateef, Fisher type fixed point results in controlled metric spaces, J. Math. Comput. Sci., 20 (2020), 234–240. https://doi.org/10.22436/jmcs.020.03.06 doi: 10.22436/jmcs.020.03.06
![]() |
[19] | S. Hussain, Fixed point theorems for nonlinear contraction in controlled metric type space, Appl. Math. E-Notes, 21 (2021), 2145–2165. |
[20] |
N. Mlaiki, N. Souayah, T. Abdeljawad, H. Aydi, A new extension to the controlled metric type spaces endowed with a graph, Adv. Differ. Equ., 2021 (2021), 94. https://doi.org/10.1186/s13662-021-03252-9 doi: 10.1186/s13662-021-03252-9
![]() |
[21] |
W. Shatanawi, N. Mlaiki, N. Rizk, E. Onunwor, Fredholm-type integral equation in controlled metric-like spaces, Adv. Differ. Equ., 2021 (2021), 358. https://doi.org/10.1186/s13662-021-03516-4 doi: 10.1186/s13662-021-03516-4
![]() |
[22] |
M. S. Sezen, Controlled fuzzy metric spaces and some related fixed point results, Numer. Meth. Part. Differ. Eq., 37 (2020) 583–593. https://doi.org/10.1002/num.22541 doi: 10.1002/num.22541
![]() |
[23] |
S. Tasneem, K. Gopalani, T. Abdeljawad, A different approach to fixed point theorems on triple controlled metric type spaces with a numerical experiment, Dynam. Syst. Appl., 30 (2021), 111–130. https://doi.org/10.46719/dsa20213018 doi: 10.46719/dsa20213018
![]() |
[24] | A. Asif, N. Hussain, H. Al-Sulami, M. Arshad, Some fixed point results in function weighted metric spaces, J. Math., 2021 (2021). https://doi.org/10.1155/2021/6636504 |
[25] |
S. Furqan, H. Işık, N. Saleem, Fuzzy triple controlled metric spaces and related fixed point results, J. Funct. Space., 2021 (2021), 8. https://doi.org/10.1155/2021/9936992 doi: 10.1155/2021/9936992
![]() |
[26] |
N. Hussain, J. R. Roshan, V. Parvaneh, A. Latif, A unification of G-metric, partial metric, and b-metric spaces, Abstr. Appl. Anal., 2014 (2014), 1–14. https://doi.org/10.1155/2014/180698 doi: 10.1155/2014/180698
![]() |
[27] |
M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (2010), 3123–3129. https://doi.org/10.1016/j.na.2010.06.084 doi: 10.1016/j.na.2010.06.084
![]() |
[28] |
N. Saleem, H. Işık, S. Furqan, C. Park, Fuzzy double controlled metric spaces and related results, J. Intell. Fuzzy Syst., 40 (2021), 9977–9985. https://doi.org/10.3233/JIFS-202594 doi: 10.3233/JIFS-202594
![]() |
[29] |
Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Fixed point theorems for weakly T-Chatterjea and weakly T-Kannan contractions in b-metric spaces, J. Intell. Appl., 46 (2014), 1–14. https://doi.org/10.1186/1029-242X-2014-46 doi: 10.1186/1029-242X-2014-46
![]() |
[30] |
J. R. Roshan, N. Shobkolaei, S. Sedghi, V. Parvaneh, S. Radenović, Common fixed point theorems for three maps in discontinuous Gb metric spaces, Acta Math. Sci., 34 (2014), 1643–1654. https://doi.org/10.1016/S0252-9602(14)60110-7 doi: 10.1016/S0252-9602(14)60110-7
![]() |
[31] |
Z. Mustafa, V. Parvaneh, J. R. Roshan, Z. Kadelburg, b2-Metric spaces and some fixed point theorems, Fixed Point Theory A., 2014 (2014), 23. https://doi.org/10.1186/1687-1812-2014-144 doi: 10.1186/1687-1812-2014-144
![]() |
[32] |
Z. Mustafa, V. Parvaneh, M. M. Jaradat, Z. Kadelburg, Extended rectangular b-metric spaces and some fixed point theorems for contractive mappings, Symmetry, 11 (2019), 594. https://doi.org/10.3390/sym11040594 doi: 10.3390/sym11040594
![]() |
[33] |
V. Parvaneh, N. Hussain, Z. Kadelburg, Generalized wardowski type fixed point theorems via α-admissible FG-contractions in b-metric spaces, Acta Math. Sci., 36 (2016), 1445–1456. https://doi.org/10.1016/S0252-9602(16)30080-7 doi: 10.1016/S0252-9602(16)30080-7
![]() |
1. | Wasfi Shatanawi, Taqi A. M. Shatnawi, Some fixed point results based on contractions of new types for extended b-metric spaces, 2023, 8, 2473-6988, 10929, 10.3934/math.2023554 | |
2. | Khaleel Ahmad, Ghulam Murtaza, Salha Alshaikey, Umar Ishtiaq, Ioannis K. Argyros, Common Fixed Point Results on a Double-Controlled Metric Space for Generalized Rational-Type Contractions with Application, 2023, 12, 2075-1680, 941, 10.3390/axioms12100941 |