In this paper we introduce the concept of complex-valued double controlled metric like spaces. These new results generalize and extend the corresponding results about complex-valued double controlled metric type spaces. We prove some complex-valued fixed point theorems in this new complex-valued metric like spaces and, as application, we give an existence and uniqueness of the solution of a Fredholm type integral equation result. Moreover, some examples are also presented in favor of our given results.
Citation: Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Isra Manzoor, Thabet Abdeljawad, Dania Santina, Nabil Mlaiki. Complex-valued double controlled metric like spaces with applications to fixed point theorems and Fredholm type integral equations[J]. AIMS Mathematics, 2023, 8(2): 4944-4963. doi: 10.3934/math.2023247
In this paper we introduce the concept of complex-valued double controlled metric like spaces. These new results generalize and extend the corresponding results about complex-valued double controlled metric type spaces. We prove some complex-valued fixed point theorems in this new complex-valued metric like spaces and, as application, we give an existence and uniqueness of the solution of a Fredholm type integral equation result. Moreover, some examples are also presented in favor of our given results.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math., 3 (1922), 133–181. http://doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181 |
[2] | A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32 (2011), 243–253. http://doi.org/10.1080/01630563.2011.533046 doi: 10.1080/01630563.2011.533046 |
[3] | A. A. Harandi, Metric-like spaces, partial metric spaces and fxed points, Fixed Point Theory Appl., 2012 (2012), 204. http://doi.org/10.1186/1687-1812-2012-204 doi: 10.1186/1687-1812-2012-204 |
[4] | A. Hosseini, M. M. Karizaki, On the complex valued metric-like spaces, arXiv, 2022. http://doi.org/10.48550/arXiv.2209.06551 doi: 10.48550/arXiv.2209.06551 |
[5] | I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Func. Anal., 30 (1989), 26–37. |
[6] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inf. Univ. Ostra., 1 (1993), 5–11. |
[7] | M. S. Aslam, M. S. R. Chowdhury, L. Guran, M. A. Alqudah, T. Abdeljawad, Fixed point theory in complex valued controlled metric spaces with an application, AIMS Math., 7 (2022), 11879–11904. http://doi.org/10.3934/math.2022663 doi: 10.3934/math.2022663 |
[8] | T. Kamran, M. Samreen, Q. Ul. Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 1–7. http://doi.org/10.3390/math5020019 doi: 10.3390/math5020019 |
[9] | N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. http://doi.org/10.3390/math6100194 doi: 10.3390/math6100194 |
[10] | T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. https://doi.org/10.3390/math6120320 doi: 10.3390/math6120320 |
[11] | S. K. Panda, T. Abdeljawad, C. Ravichandran, A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method, Chaos Solitons Fract., 130 (2020), 109439. https://doi.org/10.1016/j.chaos.2019.109439 doi: 10.1016/j.chaos.2019.109439 |
[12] | N. Ullah, M. S. Shagari, A. Azam, Fixed point theoremsin complex valued extended $b$-metric spaces, Moroccan J. Pure Appl. Anal., 5 (2019), 140–163. https://doi.org/10.2478/mjpaa-2019-0011 doi: 10.2478/mjpaa-2019-0011 |
[13] | T. Abdeljawad, K. Abodayeh, N. Mlaiki, On fixed point generalizations to partial $b$-metric spaces, J. Comput. Anal. Appl., 19 (2015), 883–891. |
[14] | K. P. Rao, P. Swamy, J. Prasad, A common fixed point theorem in complex valued $b$-metric spaces, Bull. Math. Stat. Res., 1 (2013). |
[15] | N. Mlaiki, Double controlled metric-like spaces, J. Inequal. Appl., 2020 (2020), 189. https://doi.org/10.1186/s13660-020-02456-z doi: 10.1186/s13660-020-02456-z |
[16] | T. L. Hicks, B. E. Rhodes, A Banach type fixed point theorem, Math. Jpn., 24 (1979), 327–330. |
[17] | J. Matkowski, Fixed point theorems for mappings with a contractive iterate at a point, Proc. Am. Math. Soc., 62 (1977), 344–348. https://doi.org/10.2307/2041041 doi: 10.2307/2041041 |
[18] | R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76. https://doi.org/10.4064/FM-74-3-181-187 doi: 10.4064/FM-74-3-181-187 |
[19] | H. Afshari, M. Atapour, H. Aydi, Generalized ${\varrho-\psi-Geraghty}$ multivalued mappings on $b$-metric spaces endowed with a graph, J. Appl. Eng. Math., 7 (2017), 248–260. |
[20] | M. S. Aslam, M. F. Bota, M. S. R. Chowdhury, L. Guran, N. Saleem, Common fixed points technique for existence of a solution of Urysohn type integral equations system in complex valued $b$-metric spaces, Mathematics, 9 (2021), 400. https://doi.org/10.3390/math9040400 doi: 10.3390/math9040400 |
[21] | N. Alharbi, H. Aydi, A. Felhi, C. Ozel, S. Sahmim, $\varrho$-contractive mappings on rectangular $b$-metric spaces and an application to integral equations, J. Math. Anal., 9 (2018), 47–60. |
[22] | H. Aydi, E. Karapinar, M. F. Bota, S. Mitrović, A fixed point theorem for set-valued quasi-contractions in $b$-metric spaces, Fixed Point Theory Appl., 2012 (2012), 88. https://doi.org/10.1186/1687-1812-2012-88 doi: 10.1186/1687-1812-2012-88 |
[23] | H. Aydi, M. F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak $\phi$-contractions on $b$-metric spaces, Fixed Point Theory, 13 (2012), 337–346. |
[24] | O. A. Arqub, Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm, Int. J. Numer. Method Heat Fluid Flow, 28 (2018), 828–856. https://doi.org/10.1108/HFF-07-2016-0278 doi: 10.1108/HFF-07-2016-0278 |
[25] | O. A. Arqub, Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method, Int. J. Numer. Meth. Heat Fluid Flow, 11 (2020), 4711–4733. https://doi.org/10.1108/HFF-10-2017-0394 doi: 10.1108/HFF-10-2017-0394 |
[26] | O. A. Arqub, Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm, Fundam. Inf., 146 (2016), 231–254. https://doi.org/10.3233/FI-2016-1384 doi: 10.3233/FI-2016-1384 |
[27] | M. M. A. Khater, S. K. Elagan, M. A. El-Shorbagy, S. H. Alfalqi, J. F. Alzaidi, N. A. Alshehri, Folded novel accurate analytical and semi-analytical solutions of a generalized Calogero–Bogoyavlenskii–Schiff equation, Commun. Theor. Phys., 73 (2021), 095003. https://dx.doi.org/10.1088/1572-9494/ac049f doi: 10.1088/1572-9494/ac049f |
[28] | M. M. A. Khater, D. Lu, Analytical versus numerical solutions of the nonlinear fractional time–space telegraph equation, Mod. Phys. Let. B, 35 (2021), 2150324. https://doi.org/10.1142/S0217984921503243 doi: 10.1142/S0217984921503243 |
[29] | M. M. A. Khater, Abundant breather and semi-analytical investigation: on high-frequency waves' dynamics in the relaxation medium, Mod. Phys. Let. B, 35 (2021), 2150372. https://doi.org/10.1142/S0217984921503723 doi: 10.1142/S0217984921503723 |
[30] | S. Sivasankaran, M. M. Arjunan, V. Vijayakumar, Existence of global solutions for second order impulsive abstract partial differential equations, Nonlinear Anal., 74 (2011), 6747–6757. https://doi.org/10.1016/j.na.2011.06.054 doi: 10.1016/j.na.2011.06.054 |
[31] | V. Vijayakumar, Approximate controllability for a class of second-order stochastic evolution inclusions of Clarke's Subdifferential type, Results Math., 73 (2018), 42. https://doi.org/10.1007/s00025-018-0807-8 doi: 10.1007/s00025-018-0807-8 |
[32] | A. Singh, A, Shukla, V. Vijayakumar, R. Udhayakumar, Asymptotic stability of fractional order (1, 2] stochastic delay differential equations in Banach spaces, Chaos Solitons Fract., 150 (2021), 111095. https://doi.org/10.1016/j.chaos.2021.111095 doi: 10.1016/j.chaos.2021.111095 |
[33] | T. Aysegul, On double controlled metric-like spaces and related fixed point theorems, Adv. Theory Nonlinear Anal. Appl., 5 (2021), 167–172. https://doi.org/10.31197/atnaa.869586 doi: 10.31197/atnaa.869586 |
[34] | T. Kamran, M. Samreen, Q. U. Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019 |