Research article Special Issues

Complex-valued double controlled metric like spaces with applications to fixed point theorems and Fredholm type integral equations

  • Received: 30 September 2022 Revised: 29 November 2022 Accepted: 05 December 2022 Published: 09 December 2022
  • MSC : 47H10, 54H25

  • In this paper we introduce the concept of complex-valued double controlled metric like spaces. These new results generalize and extend the corresponding results about complex-valued double controlled metric type spaces. We prove some complex-valued fixed point theorems in this new complex-valued metric like spaces and, as application, we give an existence and uniqueness of the solution of a Fredholm type integral equation result. Moreover, some examples are also presented in favor of our given results.

    Citation: Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Isra Manzoor, Thabet Abdeljawad, Dania Santina, Nabil Mlaiki. Complex-valued double controlled metric like spaces with applications to fixed point theorems and Fredholm type integral equations[J]. AIMS Mathematics, 2023, 8(2): 4944-4963. doi: 10.3934/math.2023247

    Related Papers:

  • In this paper we introduce the concept of complex-valued double controlled metric like spaces. These new results generalize and extend the corresponding results about complex-valued double controlled metric type spaces. We prove some complex-valued fixed point theorems in this new complex-valued metric like spaces and, as application, we give an existence and uniqueness of the solution of a Fredholm type integral equation result. Moreover, some examples are also presented in favor of our given results.



    加载中


    [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math., 3 (1922), 133–181. http://doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181
    [2] A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32 (2011), 243–253. http://doi.org/10.1080/01630563.2011.533046 doi: 10.1080/01630563.2011.533046
    [3] A. A. Harandi, Metric-like spaces, partial metric spaces and fxed points, Fixed Point Theory Appl., 2012 (2012), 204. http://doi.org/10.1186/1687-1812-2012-204 doi: 10.1186/1687-1812-2012-204
    [4] A. Hosseini, M. M. Karizaki, On the complex valued metric-like spaces, arXiv, 2022. http://doi.org/10.48550/arXiv.2209.06551 doi: 10.48550/arXiv.2209.06551
    [5] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Func. Anal., 30 (1989), 26–37.
    [6] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inf. Univ. Ostra., 1 (1993), 5–11.
    [7] M. S. Aslam, M. S. R. Chowdhury, L. Guran, M. A. Alqudah, T. Abdeljawad, Fixed point theory in complex valued controlled metric spaces with an application, AIMS Math., 7 (2022), 11879–11904. http://doi.org/10.3934/math.2022663 doi: 10.3934/math.2022663
    [8] T. Kamran, M. Samreen, Q. Ul. Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 1–7. http://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
    [9] N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. http://doi.org/10.3390/math6100194 doi: 10.3390/math6100194
    [10] T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. https://doi.org/10.3390/math6120320 doi: 10.3390/math6120320
    [11] S. K. Panda, T. Abdeljawad, C. Ravichandran, A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method, Chaos Solitons Fract., 130 (2020), 109439. https://doi.org/10.1016/j.chaos.2019.109439 doi: 10.1016/j.chaos.2019.109439
    [12] N. Ullah, M. S. Shagari, A. Azam, Fixed point theoremsin complex valued extended $b$-metric spaces, Moroccan J. Pure Appl. Anal., 5 (2019), 140–163. https://doi.org/10.2478/mjpaa-2019-0011 doi: 10.2478/mjpaa-2019-0011
    [13] T. Abdeljawad, K. Abodayeh, N. Mlaiki, On fixed point generalizations to partial $b$-metric spaces, J. Comput. Anal. Appl., 19 (2015), 883–891.
    [14] K. P. Rao, P. Swamy, J. Prasad, A common fixed point theorem in complex valued $b$-metric spaces, Bull. Math. Stat. Res., 1 (2013).
    [15] N. Mlaiki, Double controlled metric-like spaces, J. Inequal. Appl., 2020 (2020), 189. https://doi.org/10.1186/s13660-020-02456-z doi: 10.1186/s13660-020-02456-z
    [16] T. L. Hicks, B. E. Rhodes, A Banach type fixed point theorem, Math. Jpn., 24 (1979), 327–330.
    [17] J. Matkowski, Fixed point theorems for mappings with a contractive iterate at a point, Proc. Am. Math. Soc., 62 (1977), 344–348. https://doi.org/10.2307/2041041 doi: 10.2307/2041041
    [18] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76. https://doi.org/10.4064/FM-74-3-181-187 doi: 10.4064/FM-74-3-181-187
    [19] H. Afshari, M. Atapour, H. Aydi, Generalized ${\varrho-\psi-Geraghty}$ multivalued mappings on $b$-metric spaces endowed with a graph, J. Appl. Eng. Math., 7 (2017), 248–260.
    [20] M. S. Aslam, M. F. Bota, M. S. R. Chowdhury, L. Guran, N. Saleem, Common fixed points technique for existence of a solution of Urysohn type integral equations system in complex valued $b$-metric spaces, Mathematics, 9 (2021), 400. https://doi.org/10.3390/math9040400 doi: 10.3390/math9040400
    [21] N. Alharbi, H. Aydi, A. Felhi, C. Ozel, S. Sahmim, $\varrho$-contractive mappings on rectangular $b$-metric spaces and an application to integral equations, J. Math. Anal., 9 (2018), 47–60.
    [22] H. Aydi, E. Karapinar, M. F. Bota, S. Mitrović, A fixed point theorem for set-valued quasi-contractions in $b$-metric spaces, Fixed Point Theory Appl., 2012 (2012), 88. https://doi.org/10.1186/1687-1812-2012-88 doi: 10.1186/1687-1812-2012-88
    [23] H. Aydi, M. F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak $\phi$-contractions on $b$-metric spaces, Fixed Point Theory, 13 (2012), 337–346.
    [24] O. A. Arqub, Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm, Int. J. Numer. Method Heat Fluid Flow, 28 (2018), 828–856. https://doi.org/10.1108/HFF-07-2016-0278 doi: 10.1108/HFF-07-2016-0278
    [25] O. A. Arqub, Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method, Int. J. Numer. Meth. Heat Fluid Flow, 11 (2020), 4711–4733. https://doi.org/10.1108/HFF-10-2017-0394 doi: 10.1108/HFF-10-2017-0394
    [26] O. A. Arqub, Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm, Fundam. Inf., 146 (2016), 231–254. https://doi.org/10.3233/FI-2016-1384 doi: 10.3233/FI-2016-1384
    [27] M. M. A. Khater, S. K. Elagan, M. A. El-Shorbagy, S. H. Alfalqi, J. F. Alzaidi, N. A. Alshehri, Folded novel accurate analytical and semi-analytical solutions of a generalized Calogero–Bogoyavlenskii–Schiff equation, Commun. Theor. Phys., 73 (2021), 095003. https://dx.doi.org/10.1088/1572-9494/ac049f doi: 10.1088/1572-9494/ac049f
    [28] M. M. A. Khater, D. Lu, Analytical versus numerical solutions of the nonlinear fractional time–space telegraph equation, Mod. Phys. Let. B, 35 (2021), 2150324. https://doi.org/10.1142/S0217984921503243 doi: 10.1142/S0217984921503243
    [29] M. M. A. Khater, Abundant breather and semi-analytical investigation: on high-frequency waves' dynamics in the relaxation medium, Mod. Phys. Let. B, 35 (2021), 2150372. https://doi.org/10.1142/S0217984921503723 doi: 10.1142/S0217984921503723
    [30] S. Sivasankaran, M. M. Arjunan, V. Vijayakumar, Existence of global solutions for second order impulsive abstract partial differential equations, Nonlinear Anal., 74 (2011), 6747–6757. https://doi.org/10.1016/j.na.2011.06.054 doi: 10.1016/j.na.2011.06.054
    [31] V. Vijayakumar, Approximate controllability for a class of second-order stochastic evolution inclusions of Clarke's Subdifferential type, Results Math., 73 (2018), 42. https://doi.org/10.1007/s00025-018-0807-8 doi: 10.1007/s00025-018-0807-8
    [32] A. Singh, A, Shukla, V. Vijayakumar, R. Udhayakumar, Asymptotic stability of fractional order (1, 2] stochastic delay differential equations in Banach spaces, Chaos Solitons Fract., 150 (2021), 111095. https://doi.org/10.1016/j.chaos.2021.111095 doi: 10.1016/j.chaos.2021.111095
    [33] T. Aysegul, On double controlled metric-like spaces and related fixed point theorems, Adv. Theory Nonlinear Anal. Appl., 5 (2021), 167–172. https://doi.org/10.31197/atnaa.869586 doi: 10.31197/atnaa.869586
    [34] T. Kamran, M. Samreen, Q. U. Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1469) PDF downloads(73) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog