As a generalization of BE-algebras, the pseudo BE-algebra was introduced by Borzooei et al., and the notions of pseudo subalgebras and pseudo filters in pseudo BE-algebras were defined, and some related properties were investigated. In order to further study pseudo subalgebras and pseudo filters in pseudo BE-algebras, concepts of pseudo atom, atomic pseudo BE-algebra, and atomic pseudo filter are introduced and related studies are conducted. The conditions under which pseudo-filters can be created using a nonempty set, and the conditions under which non-unit elements can be pseudo-atoms are explored. Characterization of atomic pseudo BE-algebra is discussed, and conditions are provided under which pseudo subalgebra can be pseudo filters. The relationship between a set of pseudo atoms and a pseudo subalgebra is considered, and the conditions under which a pseudo filter can be atomic are found.
Citation: Sun Shin Ahn, Young Joo Seo, Young Bae Jun. Pseudo subalgebras and pseudo filters in pseudo BE-algebras[J]. AIMS Mathematics, 2023, 8(2): 4964-4972. doi: 10.3934/math.2023248
As a generalization of BE-algebras, the pseudo BE-algebra was introduced by Borzooei et al., and the notions of pseudo subalgebras and pseudo filters in pseudo BE-algebras were defined, and some related properties were investigated. In order to further study pseudo subalgebras and pseudo filters in pseudo BE-algebras, concepts of pseudo atom, atomic pseudo BE-algebra, and atomic pseudo filter are introduced and related studies are conducted. The conditions under which pseudo-filters can be created using a nonempty set, and the conditions under which non-unit elements can be pseudo-atoms are explored. Characterization of atomic pseudo BE-algebra is discussed, and conditions are provided under which pseudo subalgebra can be pseudo filters. The relationship between a set of pseudo atoms and a pseudo subalgebra is considered, and the conditions under which a pseudo filter can be atomic are found.
[1] | S. S. Ahn, Y. H. Kim, J. M. Ko, Filters in commutative BE-algebras, Commun. Korean Math. Soc., 27 (2012), 233–242. https://doi.org/10.4134/CKMS.2012.27.2.233 doi: 10.4134/CKMS.2012.27.2.233 |
[2] | S. S. Ahn, K. S. So, On ideals and upper sets in BE-algebras, Sci. Math. Jpn., 68 (2008), 279–285. |
[3] | R. A. Borzooei, A. Borumand Saeid, A. Rezaei, A. Radfar, R. Ameri, On pseudo BE-algebras, Discuss. Math., General Algebra Appl., 33 (2013), 95–108. https://doi.org/10.7151/dmgaa.1193 |
[4] | R. A. Borzooei, A. Borumand Saeid, A. Rezaei, A. Radfar, R. Ameri, Distributive pseudo BE-algebras, Fasciculi Math., 54 (2015), 21–39. https://doi.org/10.1515/fascmath-2015-0002 doi: 10.1515/fascmath-2015-0002 |
[5] | Z. Ciloǧlu, Y. Ceven, Commutative and bounded BE-algebras, Algebra, 2013 (2013), 1–6. http://dx.doi.org/10.1155/2013/473714 doi: 10.1155/2013/473714 |
[6] | L. C. Ciungu, Commutative pseudo BE-algebras, Iran. J. Fuzzy Syst., 13 (2016), 131–144. |
[7] | W. A. Dudek, Y. B. Jun, Pseudo-BCI algebras, East Asian Math. J., 24 (2008), 187–190. |
[8] | K. Iséki, An algebra related with a propositional calculus, Proc. Jpn Acad., 42 (1966), 26–29. https://doi.org/10.3792/pja/1195522171 doi: 10.3792/pja/1195522171 |
[9] | Y. B. Jun, H. S. Kim, J. Neggers, On pseudo-BCI ideals of pseudo-BCI algebras, Mat. Vesnik, 58 (2006), 39–46. |
[10] | H. S. Kim, Y. H. Kim, On BE-algebras, Sci. Math. Jpn., 66 (2007), 113–116. https://doi.org/10.32219/isms.66.1_113 |
[11] | H. S. Kim, K. J. Lee, Extended upper sets in BE-algebras, Bull. Malays. Math. Sci. Soc., 34 (2011), 511–520. |
[12] | B. L. Meng, On filters in BE-algebras, Sci. Math. Jpn., 71 (2010), 201–207. |
[13] | A. Rezaei, A. Borumand Saeid, On fuzzy subalgebras of BE-algebras, Afr. Mat., 22 (2011), 115–127. https://doi.org/10.1007/s13370-011-0011-4 doi: 10.1007/s13370-011-0011-4 |
[14] | A. Rezaei, A. Borumand Saeid, Some results in BE-algebras, An. Univ. Oradea, Fasc. Mat., 19 (2012), 33–44. |
[15] | A. Rezaei, A. Borumand Saeid, Commutative ideals in BE-algebras, Kyungpook Math. J., 52 (2012), 483–494. https://doi.org/10.5666/KMJ.2012.52.4.483 doi: 10.5666/KMJ.2012.52.4.483 |
[16] | A. Rezaei, A. Borumand Saeid, R. A. Borzooei, Relation between Hilbert algebras and BE-algebras, Appl. Appl. Math., 8 (2013), 573–584. |
[17] | A. Rezaei, A. Borumand Saeid, A. Radfar, R. A. Borzooei, Congruence relations on pseudo BE-algebras, Ann. Univ. Craiova, Math. Comput. Sci. Ser., 41 (2014), 166–176. |