In this paper, we introduce the notion of pseudo-semi-normed linear spaces, following the concept of pseudo-norm which was presented by Schaefer and Wolff, and illustrate their relationship. On the other hand, we introduce the concept of fuzzy pseudo-semi-norm, which is weaker than the notion of fuzzy pseudo-norm initiated by N$ \tilde{\rm{a}} $d$ \tilde{\rm{a}} $ban. Moreover, we give some examples which are according to the commonly used $ t $-norms. Finally, we establish norm structures of fuzzy pseudo-semi-normed spaces and provide (fuzzy) topological spaces induced by (fuzzy) pseudo-semi-norms, and prove that the (fuzzy) topological spaces are (fuzzy) Hausdorff.
Citation: Yaoqiang Wu. On (fuzzy) pseudo-semi-normed linear spaces[J]. AIMS Mathematics, 2022, 7(1): 467-477. doi: 10.3934/math.2022030
In this paper, we introduce the notion of pseudo-semi-normed linear spaces, following the concept of pseudo-norm which was presented by Schaefer and Wolff, and illustrate their relationship. On the other hand, we introduce the concept of fuzzy pseudo-semi-norm, which is weaker than the notion of fuzzy pseudo-norm initiated by N$ \tilde{\rm{a}} $d$ \tilde{\rm{a}} $ban. Moreover, we give some examples which are according to the commonly used $ t $-norms. Finally, we establish norm structures of fuzzy pseudo-semi-normed spaces and provide (fuzzy) topological spaces induced by (fuzzy) pseudo-semi-norms, and prove that the (fuzzy) topological spaces are (fuzzy) Hausdorff.
[1] | C. Alegre, S. Romaguera, Characterizations of fuzzy metrizable topological vector spaces and their asymmetric generalization in terms of fuzzy (quasi-)norms, Fuzzy Sets Syst., 161 (2010), 2181–2192. doi: 10.1016/j.fss.2010.04.002. doi: 10.1016/j.fss.2010.04.002 |
[2] | T. Bag, S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11 (2003), 687–705. Available from: https://d.wanfangdata.com.cn/periodical/9b676815c8ed1010b9efd513cb13e052. |
[3] | T. Bag, S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets Syst., 151 (2005), 513–547. doi: 10.1016/j.fss.2004.05.004. doi: 10.1016/j.fss.2004.05.004 |
[4] | T. Bag, S. K. Samanta, Finite dimensional fuzzy normed linear spaces, Ann. Fuzzy Math. Inform., 6 (2013), 271–283. Available from: http://afmi.or.kr/papers/2013/Vol-06_No-02/AFMI-6-2(227–453)/AFMI-6-2(271–283)-H-120903.pdf. |
[5] | T. Bag, S. K. Samanta, Operator's fuzzy norm and some properties, Fuzzy Inf. Eng., 7 (2015), 151–164. doi: 10.1016/j.fiae.2015.05.002. doi: 10.1016/j.fiae.2015.05.002 |
[6] | C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182–190. doi: 10.1016/0022-247X(68)90057-7. |
[7] | S. C. Cheng, J. N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86 (1994), 429–436. Available from: https://creighton.pure.elsevier.com/en/publications/fuzzy-linear-operators-and-fuzzy-normed-linear-spaces. |
[8] | N. R. Das, P. Das, Fuzzy topology generated by fuzzy norm, Fuzzy Sets Syst., 107 (1999), 349–354. doi: 10.1016/S0165-0114(97)00302-3. doi: 10.1016/S0165-0114(97)00302-3 |
[9] | C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets Syst., 48 (1992), 239–248. doi: 10.1016/0165-0114(92)90338-5. doi: 10.1016/0165-0114(92)90338-5 |
[10] | J. X. Fang, On $I$-topology generated by fuzzy norm, Fuzzy Sets Syst., 157 (2006), 2739–2750. doi: 10.1016/j.fss.2006.03.024. doi: 10.1016/j.fss.2006.03.024 |
[11] | A. K. Katsaras, Fuzzy topological vector spaces I, Fuzzy Sets Syst., 6 (1981), 85–95. doi: 10.1016/0165-0114(81)90082-8. doi: 10.1016/0165-0114(81)90082-8 |
[12] | A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets Syst., 12 (1984), 143–154. doi: 10.1016/0165-0114(84)90034-4. doi: 10.1016/0165-0114(84)90034-4 |
[13] | I. Kramosil, J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 336–344. Available from: http://www.kybernetika.cz/content/1975/5/336/paper.pdf. |
[14] | E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Boston/London/Dordrecht: Kluwer Academic Publishers, 2000. |
[15] | N. N. Morsi, On fuzzy pseudo-normed vector spaces, Fuzzy Sets Syst., 27 (1988), 351–372. doi: 10.1016/0165-0114(88)90061-9. doi: 10.1016/0165-0114(88)90061-9 |
[16] | S. Nãdãban, Fuzzy pseudo-norms and fuzzy F-spaces, Fuzzy Sets Syst., 282 (2016), 99–114. doi: 10.1016/j.fss.2014.12.010. doi: 10.1016/j.fss.2014.12.010 |
[17] | S. Nãdãban, I. Dzitac, Atomic decompositions of fuzzy normed linear spaces for wavelet applications, Informatica, 25 (2014), 643–662. doi: 10.15388/Informatica.2014.33. doi: 10.15388/Informatica.2014.33 |
[18] | I. M. Pérez, M. A. P. Vicente, A representation theorem for fuzzy pseudometrics, Fuzzy Sets Syst., 195 (2012), 90–99. doi: 10.1016/j.fss.2011.11.008. doi: 10.1016/j.fss.2011.11.008 |
[19] | I. Sadeqi, F. S. Kia, Fuzzy normed linear space and its topological structure, Chaos Soliton. Fract., 40 (2009), 2576–2589. doi: 10.1016/j.chaos.2007.10.051. doi: 10.1016/j.chaos.2007.10.051 |
[20] | M. Saheli, Fuzzy topology generated by fuzzy norm, Iran. J. Fuzzy Syst., 13 (2016), 113–123. doi: 10.22111/IJFS.2016.2599. doi: 10.22111/IJFS.2016.2599 |
[21] | H. H. Schaefer, M. P. Wolff, Topological vector spaces, 2 Eds., New York: Springer, 1999. |
[22] | B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313–334. doi: 10.2140/pjm.1960.10.313. |
[23] | J. Z. Xiao, X. H. Zhu, Fuzzy normed space of operators and its completeness, Fuzzy Sets Syst., 133 (2003), 389–399. doi: 10.1016/S0165-0114(02)00274-9. doi: 10.1016/S0165-0114(02)00274-9 |
[24] | J. Z. Xiao, X. H. Zhu, H. Zhou, On the topological structure of KM fuzzy metric spaces and normed spaces, IEEE T. Fuzzy Syst., 28 (2020), 1575–1584. doi: 10.1109/TFUZZ.2019.2917858. doi: 10.1109/TFUZZ.2019.2917858 |
[25] | G. H. Xu, J. X. Fang, A new $I$-vector topology generated by a fuzzy norm, Fuzzy Sets Syst., 158 (2007), 2375–2385. doi: 10.1016/j.fss.2007.04.020. doi: 10.1016/j.fss.2007.04.020 |