Research article

$ N_b $-fuzzy metric spaces with topological properties and applications

  • Received: 08 August 2022 Revised: 17 November 2022 Accepted: 22 November 2022 Published: 26 December 2022
  • MSC : 47H10, 54A40, 54E35, 54E40, 54H25

  • Our aim is to introduce the notion of $ N_{b} $-fuzzy metric space (FMS). We also define quasi $ N $-FMS, and pseudo $ N_{b} $-FMS with examples and counterexamples and prove a decomposition theorem for pseudo $ N_{b} $-FMS. We prove various theorems related to the convergence of sequences and analyze topology of symmetric $ N_{b} $-FMS. At last, we provide an application of $ q $-contraction mapping as a Banach contraction principle (BCP) in the structure of symmetric $ N_{b} $-FMS and applied it in the solution of integral equations and linear equations.

    Citation: Jerolina Fernandez, Hüseyin Işık, Neeraj Malviya, Fahd Jarad. $ N_b $-fuzzy metric spaces with topological properties and applications[J]. AIMS Mathematics, 2023, 8(3): 5879-5898. doi: 10.3934/math.2023296

    Related Papers:

  • Our aim is to introduce the notion of $ N_{b} $-fuzzy metric space (FMS). We also define quasi $ N $-FMS, and pseudo $ N_{b} $-FMS with examples and counterexamples and prove a decomposition theorem for pseudo $ N_{b} $-FMS. We prove various theorems related to the convergence of sequences and analyze topology of symmetric $ N_{b} $-FMS. At last, we provide an application of $ q $-contraction mapping as a Banach contraction principle (BCP) in the structure of symmetric $ N_{b} $-FMS and applied it in the solution of integral equations and linear equations.



    加载中


    [1] S. Gähler, 2-metrische Räume ihre topologische Struktur, Math. Nachr., 26 (1963), 115–148. https://doi.org/10.1002/mana.19630260109 doi: 10.1002/mana.19630260109
    [2] B. C. Dhage, Generalized metric space and mapping with fixed point, Bull. Cal. Math. Soc., 84 (1992), 329–336.
    [3] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297.
    [4] M. Jleli, B. Samet, Remarks on $G$-metric spaces and fixed point theorems, Fixed Point Theory Appl., 2012 (2012), 201. https://doi.org/10.1186/1687-1812-2012-210 doi: 10.1186/1687-1812-2012-210
    [5] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesn., 64 (2012), 258–266.
    [6] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems for contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087
    [7] J. Fernandez, N. Malviya, B. Fisher, The asymptotically regularity and sequences in partial cone b-metric spaces with application, Filomat, 30 (2016), 2749–2760. https://doi.org/10.2298/FIL1610749F doi: 10.2298/FIL1610749F
    [8] J. Fernandez, G. Modi, N. Malviya, Some fixed point theorems for contractive maps in N-cone metric spaces, Math. Sci., 9 (2015), 33–38. https://doi.org/10.1007/s40096-015-0145-x doi: 10.1007/s40096-015-0145-x
    [9] J. Fernandez, N. Malviya, Z. D. Mitrović, A. Hussain, V. Parvaneh, Some fixed point results on Nb-cone metric spaces over Banach algebra, Adv. Differ. Equ., 2020 (2020), 529. https://doi.org/10.1186/s13662-020-02991-5 doi: 10.1186/s13662-020-02991-5
    [10] N. Malviya, B. Fisher, $N$-cone metric space and fixed points of asymptotically regular maps, Filomat, 11 (2013).
    [11] I. A. Bakhtin, The contraction mapping principle in quasi-metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30 (1989), 26–37.
    [12] Y. Rohen, T. Dosenović, S. Radenović, A note on the paper "A fixed point theorems in Sb-metric spaces", Filomat, 31 (2017), 3335–3346. https://doi.org/10.2298/FIL1711335R doi: 10.2298/FIL1711335R
    [13] S. Sedghi, A. Gholidahneh, T. Dosenović, J. Esfahani, S. Radenović, Common fixed point of four maps in $ S_b $-metric spaces, J. Linear Topol. Algebra, 5 (2016), 93–104.
    [14] N. Souayan, N. Mlaiki, A fixed point theorem in $ S_b $-metric spaces, J. Math. Comput. Sci., 16 (2016), 131–139. https://doi.org/10.22436/JMCS.016.02.01 doi: 10.22436/JMCS.016.02.01
    [15] O. Kramosil, J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 326–334.
    [16] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7
    [17] K. A. Khan, Generalized fuzzy metric spaces with an application to colour image filtering, Global J. Pure Appl. Math., 13 (2017), 3601–3616. https://doi.org/10.37622/GJPAM/13.7.2017.3601-3616 doi: 10.37622/GJPAM/13.7.2017.3601-3616
    [18] N. M. Ralević, M. V. Paunović, B. D. Iričanin, Fuzzy metric space and applications in image processing, Math. Montisnigri, 48 (2020), 103–117. https://doi.org/10.20948/mathmontis-2020-48-9 doi: 10.20948/mathmontis-2020-48-9
    [19] F. Mehmood, R. Ali, C. Ionescu, T. Kamram, Extended fuzzy $b$-metric spaces, J. Math. Anal., 8 (2017), 124–131.
    [20] S. Nǎdǎban, Fuzzy $b$-metric spaces, Int. J. Comput. Commun. Control, 11 (2016), 273–281. https://doi.org/10.15837/ijccc.2016.2.2443 doi: 10.15837/ijccc.2016.2.2443
    [21] D. Rakić, A. Mukheimer, T. Došenović, Z. D. Mitrović, S. Radenović, On some new fixed point results in fuzzy b-metric spaces, J. Inequal. Appl., 2020 (2020), 99. https://doi.org/10.1186/s13660-020-02371-3 doi: 10.1186/s13660-020-02371-3
    [22] G. Sun, K. Yang, Generalized fuzzy metric spaces with properties, Res. J. Appl. Sci. Eng. Technol., 2 (2010), 673–678.
    [23] M. Jeyaraman, D. Poovaragavan, S. Sowndrarajan, S. Manrod, Fixed point theorems for dislocated quasi $G$-fuzzy metric spaces, Commun. Nonlinear Anal., 1 (2019), 23–31.
    [24] N. Malviya, The N-fuzzy metric spaces and mappings with application, Fasc. Math., 55 (2015), 133–151. https://doi.org/10.1515/fascmath-2015-0019 doi: 10.1515/fascmath-2015-0019
    [25] M. Zhou, X. Liu, N. A. Secelean, Fixed point theorems for generalized Kannan-type mappings in a new type of fuzzy metric space, J. Math., 2020 (2020), 1712486. https://doi.org/10.1155/2020/1712486 doi: 10.1155/2020/1712486
    [26] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 314–334.
    [27] A. Sharma, M. Tiwari, R. Bhardwaj, Pseudo-S-metric spaces and pseudo-S-metric product spaces, Int. J. Theoret. Appl. Sci., 8 (2016), 139–141.
    [28] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29 (2002), 531–536. https://doi.org/10.1155/S0161171202007524 doi: 10.1155/S0161171202007524
    [29] M. S. Ashraf, R. Ali, N. Hussain, Geraghty type contractions in fuzzy b-metric spaces with application to integral equations, Filomat, 34 (2020), 3083–3098. https://doi.org/10.2298/FIL2009083A doi: 10.2298/FIL2009083A
    [30] M. S. Ashraf, R. Ali, N. Hussain, New fuzzy fixed point results in generalized fuzzy metric spaces with application to integral equations, IEEE Access, 8 (2020), 91653–91660. https://doi.org/10.1109/ACCESS.2020.2994130 doi: 10.1109/ACCESS.2020.2994130
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1447) PDF downloads(123) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog