Our aim is to introduce the notion of $ N_{b} $-fuzzy metric space (FMS). We also define quasi $ N $-FMS, and pseudo $ N_{b} $-FMS with examples and counterexamples and prove a decomposition theorem for pseudo $ N_{b} $-FMS. We prove various theorems related to the convergence of sequences and analyze topology of symmetric $ N_{b} $-FMS. At last, we provide an application of $ q $-contraction mapping as a Banach contraction principle (BCP) in the structure of symmetric $ N_{b} $-FMS and applied it in the solution of integral equations and linear equations.
Citation: Jerolina Fernandez, Hüseyin Işık, Neeraj Malviya, Fahd Jarad. $ N_b $-fuzzy metric spaces with topological properties and applications[J]. AIMS Mathematics, 2023, 8(3): 5879-5898. doi: 10.3934/math.2023296
Our aim is to introduce the notion of $ N_{b} $-fuzzy metric space (FMS). We also define quasi $ N $-FMS, and pseudo $ N_{b} $-FMS with examples and counterexamples and prove a decomposition theorem for pseudo $ N_{b} $-FMS. We prove various theorems related to the convergence of sequences and analyze topology of symmetric $ N_{b} $-FMS. At last, we provide an application of $ q $-contraction mapping as a Banach contraction principle (BCP) in the structure of symmetric $ N_{b} $-FMS and applied it in the solution of integral equations and linear equations.
[1] | S. Gähler, 2-metrische Räume ihre topologische Struktur, Math. Nachr., 26 (1963), 115–148. https://doi.org/10.1002/mana.19630260109 doi: 10.1002/mana.19630260109 |
[2] | B. C. Dhage, Generalized metric space and mapping with fixed point, Bull. Cal. Math. Soc., 84 (1992), 329–336. |
[3] | Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297. |
[4] | M. Jleli, B. Samet, Remarks on $G$-metric spaces and fixed point theorems, Fixed Point Theory Appl., 2012 (2012), 201. https://doi.org/10.1186/1687-1812-2012-210 doi: 10.1186/1687-1812-2012-210 |
[5] | S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesn., 64 (2012), 258–266. |
[6] | L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems for contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087 |
[7] | J. Fernandez, N. Malviya, B. Fisher, The asymptotically regularity and sequences in partial cone b-metric spaces with application, Filomat, 30 (2016), 2749–2760. https://doi.org/10.2298/FIL1610749F doi: 10.2298/FIL1610749F |
[8] | J. Fernandez, G. Modi, N. Malviya, Some fixed point theorems for contractive maps in N-cone metric spaces, Math. Sci., 9 (2015), 33–38. https://doi.org/10.1007/s40096-015-0145-x doi: 10.1007/s40096-015-0145-x |
[9] | J. Fernandez, N. Malviya, Z. D. Mitrović, A. Hussain, V. Parvaneh, Some fixed point results on Nb-cone metric spaces over Banach algebra, Adv. Differ. Equ., 2020 (2020), 529. https://doi.org/10.1186/s13662-020-02991-5 doi: 10.1186/s13662-020-02991-5 |
[10] | N. Malviya, B. Fisher, $N$-cone metric space and fixed points of asymptotically regular maps, Filomat, 11 (2013). |
[11] | I. A. Bakhtin, The contraction mapping principle in quasi-metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30 (1989), 26–37. |
[12] | Y. Rohen, T. Dosenović, S. Radenović, A note on the paper "A fixed point theorems in Sb-metric spaces", Filomat, 31 (2017), 3335–3346. https://doi.org/10.2298/FIL1711335R doi: 10.2298/FIL1711335R |
[13] | S. Sedghi, A. Gholidahneh, T. Dosenović, J. Esfahani, S. Radenović, Common fixed point of four maps in $ S_b $-metric spaces, J. Linear Topol. Algebra, 5 (2016), 93–104. |
[14] | N. Souayan, N. Mlaiki, A fixed point theorem in $ S_b $-metric spaces, J. Math. Comput. Sci., 16 (2016), 131–139. https://doi.org/10.22436/JMCS.016.02.01 doi: 10.22436/JMCS.016.02.01 |
[15] | O. Kramosil, J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 326–334. |
[16] | A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7 |
[17] | K. A. Khan, Generalized fuzzy metric spaces with an application to colour image filtering, Global J. Pure Appl. Math., 13 (2017), 3601–3616. https://doi.org/10.37622/GJPAM/13.7.2017.3601-3616 doi: 10.37622/GJPAM/13.7.2017.3601-3616 |
[18] | N. M. Ralević, M. V. Paunović, B. D. Iričanin, Fuzzy metric space and applications in image processing, Math. Montisnigri, 48 (2020), 103–117. https://doi.org/10.20948/mathmontis-2020-48-9 doi: 10.20948/mathmontis-2020-48-9 |
[19] | F. Mehmood, R. Ali, C. Ionescu, T. Kamram, Extended fuzzy $b$-metric spaces, J. Math. Anal., 8 (2017), 124–131. |
[20] | S. Nǎdǎban, Fuzzy $b$-metric spaces, Int. J. Comput. Commun. Control, 11 (2016), 273–281. https://doi.org/10.15837/ijccc.2016.2.2443 doi: 10.15837/ijccc.2016.2.2443 |
[21] | D. Rakić, A. Mukheimer, T. Došenović, Z. D. Mitrović, S. Radenović, On some new fixed point results in fuzzy b-metric spaces, J. Inequal. Appl., 2020 (2020), 99. https://doi.org/10.1186/s13660-020-02371-3 doi: 10.1186/s13660-020-02371-3 |
[22] | G. Sun, K. Yang, Generalized fuzzy metric spaces with properties, Res. J. Appl. Sci. Eng. Technol., 2 (2010), 673–678. |
[23] | M. Jeyaraman, D. Poovaragavan, S. Sowndrarajan, S. Manrod, Fixed point theorems for dislocated quasi $G$-fuzzy metric spaces, Commun. Nonlinear Anal., 1 (2019), 23–31. |
[24] | N. Malviya, The N-fuzzy metric spaces and mappings with application, Fasc. Math., 55 (2015), 133–151. https://doi.org/10.1515/fascmath-2015-0019 doi: 10.1515/fascmath-2015-0019 |
[25] | M. Zhou, X. Liu, N. A. Secelean, Fixed point theorems for generalized Kannan-type mappings in a new type of fuzzy metric space, J. Math., 2020 (2020), 1712486. https://doi.org/10.1155/2020/1712486 doi: 10.1155/2020/1712486 |
[26] | B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 314–334. |
[27] | A. Sharma, M. Tiwari, R. Bhardwaj, Pseudo-S-metric spaces and pseudo-S-metric product spaces, Int. J. Theoret. Appl. Sci., 8 (2016), 139–141. |
[28] | A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29 (2002), 531–536. https://doi.org/10.1155/S0161171202007524 doi: 10.1155/S0161171202007524 |
[29] | M. S. Ashraf, R. Ali, N. Hussain, Geraghty type contractions in fuzzy b-metric spaces with application to integral equations, Filomat, 34 (2020), 3083–3098. https://doi.org/10.2298/FIL2009083A doi: 10.2298/FIL2009083A |
[30] | M. S. Ashraf, R. Ali, N. Hussain, New fuzzy fixed point results in generalized fuzzy metric spaces with application to integral equations, IEEE Access, 8 (2020), 91653–91660. https://doi.org/10.1109/ACCESS.2020.2994130 doi: 10.1109/ACCESS.2020.2994130 |