Citation: Mehmet Gülbahar. Qualar curvatures of pseudo Riemannian manifolds and pseudo Riemannian submanifolds[J]. AIMS Mathematics, 2021, 6(2): 1366-1376. doi: 10.3934/math.2021085
[1] | A. L. Albujer, S. Haesen, A geometrical interpretation of the null sectional curvature, J. Geom. Phys., 60 (2010), 471-476. doi: 10.1016/j.geomphys.2009.11.002 |
[2] | M. A. Akyol, Y. Gündüzalp, Semi-invariant semi-Riemannian submersions, Commun. Fac. Sci. Univ. Ank. Series A1, 67 (2018), 80-92. |
[3] | G. Bǎdiţoiu, S. Ianuş, Semi-Riemannian submersions from real and complex pseudo-hyperbolic spaces, Differ. Geom. Appl., 16 (2002), 74-94. |
[4] | H. Baum, Spin structures and Dirac operators on pseudo-Riemannian manifolds, Leipzig: BSB B. G. Teubner Verlagsgesellschaft, 1981. |
[5] | J. K. Beem, Global Lorentzian geometry, Routledge, 2017. |
[6] | A. Bejancu, H. R. Farran, Foliations and geometric structures, Springer Science, 2006. |
[7] | B. Y. Chen, Riemannian submanifolds, In: Handbook of Differential Geometry, Amsterdam: North Holland, 2000,187-418. |
[8] | B. Y. Chen, Pseudo-Riemannian geometry, δ-invariants and applications, Hackensack, NJ: World Scientific Publishing, 2011. |
[9] | M. Dajczer, K. Nomizu, On sectional curvature of indefinite metrics II, Math. Ann., 247 (1980), 279-282. doi: 10.1007/BF01348960 |
[10] | K. L. Duggal, A. Bejancu, Lightlike submanifolds of semi-Riemannian manifolds and applications, Springer Science, 1996. |
[11] | K. I. Duggal, B. Sahin, Differential geometry of lightlike submanifolds, Springer Science, 2010. |
[12] | I. Kupeli Erken, C. Murathan, Slant Riemannian submersions from Sasakian manifolds, Arab J. Math. Sci., 22 (2016), 250-264. |
[13] | G. R. Eduardo, N. D. Kupeli, Semi-Riemannian maps and their applications, Dordrecht: Springer Science, 2013. |
[14] | A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mechan., 16 (1967), 715-737. |
[15] | Y. Gündüzalp, B. Şahin, Paracontact semi-Riemannian submersions, Turk. J. Math., 37 (2013), 114-128 |
[16] | S. G. Harris, A triangle comparison theorem for Lorentz manifolds, Indiana Univ. Math. J., 31 (1982), 289-308. doi: 10.1512/iumj.1982.31.31026 |
[17] | S. G. Harris, A characterization of Robertson Walker spaces by null sectional curvature, Gen. Relativ. Grav., 17 (1985), 493-498. doi: 10.1007/BF00761906 |
[18] | M. Jamali, M. H. Shahid, Null sectional curvature pinching for CR-lightlike submanifolds of semiRiemannian manifolds, Bul. Math. Anal. Appl., 4 (2012), 108-115. |
[19] | J. Kwon, Y. J. Suh, On sectional and Ricci curvatures of semi-Riemannian submersions, Kodai Math. J., 20 (1997), 53-66. doi: 10.2996/kmj/1138043720 |
[20] | T. Levi-Civita, Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura Riemanniana, Mat. Palermo, 42 (1917), 173-205. |
[21] | J. Li, Umbilical hypersurfaces of Minkowski spaces, Math. Commun., 17 (2012), 63-70. |
[22] | M. Nardmann, Pseudo-Riemannian metrics with prescribed scalar curvature, arXiv: math/0409435, 2014. |
[23] | B. O'Neill, Semi-Riemannian geometry with applications to relativity, New York: Academic Press, Inc., 1983. |
[24] | V. Rovenski, Foliations, submanifolds, and mixed curvature, J. Math. Sci., 99 (2000), 1699-1787. |
[25] | M. M. Tripathi, M. Gülbahar, E. Kılıç, S. Keleş, Inequalities for scalar curvature of pseudo-Riemannian submanifolds, J. Geom. Phys., 112 (2017), 74-84. |