$\begin{gathered}
{\Upsilon _0}(r, t) = 1 + {e^r}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\Upsilon _3}(r, t) = \frac{{{e^r}{t^{3q}}}}{{\Gamma (1 + 3q)}}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \\
{\psi _0}(r, t) = - 1 + {e^r}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\psi _3}(r, t) = - \frac{{{e^r}{t^{3q}}}}{{\Gamma (1 + 3q)}}, \, \, \, \, \, \, \, \, \, \, \, \, \\
{\Upsilon _1}(r, t) = \frac{{{e^r}{t^q}}}{{\Gamma (1 + q)}}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\Upsilon _4}(r, t) = \frac{{{e^r}{t^{4q}}}}{{\Gamma (1 + 4q)}}, \, \, \, \, \\
{\psi _1}(r, t) = - \frac{{{e^r}{t^q}}}{{\Gamma (1 + q)}}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\psi _4}(r, t) = \frac{{{e^r}{t^{4q}}}}{{\Gamma (1 + 4q)}}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \\
{\Upsilon _2}(r, t) = \frac{{{e^r}{t^{2q}}}}{{\Gamma (1 + 2q)}}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\Upsilon _5}(r, t) = \frac{{{e^r}{t^{5q}}}}{{\Gamma (1 + 5q)}}, \, \, \, \, \\
{\psi _2}(r, t) = \frac{{{e^r}{t^{2q}}}}{{\Gamma (1 + 2q)}}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\psi _5}(r, t) = - \frac{{{e^r}{t^{5q}}}}{{\Gamma (1 + 5q)}}.\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \\
\end{gathered} $
|
(29) |