Loading [Contrib]/a11y/accessibility-menu.js
Research article

New iterative approach for the solutions of fractional order inhomogeneous partial differential equations

  • Received: 17 August 2020 Accepted: 29 October 2020 Published: 18 November 2020
  • MSC : 11J20, 32W50, 39B12

  • In this paper, the study of fractional order partial differential equations is made by using the reliable algorithm of the new iterative method (NIM). The fractional derivatives are considered in the Caputo sense whose order belongs to the closed interval [0, 1]. The proposed method is directly extended to study the fractional-order Roseau-Hyman and fractional order inhomogeneous partial differential equations without any transformation to convert the given problem into integer order. The obtained results are compared with those obtained by Variational Iteration Method (VIM), Homotopy Perturbation Method (HPM), Laplace Variational Iteration Method (LVIM) and the Laplace Adominan Decomposition Method (LADM). The results obtained by NIM, show higher accuracy than HPM, LVIM and LADM. The accuracy of the proposed method improves by taking more iterations.

    Citation: Laiq Zada, Rashid Nawaz, Sumbal Ahsan, Kottakkaran Sooppy Nisar, Dumitru Baleanu. New iterative approach for the solutions of fractional order inhomogeneous partial differential equations[J]. AIMS Mathematics, 2021, 6(2): 1348-1365. doi: 10.3934/math.2021084

    Related Papers:

    [1] Khaled M. Saad, Manal Alqhtani . Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear. AIMS Mathematics, 2021, 6(4): 3788-3804. doi: 10.3934/math.2021225
    [2] Azzh Saad Alshehry, Humaira Yasmin, Ali M. Mahnashi . Analyzing fractional PDE system with the Caputo operator and Mohand transform techniques. AIMS Mathematics, 2024, 9(11): 32157-32181. doi: 10.3934/math.20241544
    [3] Najat Almutairi, Sayed Saber . Chaos control and numerical solution of time-varying fractional Newton-Leipnik system using fractional Atangana-Baleanu derivatives. AIMS Mathematics, 2023, 8(11): 25863-25887. doi: 10.3934/math.20231319
    [4] Aslı Alkan, Halil Anaç . The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 2024, 9(9): 25333-25359. doi: 10.3934/math.20241237
    [5] Muhammad Asim Khan, Norma Alias, Umair Ali . A new fourth-order grouping iterative method for the time fractional sub-diffusion equation having a weak singularity at initial time. AIMS Mathematics, 2023, 8(6): 13725-13746. doi: 10.3934/math.2023697
    [6] Hassan Khan, Umar Farooq, Fairouz Tchier, Qasim Khan, Gurpreet Singh, Poom Kumam, Kanokwan Sitthithakerngkiet . The analytical analysis of fractional order Fokker-Planck equations. AIMS Mathematics, 2022, 7(7): 11919-11941. doi: 10.3934/math.2022665
    [7] Musawa Yahya Almusawa, Hassan Almusawa . Numerical analysis of the fractional nonlinear waves of fifth-order KdV and Kawahara equations under Caputo operator. AIMS Mathematics, 2024, 9(11): 31898-31925. doi: 10.3934/math.20241533
    [8] Ismail Gad Ameen, Dumitru Baleanu, Hussien Shafei Hussien . Efficient method for solving nonlinear weakly singular kernel fractional integro-differential equations. AIMS Mathematics, 2024, 9(6): 15819-15836. doi: 10.3934/math.2024764
    [9] Dumitru Baleanu, Babak Shiri . Nonlinear higher order fractional terminal value problems. AIMS Mathematics, 2022, 7(5): 7489-7506. doi: 10.3934/math.2022420
    [10] Amjid Ali, Teruya Minamoto, Rasool Shah, Kamsing Nonlaopon . A novel numerical method for solution of fractional partial differential equations involving the $ \psi $-Caputo fractional derivative. AIMS Mathematics, 2023, 8(1): 2137-2153. doi: 10.3934/math.2023110
  • In this paper, the study of fractional order partial differential equations is made by using the reliable algorithm of the new iterative method (NIM). The fractional derivatives are considered in the Caputo sense whose order belongs to the closed interval [0, 1]. The proposed method is directly extended to study the fractional-order Roseau-Hyman and fractional order inhomogeneous partial differential equations without any transformation to convert the given problem into integer order. The obtained results are compared with those obtained by Variational Iteration Method (VIM), Homotopy Perturbation Method (HPM), Laplace Variational Iteration Method (LVIM) and the Laplace Adominan Decomposition Method (LADM). The results obtained by NIM, show higher accuracy than HPM, LVIM and LADM. The accuracy of the proposed method improves by taking more iterations.


    Fractional calculus plays a substantial role in different branches of physics, fluid mechanics, diffusive transport, electrical networks, electromagnetic theory, biological sciences and groundwater problems etc. [1,2,3,4]. Many researchers have modelled several physical phenomena using the fractional-order differential equations. As we know that, solving a linear differential equation is easier than that of nonlinear differential equations; therefore, numerous methods have been recommended for solving such type of equations. Some of the numerical and analytical methods for solving linear and nonlinear FDE are, Finite Element Method(FEM), time-space spectral method, compact numerical method [7,18,19], Adomian Decomposition Method (ADM) [5,6], Variational Iteration Method (VIM) [8,9], Homotopy Analysis Method (HAM) [10] and HPM [11]. Each of the above methods has its own advantages and disadvantages.

    Daftardar-Gejji and Jafari presented a powerful method, namely called the new iterative method which works without any small or large parameter in the equation like other perturbation methods. The proposed method has been used in literature for the solution of different nonlinear differential equations [12,13].

    In the present work, NIM has been extended to the solution of fractional order Roseau-Hyman equation and system of Inhomogeneous fractional order partial differential equations. The fractional order Roseau-Hyman equation has the following form [14,15,16].

    $\frac{{{\partial ^q}\Upsilon (r, t)}}{{\partial {t^q}}} = \Upsilon (r, t)\frac{{{\partial ^3}\Upsilon (r, t)}}{{\partial {r^3}}} + \Upsilon (r, t)\frac{{\partial \Upsilon (r, t)}}{{\partial r}} + 3\frac{{\partial \Upsilon (r, t)}}{{\partial r}}\frac{{{\partial ^2}\Upsilon (r, t)}}{{\partial {r^2}}}\, , \, \, \, \, \, \, \, \, t \gt 0, $ (1)

    where, q is the parameter describes order the fractional derivative such that 0 < q≤1, $t$ time, and $r$ represents spatial coordinate. Eq (1) has appeared in the study of the formation of patterns in liquid drops.

    The system of inhomogeneous fractional order partial differential equations has the following form [17].

    $\left\{ \begin{gathered} \frac{{{\partial ^q}\Upsilon (r, t)}}{{\partial {t^q}}} - \frac{{\partial \psi (r, t)}}{{\partial r}} - \Upsilon (r, t) + \psi (r, t) = - 2, \\ \frac{{{\partial ^q}\psi (r, t)}}{{\partial {t^q}}} + \frac{{\partial \Upsilon (r, t)}}{{\partial r}} - \Upsilon (r, t) + \psi (r, t) = - 2. \\ \end{gathered} \right.$ (2)

    The whole paper is divided into six sections. The introduction and literature survey are given in section 1, while section 2 is devoted to the basic definitions from the fractional calculus. The third section contains the fundamental theory of a new iterative method for general fractional order PDE's. In section 4, the proposed method is tested upon fractional order Roseau-Hyman equation and system of inhomogeneous fractional order partial differential equations. In section 5, the listed results are compared with HPM, VIM, LVIM, and LADM solution, which show the precision of the planned method. The conclusions of the paper are presented in the last section.

    To investigate our problems with the help of NIM, we need some basic definitions from fractional calculus.

    Definition 1. The Riemann-Liouville's (R-L) fractional integral is defined as

    $I_r^\alpha = \left\{ \begin{gathered} \frac{1}{{\Gamma \left( \alpha \right)}}{\int_0^r {\left( {r - \xi } \right)} ^{\alpha - 1}}f\left( \xi \right)d\xi & {\rm{if }}\;\alpha {\rm{ \gt 0, }}\, \, t \gt 0, \\ f\left( \xi \right) & {\rm{if }}\;\alpha = {\rm{0, }} \\ \end{gathered} \right.$ (3)

    where Γ denotes the gamma function,

    $ \Gamma \left(p\right) = {{\int }_{0}^{\infty }e}^{-r}{r}^{p-1}dr \quad p\in \mathbb{C}. $

    Definition 2. The Riemann-Liouville fractional derivative of function $f(t)$f with order α is defined as

    $D_{r}^{\alpha} f(r)=\frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{d r^{n}} \int_{0}^{r}(r-\xi)^{n-\alpha-1} f(\xi) d \xi \quad \text { if } \alpha \gt 0, t \gt 0, $ (4)

    where $n$ is a positive integer which satisfies $n - 1 < \alpha \leqslant n$.

    Definition 3. Fractional derivative of order $\alpha $ in the Caputo sense, is defined as:

    For $ n\in N, r>0, t\ge -1\;\text{and}\;\phi \in {\mathbb{C}}_{t}: $

    $D_t^\alpha f\left( r \right) = \left\{ \begin{gathered} {I^{n - \alpha }}\left[ {\frac{{{\partial ^n}}}{{\partial {t^n}}}f\left( r \right)} \right] & \, {\rm{if }}\;n\, - \, 1\, \, \lt \, \, \alpha \, \, \leqslant n, \, \, \, \, \, n \in {\rm N} \\ \frac{{{d^\alpha }}}{{d{t^\alpha }}}\left( {f\left( r \right)} \right) & \, \, \, \, {\rm{if }}\;\alpha \in {\rm N}. \\ \end{gathered} \right.$ (5)

    Definition 4. If $n \in {\rm N}, \, \, n - 1\, < \, \alpha \, \, \le n$ and $f \in \, C_\alpha ^\mu, \, \, \, \mu \ge - 1, $ then

    $I_r^\alpha \left[ {D_r^\alpha f\left( r \right)} \right] = r\left( r \right) + \sum\limits_{i = 0}^{n - 1} {{f^{\left( i \right)}}\left( \xi \right)} \frac{{{{\left( {r - \xi } \right)}^i}}}{{\Gamma \left( {i + 1} \right)}}, \, \, \, \, r \gt 0.$ (6)

    Remarks: Basic properties of fractional integration are, when$ f\in {C}_{\lambda }, \lambda \ge -1, \alpha, \beta \ge 0 $ and $ \xi \ge -1: $

    ●  ${I}_{t}^{\alpha }{I}_{t}^{\beta }f\left(t\right) = {I}_{t}^{\alpha +\beta }f\left(t\right), $

    ●  $\left({I}_{t}^{\alpha }{I}_{t}^{\beta }\right)f\left(t\right) = \left({I}_{t}^{\beta }{I}_{t}^{\alpha }\right)f\left(t\right), $

    ●  ${I}_{t}^{\alpha }{t}^{\gamma } = \frac{\Gamma (\gamma +1)}{\Gamma (\gamma +\alpha +1)}{t}^{\gamma +\alpha }. $

    The new iterative method is presented for fractional order partial differential equation as follows:

    Let us consider fractional order PDE's

    $D_\tau ^\alpha \Upsilon \left( {r, \tau } \right) = \Psi \left( {\Upsilon \left( {r, \tau } \right) + f} \right), $ (7)

    subject to the initial condition

    $\Upsilon \left( {r, 0} \right) = g(m), $ (8)

    where $\Psi $ denotes nonlinear functions of $\Upsilon $. According to the fundamental idea of NIM, and using Eq (8) above Eq (7) takes the form

    $ \left(r, t\right) = g\left(m\right)+\frac{1}{\Gamma \left(\alpha \right)}{\int }_{0}^{r}\Psi {\left(\left(r, t\right), f\right)}^{\alpha -1}dr. $ (9)

    Assuming that the solution of Eq (7) has series form

    $ \left(r, t\right) = {\sum }_{k = 0}^{\infty }\left(r, t\right). $ (10)

    The decomposition of nonlinear operator $\psi \left({\Upsilon \left({r, t} \right)} \right) = \frac{1}{{\Gamma (\alpha)}}\int\limits_0^r {\Psi {{\left({\Upsilon \left({r, t} \right)} \right)}^{\alpha - 1}}} dr$ as follows

    $\psi \left( {\sum\limits_{k = 0}^\infty {\Upsilon \left( {r, t} \right)} } \right) = \psi \left( {\Upsilon (r, t)} \right) + \sum\limits_{k = 1}^\infty {\left\{ {\psi \left( {\sum\limits_{i = 0}^k {\Upsilon (r, t)} } \right) - \psi \left( {\sum\limits_{i = 0}^{k - 1} {\Upsilon (r, t)} } \right)} \right\}} .$ (11)

    Hence general equation of (7) takes the following form

    ${\Upsilon _m}\left( {r, t} \right) = \sum\limits_{k = 0}^\infty {{\Upsilon _m}\left( {r, t} \right)} = g(m) + \psi \left( {{\Upsilon _0}(r, t)} \right) + \sum\limits_{k = 1}^\infty {\left\{ {\psi \left( {\sum\limits_{i = 0}^k {{\Upsilon _m}} (r, t)} \right) - \psi \left( {\sum\limits_{i = 0}^{k - 1} {{\Upsilon _{m - 1}}(r, t)} } \right)} \right\}} , $ (12)

    from the above we have

    $\left\{ \begin{gathered} {\Upsilon _0}(r, t) = g(m), \\ {\Upsilon _1}\left( {r, t} \right) = \psi \left( {{\Upsilon _0}\left( {r, t} \right)} \right), \\ {\Upsilon _2}\left( {r, t} \right) = \psi \left( {{\Upsilon _0}\left( {r, t} \right) + {\Upsilon _1}\left( {r, t} \right)} \right) - \psi \left( {{\Upsilon _0}\left( {r, t} \right)} \right), \\ {\Upsilon _{k + 1}}\left( \chi \right) = \psi \left( {{\Upsilon _0}\left( {r, t} \right) + {\Upsilon _1}\left( {r, t} \right) + ... + {\Upsilon _k}\left( {r, t} \right)} \right) - \psi \left( {{\Upsilon _0}\left( {r, t} \right) + {\Upsilon _1}\left( {r, t} \right) + ... + {\Upsilon _{k - 1}}\left( {r, t} \right)} \right) \\ , k = 1, 2, 3... \\ \end{gathered} \right.$ (13)

    Let $\Upsilon $ is the series solution achieved by NIM and E the error of the solution of (8). Clearly E, satisfies (8), so, we can write

    $ {\rm E}\left(r\right) = f\left(r\right)+\psi \left(E\left(r\right)\right). $ (14)

    The recurrence relation is given as,

    $\begin{gathered} {{\rm E}_0} = f, \\ {{\rm E}_1} = N({{\rm E}_0}), \\ {E_{n + 1}} = N({{\rm E}_0} + {E_1} + {E_2} + ... + {E_n}), \, \, n = 1, 2, 3, 4..................... \\ \end{gathered} $ (15)

    If $\left\| {N(r) - N(y)} \right\| \leqslant k\left\| {x - y} \right\|, 0 < k < 1, $ then

    $\begin{gathered} {E_0} = f, \\ \left\| {{E_1}} \right\| = \left\| {N({E_0})} \right\| \leqslant k\left\| {{E_1}} \right\|, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \\ \left\| {{E_2}} \right\| = \left\| {N({E_0} + E1) - N({E_0})} \right\| \leqslant k\left\| {{E_1}} \right\| \leqslant {k^2}\left\| {{E_0}} \right\|, \\ \end{gathered} $ (16)
    $\begin{gathered} \left\| {{E_{n + 1}}} \right\| = \left\| {N({E_0} + ... + {E_n}) - N({E_0} + ... + {E_{n - 1}})} \right\| \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \leqslant k\left\| {{E_n}} \right\| \leqslant {k^{k + 1}}\left\| {{E_0}} \right\|, \, \, n = 0, 1, 2, 3............ \\ \end{gathered} $

    Thus, ${E_{n + 1}} \to 0$, as $n \to \infty $, which proves the convergence of the new iterative method.

    To illustrate efficiency and precision of the NIM, the following fractional order differential equations are taken as test examples. All computational work has been done with the help of Mathematica 10.

    First, we consider time fractional Roseau-Hyman equation given as

    $\frac{{{\partial ^q}\Upsilon (r, t)}}{{\partial {t^q}}} = \Upsilon (r, t)\frac{{{\partial ^3}\Upsilon (r, t)}}{{\partial {r^3}}} + \Upsilon (r, t)\frac{{\partial \Upsilon (r, t)}}{{\partial r}}\, + 3\frac{{\partial \Upsilon (r, t)}}{{\partial r}}\frac{{{\partial ^2}\Upsilon (r, t)}}{{\partial {r^2}}}, $ (17)

    Subject to initial condition

    $ \left(r, 0\right) = \frac{-8}{3}\epsilon {\mathit{cos}}^{2}\left(\frac{r}{4}\right). $ (18)

    For special case $q = 1$, exact solution for Eq (17) can be found in [14] and $\varepsilon $ is an arbitrary constant

    $\Upsilon (r, t) = \frac{{ - 8}}{3}\varepsilon {\cos ^2}\left( {\frac{{r - \varepsilon t}}{4}} \right).$ (19)

    By applying ${I^q}$ to both sides Eq (17), we get the equivalent integral form of (16) is

    $\Upsilon (r, t) = {\Upsilon _0}(r, t) + {I^q}\left( {\Upsilon (r, t)\frac{{{\partial ^3}\Upsilon (r, t)}}{{\partial {r^3}}} + \Upsilon (r, t)\frac{{\partial \Upsilon (r, t)}}{{\partial r}} + 3\frac{{\partial \Upsilon (r, t)}}{{\partial r}}\frac{{{\partial ^2}\Upsilon (r, t)}}{{\partial {r^2}}}} \right).$ (20)

    The nonlinear term is

    $N(\Upsilon (r, t)) = {I^q}\left( {\Upsilon (r, t)\frac{{{\partial ^3}\Upsilon (r, t)}}{{\partial {r^3}}} + \Upsilon (r, t)\frac{{\partial \Upsilon (r, t)}}{{\partial r}} + 3\frac{{\partial \Upsilon (r, t)}}{{\partial r}}\frac{{{\partial ^2}\Upsilon (r, t)}}{{\partial {r^2}}}} \right).$ (21)

    Using NIM formulation discussed in section 3, we get the approximations as

    $\begin{gathered} {\Upsilon _0}(r, t) = \frac{{ - 8}}{3}\varepsilon {\cos ^2}\left( {\frac{r}{4}} \right), \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\Upsilon _1}(r, t) = - \frac{{2{\varepsilon ^2}{t^q}\sin \left( {\frac{r}{2}} \right)}}{{3\Gamma (1 + q)}}, \\ {\Upsilon _2}(r, t) = \frac{{{\varepsilon ^3}{t^{2q}}\cos \left( {\frac{r}{2}} \right)}}{{3\Gamma (1 + 2q)}}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\Upsilon _3}(r, t) = \frac{{{\varepsilon ^4}{t^{3q}}\sin \left( {\frac{r}{2}} \right)}}{{6\Gamma (1 + 3q)}}, \\ {\Upsilon _4}(r, t) = - \frac{{{\varepsilon ^5}{t^{4q}}\cos \left( {\frac{r}{2}} \right)}}{{12\Gamma (1 + 4q)}}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\Upsilon _5}(r, t) = - \frac{{{\varepsilon ^6}{t^{5q}}\sin \left( {\frac{r}{2}} \right)}}{{24\Gamma (1 + 5q)}}, \\ {\Upsilon _6}(r, t) = \frac{{{\varepsilon ^7}{t^{6q}}\cos \left( {\frac{r}{2}} \right)}}{{48\Gamma (1 + 6q)}}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\Upsilon _7}(r, t) = \frac{{{\varepsilon ^8}{t^{7q}}\sin \left( {\frac{r}{2}} \right)}}{{96\Gamma (1 + 7q)}}.... \\ \end{gathered} $ (22)

    The expression for the solution of $\Upsilon (r, t)$ is given as

    $\tilde \Upsilon (r, t) = {\Upsilon _0}(r, t) + \sum\limits_{i = 1}^{n = 7} {{\Upsilon _i}(r, t)} \, .\, \, \, \, \, \, \, \, i = 1, 2, 3, ...$ (23)

    For $q = 1.0$, the seventh order NIM solution for Roseau-Hyman equation is

    $\begin{gathered} \tilde \Upsilon (r, t) = - \frac{8}{3}\varepsilon {\cos ^2}\left( {\frac{r}{4}} \right) + \frac{1}{6}{\varepsilon ^3}{t^2}\cos \left( {\frac{r}{4}} \right) - \frac{1}{{288}}{\varepsilon ^5}{t^4}\cos \left( {\frac{r}{4}} \right) + \frac{1}{{34560}}\left( {{\varepsilon ^7}{t^6}\cos \left( {\frac{r}{4}} \right)} \right) - \frac{2}{3}{\varepsilon ^2}t\sin \left( {\frac{r}{4}} \right) \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, + \frac{1}{{36}}{\varepsilon ^4}{t^3}\sin \left( {\frac{r}{4}} \right) - \frac{1}{{2880}}\left( {{\varepsilon ^6}{t^5}\sin \left( {\frac{r}{4}} \right)} \right) + \frac{1}{{483840}}\left( {{\varepsilon ^8}{t^7}\sin \left( {\frac{r}{4}} \right)} \right). \\ \end{gathered} $

    Similarly for $q = 0.7$, the seventh order NIM solution is

    $\begin{gathered} \tilde \Upsilon (r, t) = - \frac{8}{3}\varepsilon {\cos ^2}\left( {\frac{r}{4}} \right) + 0.26834773761572084{\varepsilon ^3}{t^{1.4}}\cos \left( {\frac{r}{4}} \right) - 0.017752501224054806{\varepsilon ^5}{t^{2.8}}\cos \left( {\frac{r}{4}} \right) + \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, 0.0006394889775371471{c^7}{t^{4.199999999999999\;\;}}\cos \left( {\frac{x}{4}} \right) - 0.7336982703491104{\varepsilon ^2}{t^{0.7}}\sin \left( {\frac{r}{4}} \right) + \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, 0.07583961083057564{\varepsilon ^4}{t^{2.0999999999999996\;\;}}\sin \left( {\frac{r}{4}} \right) - 0.0035821560860175{\varepsilon ^6}{t^{3.5}}\sin \left( {\frac{r}{4}} \right) + \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, 0.00010286014612875396{\varepsilon ^8}{t^{4.8999999999999995\;\;}}\sin \left( {\frac{r}{4}} \right). \\ \end{gathered} $

    Consider time fractional inhomogeneous system given as [17]

    $\begin{gathered} \frac{{{\partial ^q}\Upsilon (r, t)}}{{\partial {t^q}}} - \frac{{\partial \psi (r, t)}}{{\partial r}} - \Upsilon (r, t) + \psi (r, t) = - 2, \\ \frac{{{\partial ^q}\psi (r, t)}}{{\partial {t^q}}} + \frac{{\partial \Upsilon (r, t)}}{{\partial r}} - \Upsilon (r, t) + \psi (r, t) = - 2. \\ \end{gathered} $ (24)

    With initial condition as

    $\left\{ \begin{gathered} \Upsilon (r, 0) = 1 + {e^r}, \\ \psi (r, 0) = - 1 + {e^r}. \\ \end{gathered} \right.$ (25)

    For $q = 1$, exact solution for system (23) is [17]

    $\left\{ \begin{gathered} \Upsilon (r, t) = 1 + {e^{r + t}}, \\ \psi (r, t) = - 1 + {e^{r - t}} \\ \end{gathered} \right.$ (26)

    By applying ${I^q}$ to both sides of Eq (24), we get the equivalent integral form of (23) given as

    $\left\{ \begin{gathered} \Upsilon (r, t) = {\Upsilon _0}(r, t) + {I^q}\left( {\frac{{\partial \psi (r, t)}}{{\partial r}} + \Upsilon (r, t) - \psi (r, t) - 2} \right), \\ \psi (r, t) = {\psi _0}(r, t) + {I^q}\left( {\frac{{\partial \Upsilon (r, t)}}{{\partial r}} + \Upsilon (r, t) - \psi (r, t) - 2} \right). \\ \end{gathered} \right.$ (27)

    Here nonlinear terms are in Eq (25)

    $\left\{ \begin{gathered} N(\Upsilon (r, t)) = {I^q}\left( {\frac{{\partial \psi (r, t)}}{{\partial r}} + \Upsilon (r, t) - \psi (r, t) - 2} \right), \\ N(\psi (r, t)) = {I^q}\left( {\frac{{\partial \Upsilon (r, t)}}{{\partial r}} + \Upsilon (r, t) - \psi (r, t) - 2} \right). \\ \end{gathered} \right.$ (28)

    Using NIM formulation discussed in section 3, we get the approximations as

    $\begin{gathered} {\Upsilon _0}(r, t) = 1 + {e^r}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\Upsilon _3}(r, t) = \frac{{{e^r}{t^{3q}}}}{{\Gamma (1 + 3q)}}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \\ {\psi _0}(r, t) = - 1 + {e^r}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\psi _3}(r, t) = - \frac{{{e^r}{t^{3q}}}}{{\Gamma (1 + 3q)}}, \, \, \, \, \, \, \, \, \, \, \, \, \\ {\Upsilon _1}(r, t) = \frac{{{e^r}{t^q}}}{{\Gamma (1 + q)}}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\Upsilon _4}(r, t) = \frac{{{e^r}{t^{4q}}}}{{\Gamma (1 + 4q)}}, \, \, \, \, \\ {\psi _1}(r, t) = - \frac{{{e^r}{t^q}}}{{\Gamma (1 + q)}}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\psi _4}(r, t) = \frac{{{e^r}{t^{4q}}}}{{\Gamma (1 + 4q)}}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \\ {\Upsilon _2}(r, t) = \frac{{{e^r}{t^{2q}}}}{{\Gamma (1 + 2q)}}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\Upsilon _5}(r, t) = \frac{{{e^r}{t^{5q}}}}{{\Gamma (1 + 5q)}}, \, \, \, \, \\ {\psi _2}(r, t) = \frac{{{e^r}{t^{2q}}}}{{\Gamma (1 + 2q)}}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\psi _5}(r, t) = - \frac{{{e^r}{t^{5q}}}}{{\Gamma (1 + 5q)}}.\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \\ \end{gathered} $ (29)

    The expression for the solution of and is given as

    $\left\{ \begin{gathered} \Upsilon (r, t) = \sum\limits_{i = 1}^{n = 5} {{\Upsilon _i}(r, t)} \\ \tilde \psi (r, t) = \sum\limits_{i = 1}^{n = 5} {{\psi _i}(r, t)} . \\ \end{gathered} \right.\, \, \, \, \, \, \, \, i = 1, 2, 3, ....$ (30)
    $\begin{gathered} \tilde \Upsilon (r, t) = 1 + {e^r} + \frac{{{e^r}{t^q}}}{{\Gamma (1 + q)}} + \frac{{{e^r}{t^{2q}}}}{{\Gamma (1 + 2q)}} + \frac{{{e^r}{t^{3q}}}}{{\Gamma (1 + 3q)}} + \frac{{{e^r}{t^{4q}}}}{{\Gamma (1 + 4q)}} + \frac{{{e^r}{t^{5q}}}}{{\Gamma (1 + 5q)}}, \, \, \, \, \, \\ \tilde \psi (r, t) = - 1 + {e^r} - \frac{{{e^r}{t^q}}}{{\Gamma (1 + q)}} + \frac{{{e^r}{t^{2q}}}}{{\Gamma (1 + 2q)}} - \frac{{{e^r}{t^{3q}}}}{{\Gamma (1 + 3q)}} + \frac{{{e^r}{t^{4q}}}}{{\Gamma (1 + 4q)}} - \frac{{{e^r}{t^{5q}}}}{{\Gamma (1 + 5q)}}.\, \, \, \\ \end{gathered} $

    We implemented NIM for finding the approximate solutions of Roseau-Hyman and fractional order inhomogeneous partial differential equations. The results obtained by NIM for Roseau-Hyman and fractional order inhomogeneous partial differential equations with VIM, HPM and LADM in the form of tables and figures in section 3.

    Table 1 shows the approximate solution obtain by NIM for Roseau-Hyman equation at different values of q Table 2 shows the comparison of absolute errors of NIM with VIM and HPM for Roseau-Hyman equation. Table 3 shows the numerical solution obtained by the proposed method for γ(r, t) and γ(r, t) inhomogeneous partial differential equations at q = 0.5. Similarly Table 4 shows the residuals obtain by the NIM γ(r, t) and ψ(r, t) inhomogeneous partial differential equations at q = 0.5. It is clear that for the fractional order inhomogeneous system, NIM has the same solution like LADM and LVIM, mention in [17]. That is why, we listed only NIM solution as well as residual obtain by NIM in Tables 3 and 4.

    Table 1.  NIM Solution for Eq (17) at different values of q at $\varepsilon $ = 1.0.
    $r$ $t$ Solution q=0.7 Solution q=0.9 Solution q=1.0 Exact q=1
    π/4 0.2 −1.302026382 −1.296886512 −1.294567416 −1.294567416
    0.4 −1.316024885 −1.315094415 −1.313795239 −1.313795239
    1.0 −1.320505052 −1.325168954 −1.326557167 −1.326557168
    π/2 0.2 −1.177509671 −1.165865484 −1.161042461 −1.161042461
    0.4 −1.216132042 −1.208017039 −1.203223634 −1.203223634
    1.0 −1.241129500 −1.241413136 −1.240043707 −1.240043707
    3π/4 0.2 −0.975221742 −0.958845962 −0.952253273 −0.952253273
    0.4 −1.032588076 −1.018523975 −1.010966095 −1.010966095
    1.0 −1.074297190 −1.070157378 −1.066238790 −1.066238790
    π 0.2 −0.725959101 −0.707344790 −0.699986113 −0.699986113
    0.4 −0.793335893 −0.775463826 −0.766292088 −0.766292088
    1.0 −0.845406828 −0.837473817 −0.831602639 −0.831602639

     | Show Table
    DownLoad: CSV
    Table 2.  Comparison of absolute errors obtained by NIM with HPM and VIM for, q = 1.0 at $\varepsilon $ = 1.0 for Eq (17).
    r = π r = 3π/2
    $t$ HPM [14] VIM[14] NIM HPM [14] VIM[14] NIM
    0.1 1.0000$ \times {10^{ - 11}}$ 5.0000$ \times {10^{ - 10}}$ 2.2204$ \times {10^{ - 16}}$ 1.0000$ \times {10^{ - 11}}$ 2.0000$ \times {10^{ - 10}}$ 5.5511$ \times {10^{ - 17}}$
    0.2 1.7360$ \times {10^{ - 9}}$ 5.0000$ \times {10^{ - 10}}$ 4.2188$ \times {10^{ - 16}}$ 1.2378$ \times {10^{ - 9}}$ 3.0000$ \times {10^{ - 10}}$ 4.7185$ \times {10^{ - 16}}$
    0.3 1.3182$ \times {10^{ - 8}}$ 5.0000$ \times {10^{ - 10}}$ 1.4099$ \times {10^{ - 16}}$ 9.4375$ \times {10^{ - 9}}$ 3.0000$ \times {10^{ - 10}}$ 1.1491$ \times {10^{ - 14}}$
    0.4 5.5542$ \times {10^{ - 8}}$ 1.0000$ \times {10^{ - 10}}$ 1.8807×10−15 3.9925$ \times {10^{ - 8}}$ 9.0000$ \times {10^{ - 10}}$ 1.1549$ \times {10^{ - 13}}$
    0.5 1.6948$ \times {10^{ - 7}}$ 4.0000$ \times {10^{ - 10}}$ 1.4008$ \times {10^{ - 14}}$ 1.2233$ \times {10^{ - 7}}$ 1.9000$ \times {10^{ - 9}}$ 6.8706$ \times {10^{ - 13}}$
    0.6 4.2165$ \times {10^{ - 7}}$ 7.0000$ \times {10^{ - 10}}$ 7.226$ \times {10^{ - 14}}$ 3.0561$ \times {10^{ - 7}}$ 6.1000$ \times {10^{ - 9}}$ 2.9458$ \times {10^{ - 12}}$
    0.7 9.1117$ \times {10^{ - 7}}$ 1.2000$ \times {10^{ - 9}}$ 2.8266$ \times {10^{ - 13}}$ 6.6309$ \times {10^{ - 7}}$ 1.8300$ \times {10^{ - 8}}$ 1.0081$ \times {10^{ - 11}}$
    0.8 1.7761$ \times {10^{ - 6}}$ 2.1000$ \times {10^{ - 9}}$ 9.4025$ \times {10^{ - 13}}$ 1.2978$ \times {10^{ - 6}}$ 3.9300$ \times {10^{ - 8}}$ 2.9252$ \times {10^{ - 11}}$
    0.9 3.1998$ \times {10^{ - 6}}$ 4.0000$ \times {10^{ - 9}}$ 2.7141$ \times {10^{ - 12}}$ 2.3474$ \times {10^{ - 6}}$ 8.2200$ \times {10^{ - 8}}$ 7.4833$ \times {10^{ - 11}}$
    1.0 5.4173$ \times {10^{ - 6}}$ 8.6000$ \times {10^{ - 9}}$ 7.0042$ \times {10^{ - 12}}$ 3.9903$ \times {10^{ - 6}}$ 1.5230$ \times {10^{ - 7}}$ 1.7332$ \times {10^{ - 10}}$

     | Show Table
    DownLoad: CSV
    Table 3.  The approximate solution obtained by the NIM, for Eq (24) at q = 0.5.
    q=0.5 q=0.5
    $t$ $r$ NIM Solution γ(r, t) NIM Solution ψ(r, t) Residual γ(r, t) Residual ψ(r, t)
    0.05 −4 1.0240330988 −0.9855237049 −3.08085×10−6 −3.08085×10−6
    −3 1.0655328735 −0.9606493501 −8.37462×10−6 −8.37462×10−6
    −2 1.1775819155 −0.8930338435 −2.27646×10−5 −2.27646×10−5
    −1 1.4827176940 −0.7092355840 −6.18806×10−5 −6.18806×10−5
    0 2.3121627361 −0.2096210694 −1.68209×10−4 −1.68209×10−4
    1 4.5668281215 1.14847226845 −4.57239×10−4 −4.57239×10−4
    2 10.695644068 4.84015425729 −1.24290×10−3 −1.24290×10−3
    0.1 −4 1.0272304344 −0.9867467269 −1.74279×10−5 −1.74279×10−5
    −3 1.0740199950 −0.9639739783 −4.73740×10−5 −4.73740×10−5
    −2 1.2012072075 −0.9020711198 −1.28776×10−4 −1.28776×10−4
    −1 1.5469378961 −0.7338017046 −3.50049×10−4 −3.50049×10−4
    0 2.4867313443 −0.2763980109 −9.51533×10−4 −9.51533×10−4
    1 5.0413547970 0.9669564137 −2.58653×10−3 −2.58653×10−3
    2 11.985541307 4.3467356902 −7.03093×10−3 −7.03093×10−3

     | Show Table
    DownLoad: CSV
    Table 4.  Absolute errors obtained by 5th order approximate solution of NIM for Eq (24) at q = 1.0.
    $t$ $r$ NIM Solution γ(r, t) NIM Solution ψ(r, t) Absolute Error γ(r, t) Absolute Error ψ(r, t)
    0.005 −4 1.0192547017 −0.9825776253 2.886×10−15 2.664×10−15
    −3 1.0522339705 −0.9526410756 7.771×10−15 7.660×10−15
    −2 1.1422740715 −0.8712655064 2.131×10−14 2.098×10−14
    −1 1.3867410234 −0.6500622508 1.563×10−14 5.662×10−14
    0 2.0512710963 −0.0487705754 4.241×10−13 1.540×10−13
    1 3.8576511180 1.5857096593 1.151×10−13 4.187×10−13
    2 8.7679011063 6.0286887558 1.138×10−12 1.139×10−12
    0.1 −4 1.0202419114 −0.9834273245 3.679×10−13 3.588×10−13
    −3 1.0552322005 −0.9549507976 1.000×10−12 9.755×10−13
    −2 1.1495686192 −0.8775435717 2.718×10−12 2.651×10−12
    −1 1.4065696597 −0.6671289162 7.391×10−12 7.209×10−12
    0 2.1051709180 −0.0951625819 2.009×10−11 1.959×10−11
    1 4.0041660238 1.4596031112 5.461×10−11 5.326×10−11
    2 9.1661699124 5.6858944442 1.484×10−10 1.447×10−10

     | Show Table
    DownLoad: CSV

    Figures 14 show the 3D plots obtain by NIM for γ(r, t) and exact solution for γ(r, t) of Roseau-Hyman equation respectively. Figures 5 and 6 shows the 2D plot of exact verses NIM solution and convergence of NIM for different values of q for ψ(r, t) respectively. Similarly, Figures 7 and 8 show, 2D graph for residual obtained by the NIM for Roseau-Hyman equation for q = 0.5 and 0.7 respectively.

    Figure 1.  NIM solution for Eq (17) at q = 0.5.
    Figure 2.  NIM solution for Eq (17) at q = 0.9.
    Figure 3.  NIM solution for Eq (17) at q = 1.0.
    Figure 4.  NIM solution for Eq (17) at q = 1.0.
    Figure 5.  NIM solution verses exact solution for Eq (17) at t = 0.1.
    Figure 6.  NIM solution for Eq (17) for different values of q at t = 0.1.
    Figure 7.  Residual obtained by NIM for Eq (17) t = 0.1.
    Figure 8.  Residual obtained by NIM for Eq (17) t = 0.1.

    Figures 912 show the 3D plots obtain by NIM for γ(r, t) and exact solution of inhomogeneous partial differential equations respectively at different values of q. Figures 13 and 14 show the 2D plot of exact verses NIM solution and convergence of NIM for different values of q for γ(r, t) part of inhomogeneous partial differential equation respectively.

    Figure 9.  NIM Solution of γ(r, t) for Eq (24) when q = 0.5.
    Figure 10.  NIM Solution of γ(r, t) for Eq (24) when q = 0.7.
    Figure 11.  NIM Solution of γ(r, t) for Eq. (24).
    Figure 12.  Exact Solution of γ(r, t) for Eq (24).
    Figure 13.  NIM solution of γ(r, t) verses exact solution for Eq (24) at t = 0.1.
    Figure 14.  NIM solution of γ(r, t) for Eq (24) for different values of q at t = 0.1.

    Figures 1518 show the 3D plots obtain by NIM for ψ(r, t) and exact solution of inhomogeneous partial differential equations respectively at different values of q. Figures. 19 and 20 shows the 2D plot of exact verses NIM solution and convergence of NIM for different values of q for ψ(r, t) part of inhomogeneous partial differential equation respectively.

    Figure 15.  NIM Solution of ψ(r, t) for Eq (24) when q = 0.5.
    Figure 16.  NIM Solution of ψ(r, t) for Eq (24) when q = 0.5.
    Figure 17.  NIM Solution of ψ(r, t) for Eq (24) when q = 1.0.
    Figure 18.  Exact Solution of ψ(r, t) when q = 1.0.
    Figure 19.  NIM solution of ψ(r, t) verses exact solution for Eq (24) at t = 0.1.
    Figure 20.  NIM solution of ψ(r, t) for Eq (24) for different values of q, at t = 0.1.

    From the numerical values and graphs, it is clear that NIM is very powerful tool for solution of coupled fractional order system of partial differential equations. The accuracy of the NIM can further be increased by taking higher order approximations.

    In the current article, we presented some FDE's arising in modern sciences. A novel and classy technique which is identified as NIM, is applied for fractional order problems. For pertinence and unwavering quality of the proposed method, the fractional order Roseau-Hyman equation and the system of fractional order non-homogeneous equations. It has been explored through graphical and tabulated results that the current method gives a precise and meriting investigation about the physical occurring of the problems. Also, the current method is favored when contrasted with other technique in light of its better pace of convergence. This course rouses the scientists towards the execution of the present method for other non-linear FDE's.

    Authors acknowledge help and support from the Department of Mathematics of AWKUM for completion of this work.

    The authors declare no conflict of interest.



    [1] Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
    [2] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci, 2003 (2003), 3413-3442. doi: 10.1155/S0161171203301486
    [3] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
    [4] K. B. Oldham, J. Spanier, The Fractional Calculus: Integrations and Differentiations of Arbitrary Order, Academic Press, New York, 1974.
    [5] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, 1994.
    [6] G. Adomian, R. Rach, Modified Adomian polynomials, Math. Comput. Model., 24 (1996), 39-46.
    [7] W. H. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47 (2008), 204-226.
    [8] J. H. He, Variational iteration method a kind of non-linear analytical technique: some examples, Int. J. Nonlin. Mech., 34 (1999), 699-708. doi: 10.1016/S0020-7462(98)00048-1
    [9] N. H. Sweilam, M. M. Khader, Variational iteration method for one dimensional nonlinear thermoelasticity, Chaos, Soliton. Fract., 32 (2007), 145-149. doi: 10.1016/j.chaos.2005.11.028
    [10] S. Abbasbandy, The application of homotopy analysis method to nonlinear equations arising in heat transfer, Phys. Lett. A, 360 (2006), 109-113. doi: 10.1016/j.physleta.2006.07.065
    [11] J. H. He, Homotopy perturbation technique, Comput. Method. Appl. M., 178 (1999), 257-262. doi: 10.1016/S0045-7825(99)00018-3
    [12] V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl., 316 (2006), 753-763. doi: 10.1016/j.jmaa.2005.05.009
    [13] V. Daftardar-Gejji, S. Bhalekar, Solving fractional diffusion-wave equations using a new iterative method, Fract. Calc. Appl. Anal., 11 (2008), 193-202.
    [14] R. Y. Molliq, M. S. M. Nooorani, Solving the fractional Rosenau-Hyman equation via variational iteration method and homotopy perturbation method, International Journal Differential Equations, 2012 (2012), 1-14.
    [15] J. Garralón, F. R. Villatoro, Dissipative perturbations for the K(n, n) Rosenau-Hyman equation, Commun. Nonlinear Sci., 17 (2012), 4642-4648.
    [16] M. Dehghan, J. Manafian, A. Saadatmandi, Application of semi-analytical methods for solving the Rosenau-Hyman equation arising in the pattern formation in liquid drops, Int. J. Numer. Method. H., 22 (2013), 777-790.
    [17] H. F. Ahmed, M. S. M. Bahgat, M. Zaki, Numerical approaches to system of fractional partial differential equations, Journal of the Egyptian Mathematical Society, 25 (2017), 141-150. doi: 10.1016/j.joems.2016.12.004
    [18] H. Zhang, X. Jiang, X. Yang, A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem, Appl. Math. Comput., 320 (2018), 302-318.
    [19] B. Yu, X. Jiang, H. Xu, A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation, Numer. Algorithms, 68 (2015), 923-950. doi: 10.1007/s11075-014-9877-1
  • This article has been cited by:

    1. MUHAMMAD NAEEM JAN, GUL ZAMAN, IMTIAZ AHMAD, NIGAR ALI, KOTTAKKARAN SOOPPY NISAR, ABDEL-HALEEM ABDEL-ATY, M. ZAKARYA, EXISTENCE THEORY TO A CLASS OF FRACTIONAL ORDER HYBRID DIFFERENTIAL EQUATIONS, 2022, 30, 0218-348X, 10.1142/S0218348X22400229
    2. R. Subash Moorthy, M. Thanga Rejini, Bessel Wavelet Transform and Fractional Bessel Wavelet Transform on Functions of Rapid Descent, 2022, 8, 2349-5103, 10.1007/s40819-022-01336-y
    3. M.O. Aibinu, S.C. Thakur, S. Moyo, Exact solutions of nonlinear delay reaction–diffusion equations with variable coefficients, 2021, 4, 26668181, 100170, 10.1016/j.padiff.2021.100170
    4. Mubashir Qayyum, Farnaz Ismail, Syed Inayat Ali Shah, Muhammad Sohail, Essam R. El-Zahar, K. C Gokul, Arshad Riaz, An Application of Homotopy Perturbation Method to Fractional-Order Thin Film Flow of the Johnson–Segalman Fluid Model, 2022, 2022, 1563-5147, 1, 10.1155/2022/1019810
    5. Nasir Ali, Rashid Nawaz, Laiq Zada, Abir Mouldi, Souhail Mohamed Bouzgarrou, Ndolane Sene, Taza Gul, Analytical Approximate Solution of the Fractional Order Biological Population Model by Using Natural Transform, 2022, 2022, 1687-4129, 1, 10.1155/2022/6703086
    6. LAIQ ZADA, RASHID NAWAZ, MOHAMMAD A. ALQUDAH, KOTTAKKARAN SOOPPY NISAR, A NEW TECHNIQUE FOR APPROXIMATE SOLUTION OF FRACTIONAL-ORDER PARTIAL DIFFERENTIAL EQUATIONS, 2022, 30, 0218-348X, 10.1142/S0218348X22400151
    7. Nasir Ali, Mansour F. Yassen, Saeed Ahmed Asiri, Rashid Nawaz, Laiq Zada, Mohammad Mahtab Alam, Ndolane Sene, Amir Khan, New Iterative Method for Solving a Coupled System of Fractional-Order Drinfeld–Sokolov–Wilson (FDSW) and Fractional Shallow Water (FSW) Equations, 2022, 2022, 1687-4129, 1, 10.1155/2022/8370107
    8. Ravi Kanth Asv, Sangeeta Devi, A novel three-step iterative approach for oscillatory chemical reactions of fractional brusselator model, 2022, 0228-6203, 1, 10.1080/02286203.2022.2103066
    9. Khadeejah James Audu, Onıfade Babatunde, A Comparative Analysis of Two Semi Analytic Approaches in Solving Systems of First-Order Differential Equations, 2024, 7, 2651-3722, 8, 10.70030/sjmakeu.1433801
    10. Alok Bhargava, Deepika Jain, D.L. Suthar, Applications of the Laplace variational iteration method to fractional heat like equations, 2023, 8, 26668181, 100540, 10.1016/j.padiff.2023.100540
    11. Humaira Yasmin, Yousuf Alkhezi, Khaled Alhamad, A New Iterative Method for Investigating Modified Camassa–Holm and Modified Degasperis–Procesi Equations within Caputo Operator, 2023, 15, 2073-8994, 2172, 10.3390/sym15122172
    12. Alok Bhargava, D.L. Suthar, Deepika Jain, A new solution approach to proportion delayed and heat like fractional partial differential equations, 2024, 12, 26668181, 100948, 10.1016/j.padiff.2024.100948
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4912) PDF downloads(333) Cited by(12)

Figures and Tables

Figures(20)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog