Research article Special Issues

Analyzing fractional PDE system with the Caputo operator and Mohand transform techniques

  • Received: 03 September 2024 Revised: 21 October 2024 Accepted: 31 October 2024 Published: 13 November 2024
  • MSC : 34G20, 35A20, 35A22, 35R11

  • In this paper, we explore advanced methods for solving partial differential equations (PDEs) and systems of PDEs, particularly those involving fractional-order derivatives. We apply the Mohand transform iterative method (MTIM) and the Mohand residual power series method (MRPSM) to address the complexities associated with fractional-order differential equations. Through several examples, we demonstrate the effectiveness and accuracy of MTIM and MRPSM in solving fractional PDEs. The results indicate that these methods simplify the solution process and enhance the solutions' precision. Our findings suggest that these approaches can be valuable tools for researchers dealing with complex PDE systems in various scientific and engineering fields.

    Citation: Azzh Saad Alshehry, Humaira Yasmin, Ali M. Mahnashi. Analyzing fractional PDE system with the Caputo operator and Mohand transform techniques[J]. AIMS Mathematics, 2024, 9(11): 32157-32181. doi: 10.3934/math.20241544

    Related Papers:

  • In this paper, we explore advanced methods for solving partial differential equations (PDEs) and systems of PDEs, particularly those involving fractional-order derivatives. We apply the Mohand transform iterative method (MTIM) and the Mohand residual power series method (MRPSM) to address the complexities associated with fractional-order differential equations. Through several examples, we demonstrate the effectiveness and accuracy of MTIM and MRPSM in solving fractional PDEs. The results indicate that these methods simplify the solution process and enhance the solutions' precision. Our findings suggest that these approaches can be valuable tools for researchers dealing with complex PDE systems in various scientific and engineering fields.



    加载中


    [1] J. Fang, M. Nadeem, M. Habib, S. Karim, H. A. Wahash, A new iterative method for the approximate solution of Klein-Gordon and Sine-Gordon equations, J. Funct. Spaces, 2022 (2022), 5365810. https://doi.org/10.1155/2022/5365810 doi: 10.1155/2022/5365810
    [2] C. Zheng, Y. An, Z. Wang, H. Wu, X. Qin, B. Eynard, et al., Hybrid offline programming method for robotic welding systems, Robot. Comput.-Integr. Manuf., 73 (2022), 102238. https://doi.org/10.1016/j.rcim.2021.102238 doi: 10.1016/j.rcim.2021.102238
    [3] H. Ahmad, D. U. Ozsahin, U. Farooq, M. A. Fahmy, M. D. Albalwi, H. Abu-Zinadah, Comparative analysis of new approximate analytical method and Mohand variational transform method for the solution of wave-like equations with variable coefficients, Results Phys., 51 (2023), 106623. https://doi.org/10.1016/j.rinp.2023.106623 doi: 10.1016/j.rinp.2023.106623
    [4] P. Kittipoom, Extracting explicit coefficient formulas: a robust approach to the laplace residual power series method, Alexandria Eng. J., 109 (2024), 1–11. https://doi.org/10.1016/j.aej.2024.08.091 doi: 10.1016/j.aej.2024.08.091
    [5] C. Zheng, Y. An, Z. Wang, X. Qin, B. Eynard, M. Bricogne, et al., Knowledge-based engineering approach for defining robotic manufacturing system architectures, Int. J. Prod. Res., 61 (2023), 1436–1454. https://doi.org/10.1080/00207543.2022.2037025 doi: 10.1080/00207543.2022.2037025
    [6] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier, 2006.
    [7] D. Baleanu, Z. B. Guvenc, J. A. T. Machado, New trends in nanotechnology and fractional calculus applications, Springer Dordrecht, 2010. https://doi.org/10.1007/978-90-481-3293-5
    [8] P. Veeresha D. G. Prakasha, Solution for fractional generalized Zakharov equations with Mittag-Leffler function, Results Eng., 5 (2020), 100085. https://doi.org/10.1016/j.rineng.2019.100085 doi: 10.1016/j.rineng.2019.100085
    [9] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Vol. 198, Elsevier, 1999.
    [10] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Willey & Sons, 1993.
    [11] Y. Kai, S. Chen, K. Zhang, Z. Yin, Exact solutions and dynamic properties of a nonlinear fourth-order time-fractional partial differential equation, Waves Random Complex Media, 2022, 1–12. https://doi.org/10.1080/17455030.2022.2044541
    [12] S. Meng, C. Zhang, Q. Shi, Z. Chen, W. Hu, F. Lu, A robust infrared small target detection method jointing multiple information and noise prediction: algorithm and benchmark, IEEE Trans. Geosci. Remote Sens., 61 (2023), 1–17. https://doi.org/10.1109/TGRS.2023.3295932 doi: 10.1109/TGRS.2023.3295932
    [13] Y. Z. Zhang, A. M. Yang, Y. Long, Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform, Therm. Sci., 18 (2014), 677–681. https://doi.org/10.2298/TSCI130901152Z doi: 10.2298/TSCI130901152Z
    [14] K. Abbaoui, Y. Cherruault, New ideas for proving convergence of decomposition methods, Comput. Math. Appl., 29 (1995), 103–108. https://doi.org/10.1016/0898-1221(95)00022-Q doi: 10.1016/0898-1221(95)00022-Q
    [15] Z. Wang, F. Parastesh, H. Natiq, J. Li, X. Xi, M. Mehrabbeik, Synchronization patterns in a network of diffusively delay-coupled memristive Chialvo neuron map, Phys. Lett. A, 514-515 (2024), 129607. https://doi.org/10.1016/j.physleta.2024.129607 doi: 10.1016/j.physleta.2024.129607
    [16] H. Jafari, C. M. Khalique, M. Nazari, Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion-wave equations, Appl. Math. Lett., 24 (2011), 1799–1805. https://doi.org/10.1016/j.aml.2011.04.037 doi: 10.1016/j.aml.2011.04.037
    [17] X. J. Yang, D. Baleanu, Fractal heat conduction problem solved by local fractional variation iteration method, Therm. Sci., 17 (2013), 625–628. https://doi.org/10.2298/TSCI121124216Y doi: 10.2298/TSCI121124216Y
    [18] X. J. Yang, D. Baleanu, Y. Khan, S. T. Mohyud-Din, Local fractional variational iteration method for diffusion and wave equations on Cantor sets, Rom. J. Phys., 59 (2014), 36–48.
    [19] B. Ghazanfari, A. Ghazanfari, Solving fractional nonlinear Schrodinger equations by fractional complex transform method, Int. J. Math. Modell. Comput., 2 (2012), 277–271.
    [20] S. Kumar, D. Kumar, S. Abbasbandy, M. M. Rashidi, Analytical solution of fractional Navier-Stokes equation by using modified Laplace decomposition method, Ain Shams Eng. J., 5 (2014), 569–574. https://doi.org/10.1016/j.asej.2013.11.004 doi: 10.1016/j.asej.2013.11.004
    [21] X. J. Yang, H. M. Srivastava, J. H. He, D. Baleanu, Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives, Phys. Lett. A, 377 (2013), 1696–1700. https://doi.org/10.1016/j.physleta.2013.04.012 doi: 10.1016/j.physleta.2013.04.012
    [22] S. K. Sahoo, F. Jarad, B. Kodamasingh, A. Kashuri, Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application, AIMS Math., 7 (2022), 12303–12321. https://doi.org/10.3934/math.2022683 doi: 10.3934/math.2022683
    [23] T. Botmart, M. Naeem, R. Shah, N. Iqbal, Fractional view analysis of Emden-Fowler equations with the help of analytical method, Symmetry, 14 (2022), 2168. https://doi.org/10.3390/sym14102168 doi: 10.3390/sym14102168
    [24] N. Khanna, A. Zothansanga, S. K. Kaushik, D. Kumar, Some properties of fractional Boas transforms of wavelets, J. Math., 2021 (2021), 6689779. https://doi.org/10.1155/2021/6689779 doi: 10.1155/2021/6689779
    [25] R. Shah, A. S. Alshehry, W. Weera, A semi-analytical method to investigate fractional-order gas dynamics equations by Shehu transform, Symmetry, 14 (2022), 1458. https://doi.org/10.3390/sym14071458 doi: 10.3390/sym14071458
    [26] M. M. Al-Sawalha, R. P. Agarwal, R. Shah, O. Y. Ababneh, W. Weera, A reliable way to deal with fractional-order equations that describe the unsteady flow of a polytropic gas, Mathematics, 10 (2022), 2293. https://doi.org/10.3390/math10132293 doi: 10.3390/math10132293
    [27] M. Al-Smadi, Solving initial value problems by residual power series method, Theor. Math. Appl., 3 (2013), 199–210.
    [28] O. A. Arqub, A. El-Ajou, Z. A. Zhour, S. Momani, Multiple solutions of nonlinear boundary value problems of fractional order: a new analytic iterative technique, Entropy, 16 (2014), 471–493. https://doi.org/10.3390/e16010471 doi: 10.3390/e16010471
    [29] A. El-Ajou, O. A. Arqub, S. Momani, Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: a new iterative algorithm, J. Comput. Phys., 293 (2015), 81–95. https://doi.org/10.1016/j.jcp.2014.08.004 doi: 10.1016/j.jcp.2014.08.004
    [30] F. Xu, Y. Gao, X. Yang, H. Zhang, Construction of fractional power series solutions to fractional Boussinesq equations using residual power series method, Math. Probl. Eng., 2016 (2016), 5492535. https://doi.org/10.1155/2016/5492535 doi: 10.1155/2016/5492535
    [31] J. Zhang, Z. Wei, L. Li, C. Zhou, Least-squares residual power series method for the time-fractional differential equations, Complexity, 2019 (2019), 6159024. https://doi.org/10.1155/2019/6159024 doi: 10.1155/2019/6159024
    [32] I. Jaradat, M. Alquran, R. Abdel-Muhsen, An analytical framework of 2D diffusion, wave-like, telegraph, and Burgers' models with twofold Caputo derivatives ordering, Nonlinear Dyn., 93 (2018), 1911–1922. https://doi.org/10.1007/s11071-018-4297-8 doi: 10.1007/s11071-018-4297-8
    [33] I. Jaradat, M. Alquran, K. Al-Khaled, An analytical study of physical models with inherited temporal and spatial memory, Eur. Phys. J. Plus, 133 (2018), 162. https://doi.org/10.1140/epjp/i2018-12007-1 doi: 10.1140/epjp/i2018-12007-1
    [34] M. Alquran, K. Al-Khaled, S. Sivasundaram, H. M. Jaradat, Mathematical and numerical study of existence of bifurcations of the generalized fractional Burgers-Huxley equation, Nonlinear Stud., 24 (2017), 235–244.
    [35] M. Alquran, M. Ali, M. Alsukhour, I. Jaradat, Promoted residual power series technique with Laplace transform to solve some time-fractional problems arising in physics, Results Phys., 19 (2020), 103667. https://doi.org/10.1016/j.rinp.2020.103667 doi: 10.1016/j.rinp.2020.103667
    [36] T. Eriqat, A. El-Ajou, N. O. Moa'ath, Z. Al-Zhour, S. Momani, A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations, Chaos Soliton. Fract., 138 (2020), 109957. https://doi.org/10.1016/j.chaos.2020.109957 doi: 10.1016/j.chaos.2020.109957
    [37] M. Alquran, M. Alsukhour, M. Ali, I. Jaradat, Combination of Laplace transform and residual power series techniques to solve autonomous $n$-dimensional fractional nonlinear systems, Nonlinear Eng., 10 (2021), 282–292. https://doi.org/10.1515/nleng-2021-0022 doi: 10.1515/nleng-2021-0022
    [38] M. Mohand, A. Mahgoub, The new integral transform "Mohand transform", Adv Theor. Appl. Math., 12 (2017), 113–120.
    [39] M. Nadeem, J. H. He, A. Islam, The homotopy perturbation method for fractional differential equations: part 1 Mohand transform, Int. J. Numer. Methods Heat Fluid Flow, 31 (2021), 3490–3504. https://doi.org/10.1108/HFF-11-2020-0703 doi: 10.1108/HFF-11-2020-0703
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(261) PDF downloads(25) Cited by(1)

Article outline

Figures and Tables

Figures(10)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog