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1. Introduction

Mathematical methods have been used to represent a variety of real-world issues. For example, we
can approximate a body’s speed for a given distance and time by using the concept of rate of change.
Specifically, we use the notion of differential calculus. Many complicated phenomena, such as chaos,
solitons, asymptotic properties, singular formation, and others, are either poorly projected or have not
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yet been discovered [1–3]. Furthermore, the notion of calculus with differential operators and integrals
is essential for describing physical phenomena and divining natural events connected to variation and
changes. However, while researching issues with hereditary characteristics or memory, numerous
researchers found numerous shortcomings and restrictions in integer-order calculus [4, 5]. Later, new
operators defined with the aid of fractional-order were proposed by mathematicians and physicists.
Many researchers are drawn to fractional calculus (FC) while looking at different models [6–8].

In many branches of physical science and engineering, fractional calculus, which deals with
arbitrary order derivatives and integrals, is crucial [9]. Fractional calculus and its applications have
developed rapidly in the last few years [10, 11]. Significant issues in acoustics, fluid mechanics,
electromagnetic, analytical chemistry, signal processing, biology, and many other engineering
and physical science branches are modeled by nonlinear and linear partial differential equations
(PDEs) [12]. Both nonlinear and linear FDEs have been solved analytically and numerically in
recent years using a variety of techniques, including the Yang-Laplace transform [13], the Adomian
decomposition method [14], the homotopy analysis method [15], and the Laplace decomposition
method [16]. Furthermore, nonlinear and linear FDEs are also subjected to the local fractional
variational iteration approach [17, 18], the fractional complex transform method [19], the modified
Laplace decomposition approach [16, 20], and the cylindrical-coordinate method [21].

Mathematical models known as fractional partial differential equations (FPDEs) depict physical
processes that exhibit complicated dynamics and non-local effects. FPDEs represent an expansion of
the traditional theory of partial differential equations. They enable non-integer orders of differentiation,
which more accurately capture the non-local and nonlinear characteristics of an extensive range of
physical systems [22, 23]. These formulas are being used more and more frequently in several fields,
such as biology, engineering, economics, and physics. These formulas are valuable resources for
constructing intricate systems and examining the behavior of those operations. This article explores
the concept of fractional-order partial differential equations, their applications, and the challenges
associated with their analysis and numerical solution [24–26].

In 2013, Al-Smadi proposed the Residual Power Series Method (RPSM) [27]. It is generated
from the residual error function mixed with the Taylor series. The solution to the problem is an
infinite convergence series [28–30]. Many DEs have inspired fresh RPSM algorithms [31–33]. Among
these DEs are several Boussinesq DEs, fuzzy DEs, and KdV Burger’s equation, among many others.
These systems are built to generate exact and efficient approximations. We provide a technique to
investigate the approximation of solutions to fractional PDEs and systems of PDEs using RPSM in the
Mohand transform (MT) formulation. The computational series finds the exact solution after a few
iterations [34–37].

The computational complexity and effort necessary to implement the methods that were previously
discussed are among the most significant constraints. The Mohand distinguishes our work transform
iterative methodology (MTIM), which we developed as an iterative approach to addressing fractional
PDEs and systems of PDEs. This technique is highly effective in reducing the amount of computational
work and complexity necessary due to integrating the MT with the new iterative process.

In this study, the Mohand residual power series method (MRPSM) and MTIM are used to solve
fractional PDEs and systems of PDEs. The numerical values produced by these techniques are more
precise when compared to those of other numerical procedures. This study includes a comparison study
of the numerical data. A strong indicator of the efficacy and reliability of these methods is the fact that
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the results of the many approaches presented are compatible with one another. The attractiveness of
fractional-order derivatives grows in direct correlation with their worth. Because of this, the algorithms
can withstand spikes in computational error, are easy to use, and are quick and accurate. Discovering
this will make solving many partial differential equations much easier for mathematicians.

2. Mohand transformation

The portions that follow will cover the basic elements and ideas of the MT, providing the foundation
for this operation.

Definition 2.1. The MT of the function P(t) is defined as [38]

M[P(t)] = R(s) = s2
∫ t

0
P(t)e−stdt, k1 ≤ s ≤ k2.

The inverse Mohand transform (IMT) is defined as

M−1[R(s)] = P(t).

Definition 2.2 ( [39]). The derivative of fractional-order in the framework of MT is defined as

M[PF(t)] = sFR(s) −
n−1∑
k=0

Pk(0)
sk−(F+1) , 0 < F ≤ n.

Definition 2.3. The properties of MT are given as follows:

(1) M[P′(t)] = sR(s) − s2R(0).

(2) M[P′′(t)] = s2R(s) − s3R(0) − s2R′(0).

(3) M[Pn(t)] = snR(s) − sn+1R(0) − snR′(0) − · · · − snRn−1(0).

Lemma 2.4. Suppose there exists a function represented by P(R, t), having exponential order.
M[R(s)] = P(R, t) denotes the MT in this case:

M[DrF
t
P(R, t)] = srFR(s) −

r−1∑
j=0

sF(r− j)−1D jF
t
P(R, 0), 0 < F ≤ 1, (2.1)

where R = (R1,R2, · · · ,RF) ∈ RF, F ∈ N, and DrF
t

= DF
t
.DF
t
. · · · .DF

t
(r − times).

Proof. To validate Eq (2.4), we use the induction method. Taking r = 1 in Eq (2.4):

M[D2F
t
P(R, t)] = s2FR(s) − s2F−1

P(R, 0) − sF−1DF
t
P(R, 0).

Equation (2.4) is true for r = 1 on the basis of Definition 2.2. Now, put r = 2 in Eq (2.4) to obtain
the following outcome:

M[D2F
r P(R, t)] = s2FR(s) − s2F−1

P(R, 0) − sF−1DF
t
P(R, 0). (2.2)
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We obtain the next result from the LHS of Eq (2.2):

L.H.S = M[D2F
t
P(R, t)]. (2.3)

We may also write Eq (2.3) as
L.H.S = M[DF

t
DF
t
P(R, t)]. (2.4)

Assume
z(R, t) = DF

t
P(R, t). (2.5)

Putting Eq (2.5) in Eq (2.4),
L.H.S = M[DF

t
z(R, t)]. (2.6)

Using the derivative of Caputo, Eq (2.6) becomes

L.H.S = M[J1−Fz
′

(R, t)]. (2.7)

Applying the RL integral on Eq (2.7),

L.H.S =
M[z

′

(R, t)]
s1−F . (2.8)

The derivative property of MT is applied on Eq (2.8) to obtain the following result:

L.H.S = sFZ(R, s) −
z(R, 0)

s1−F . (2.9)

Using Eq (2.5), we obtain

Z(R, s) = sFR(s) −
P(R, 0)

s1−F .

As M[z(t,R)] = Z(R, s), we can write Eq (2.9) as

L.H.S = s2FR(s) −
P(R, 0)

s1−2F −
DF
t
P(R, 0)
s1−F . (2.10)

Assume that Eq (2.4) is true for r = K. Taking r = K in Eq (2.4),

M[DKF
t
P(R, t)] = sKFR(s) −

K−1∑
j=0

sF(K− j)−1D jF
t

D jF
t
P(R, 0), 0 < F ≤ 1. (2.11)

Next, we will have to show that Eq (2.4) for r = K + 1 holds. Taking r = K + 1 in Eq (2.4),

M[D(K+1)F
t

P(R, t)] = s(K+1)FR(s) −
K∑

j=0

sF((K+1)− j)−1D jF
t
P(R, 0). (2.12)

From the left-hand side of Eq (2.12), we derive

L.H.S = M[DKF
t

(DKF
t

)]. (2.13)
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Letting DKF
t

= g(R, t), Eq (2.13) gives us

L.H.S = M[DF
t
g(R, t)]. (2.14)

Applying Caputo’s derivative and the RL integral on Eq (2.14),

L.H.S = sFM[DKF
t
P(R, t)] −

g(R, 0)
s1−F . (2.15)

On the basis of Eq (2.11), we can write Eq (2.15) as

L.H.S = srFR(s) −
r−1∑
j=0

sF(r− j)−1D jF
t
P(R, 0). (2.16)

Equation (2.16) can also be written as

L.H.S = M[DrF
t
P(R, 0)].

Using mathematical induction, Eq (2.4) is true for r = K + 1. Hence, it is proved that for all positive
integers, Eq (2.4) holds. �

Lemma 2.5. Let assume that there exists an exponential-order function P(R, t). M[P(R, t)] = R(s)
denotes the MT of P(R, t). The multiple fractional power series (MFPS) in MT is given as

R(s) =

∞∑
r=0

~r(R)
srF+1 , s > 0, (2.17)

where, R = (s1,R2, · · · ,RF) ∈ RF, F ∈ N.

Proof. Let us consider the Taylor series

P(R, t) = ~0(R) + ~1(R)
tF

Γ[F + 1]
+ +~2(R)

t2F

Γ[2F + 1]
+ · · · . (2.18)

MT is subjected to Eq (2.18) to obtain

M [P(R, t)] = M [~0(R)] + M
[
~1(R)

tF

Γ[F + 1]

]
+ M

[
~1(R)

t2F

Γ[2F + 1]

]
+ · · · .

Utilizing the features of MT, we derive

M [P(R, t)] = ~0(R)
1
s

+ ~1(R)
Γ[F + 1]
Γ[F + 1]

1
sF+1 + ~2(R)

Γ[2F + 1]
Γ[2F + 1]

1
s2F+1 · · · .

Thus, a new Taylor series form is obtained. �

Lemma 2.6. If M[P(R, t)] = R(s) denotes MT, then the new Taylor series form in MFPS is given as

~0(R) = lim
s→∞

sR(s) = P(R, 0). (2.19)

Proof. Assume the Taylor’s series

~0(R) = sR(s) −
~1(R)

sF
−
~2(R)

s2F − · · · . (2.20)

When the limit in Eq (2.19) is calculated and simplified, we get Eq (2.20). �
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3. Mohand residual power series method

In this part, we construct the framework of the proposed method for the solution of fractional PDEs.

Step 1. Let us assume the fractional PDE

DF
t
P(R, t) + K(R)N(P) − δ(R,P) = 0. (3.1)

Step 2. Applying the MT on both sides of Eq (3.1),

M[DF
t
P(R, t) + K(R)N(P) − δ(R,P)] = 0. (3.2)

On the basis of Lemma 2.4, we derive

R(s) =

q−1∑
j=0

D j
t
P(R, 0)
s jF+1 −

K(R)Y(s)
s jF +

F(R, s)
s jF , (3.3)

where, M[δ(R,P)] = F(R, s),M[N(P)] = Y(s).

Step 3. The subsequent result is derived from Eq (3.3):

R(s) =

∞∑
r=0

~r(R)
srF+1 , s > 0.

Step 4. To obtain series form solution use the following procedure step by step:

~0(R) = lim
s→∞

sR(s) = P(R, 0).

Subsequently, we obtain
~1(R) = DF

t
P(R, 0),

~2(R) = D2F
t
P(R, 0),

...

~w(R) = DwF
t
P(R, 0).

Step 5. To obtain R(s) as a Kth truncated series, we use

RK(s) =

K∑
r=0

~r(R)
srF+1 , s > 0,

RK(s) =
~0(R)

s
+
~1(R)
sF+1 + · · · +

~w(R)
swF+1 +

K∑
r=w+1

~r(R)
srF+1 .

Step 6. The Mohand residual function (MRF) from (3.3) is solved separately from the Kth-truncated
Mohand residual function

MRes(R, s) = R(s) −
q−1∑
j=0

D j
t
P(R, 0)
s jF+1 +

K(R)Y(s)
s jF −

F(R, s)
s jF ,
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and

MResK(R, s) = RK(s) −
q−1∑
j=0

D j
t
P(R, 0)
s jF+1 +

K(R)Y(s)
s jF −

F(R, s)
s jF . (3.4)

Step 7. In Eq (3.4), use RK(s) in place of its expansion form:

MResK(R, s) =
(~0(R)

s
+
~1(R)
sF+1 + · · · +

~w(R)
swF+1 +

K∑
r=w+1

~r(R)
srF+1

)
−

q−1∑
j=0

D j
t
P(R, 0)
s jF+1 +

K(R)Y(s)
s jF −

F(R, s)
s jF .

(3.5)

Step 8. Multiplying sKF+1 with Eq (3.5),

sKF+1MResK(R, s) = sKF+1
(~0(R)

s
+
~1(R)
sF+1 + · · · +

~w(R)
swF+1 +

K∑
r=w+1

~r(R)
srF+1

−

q−1∑
j=0

D j
t
P(R, 0)
s jF+1 +

K(R)Y(s)
s jF −

F(R, s)
s jF

)
.

(3.6)

Step 9. Taking the limit s→ ∞ of Eq (3.6),

lim
s→∞

sKF+1MResK(R, s) = lim
s→∞

sKF+1
(~0(R)

s
+
~1(R)
sF+1 + · · · +

~w(R)
swF+1 +

K∑
r=w+1

~r(R)
srF+1

−

q−1∑
j=0

D j
t
P(R, 0)
s jF+1 +

K(R)Y(s)
s jF −

F(R, s)
s jF

)
.

Step 10. The values of ~K(R) are obtained by solving the following expression:

lim
s→∞

(sKF+1MResK(R, s)) = 0,

where K = 1 + w, 2 + w, · · · .

Step 11. Put ~K(R) in Eq (3.3).

Step 12. To determine the required solution, take IMT to obtain RK(s) as PK(R, t).

Mohand transform iterative method

Suppose the PDE

DF
t
P(R, t) = Υ

(
P(R, t),Dη

R
P(R, t),D2η

R
P(R, t),D3η

R
P(R, t)

)
, 0 < F, η ≤ 1, (3.7)

with IC’s
P

(k)(R, 0) = hk, k = 0, 1, 2, · · · ,m − 1, (3.8)

AIMS Mathematics Volume 9, Issue 11, 32157–32181.



32164

where P(R, t) is a function to be determined and Υ
(
P(R, t),Dη

R
P(R, t),D2η

R
P(R, t),D3η

R
P(R, t)

)
is

operator of P(R, t),Dη

R
P(R, t),D2η

R
P(R, t) and D3η

R
P(R, t). Equation (3.7) is subjected to MT to obtain

M[P(R, t)] =
1
sF

( m−1∑
k=0

P(k)(R, 0)
s1−F+k + M

[
Υ
(
P(R, t),Dη

R
P(R, t),D2η

R
P(R, t),D3η

R
P(R, t)

)])
. (3.9)

The IMT gives us

P(R, t) = M−1
[ 1
sF

( m−1∑
k=0

P(k)(R, 0)
s1−F+k + M

[
Υ
(
P(R, t),Dη

R
P(R, t),D2η

R
P(R, t),D3η

R
P(R, t)

)])]
. (3.10)

The solution via the MTIM technique is represented as

P(R, t) =

∞∑
i=0

Pi. (3.11)

The decomposition of the operator Υ
(
P,Dη

R
P,D2η

R
P,D3η

R
P
)

is

Υ
(
P,Dη

R
P,D2η

R
P,D3η

R
P
)

= Υ
(
P0,D

η

R
P0,D

2η
R
P0,D

3η
R
P0

)
+

∞∑
i=0

Υ( i∑
k=0

(
Pk,D

η

R
Pk,D

2η
R
Pk,D

3η
R
Pk

))
− Υ

( i−1∑
k=1

(
Pk,D

η

R
Pk,D

2η
R
Pk,D

3η
R
Pk

)) . (3.12)

Putting Eqs (3.11) and (3.12) into Eq (3.10), we obtain
∞∑

i=0

Pi(R, t) = M−1
[ 1
sF

( m−1∑
k=0

P(k)(R, 0)
s2−F+k + M[Υ(P0,D

η

R
P0,D

2η
R
P0,D

3η
R
P0)]

)]
+ M−1

[ 1
sF

(
M

[ ∞∑
i=0

(
Υ

i∑
k=0

(Pk,D
η

R
Pk,D

2η
R
Pk,D

3η
R
Pk)

)])]
− M−1

[ 1
sF

(
M

[(
Υ

i−1∑
k=1

(Pk,D
η

R
Pk,D

2η
R
Pk,D

3η
R
Pk)

)])]
(3.13)

P0(R, t) = M−1
[ 1
sF

( m−1∑
k=0

P(k)(R, 0)
s2−F+k

)]
,

P1(R, t) = M−1
[ 1
sF

(
M[Υ(P0,D

η

R
P0,D

2η
R
P0,D

3η
R
P0)]

)]
,

...

Pm+1(R, t) = M−1
[ 1
sF

(
M

[ ∞∑
i=0

(
Υ

i∑
k=0

(Pk,D
η

R
Pk,D

2η
R
Pk,D

3η
R
Pk)

)])]
− M−1

[ 1
sF

(
M

[(
Υ

i−1∑
k=1

(Pk,D
η

R
Pk,D

2η
R
Pk,D

3η
R
Pk)

)])]
, m = 1, 2, · · · .

(3.14)

The general solution of Eq (3.7) is given as

P(R, t) =

m−1∑
i=0

Pi. (3.15)
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4. Uses of proposed methods

Example 4.1. • Implementation of MRPSM

Let us consider the fractional PDE

DF
t
P(R,K,Z, t) +

∂2P(R,K,Z, t)
∂R2 +

∂2P(R,K,Z, t)
∂K2 +

∂2P(R,K,Z, t)
∂Z2 = 0,

where 0 < F ≤ 1.
(4.1)

The initial condition is

P(R,K,Z, 0) = eR+K+Z, (4.2)

with exact solution

P(R,K, t) = eR+K+Z−3t. (4.3)

Equation (4.1) is subjected to MT, and using Eq (4.2) we get the following result:

P(R,K,Z, s) −
eR+K+Z

s
+

1
sF

[∂2P(R,K,Z, s)
∂R2

]
+

1
sF

[∂2P(R,K,Z, s)
∂K2

]
+

1
sF

[∂2P(R,K,Z, s)
∂Z2

]
= 0.

(4.4)

The kth term’s series is represented as

P(R,K,Z, s) =
eR+K+Z

s
+

k∑
r=1

fr(R,K,Z, s)
srF+1 , r = 1, 2, 3, 4 · · · . (4.5)

The residual function of Mohand is given by

MtRes(R,K,Z, s) = P(R,K,Z, s) −
eR+K+Z

s
+

1
sF

[∂2P(R,K,Z, s)
∂R2

]
+

1
sF

[∂2P(R,K,Z, s)
∂K2

]
+

1
sF

[∂2P(R,K,Z, s)
∂Z2

]
= 0,

(4.6)

and the kth-MRFs as

MtResk(R,K,Z, s) = Pk(R,K,Z, s) −
eR+K+Z

s
+

1
sF

[∂2Pk(R,K,Z, s)
∂R2

]
+

1
sF

[∂2Pk(R,K,Z, s)
∂K2

]
+

1
sF

[∂2Pk(R,K,Z, s)
∂Z2

]
= 0.

(4.7)

Now, we use these steps to find the values of fr(R,K,Z, s) for r = 1, 2, 3, ...: Take the rth-Mohand
residual function Eq (4.7) for the rth-truncated series Eq (4.5), and then multiply the equation by srF+1

and solve lims→∞(srF+1)MtResP,r(R,K,Z, s)) = 0 for r = 1, 2, 3, · · · . Using this procedure, we obtain
the following terms:

f1(R,K,Z, s) = −3eR+K+Z, (4.8)
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f2(R,K,Z, s) = 9eR+K+Z, (4.9)

f3(R,K,Z, s) = −27eR+K+Z, (4.10)

and so on.
The values of Eqs (4.9) and (4.10) are inserted in Eq (4.5) to obtain the following result:

P(R,K,Z, s) =
eR+K+Z

s
−

3eR+K+Z

sF+1 +
9eR+K+Z

s2F+1 −
27eR+K+Z

s3F+1 + · · · . (4.11)

Using IMT, we obtain the final solution

P1(R,K,Z, t) = eR+K+Z −
3tFeR+K+Z

Γ(F + 1)
+

9t2FeR+K+Z

Γ(2F + 1)
−

27t3FeR+K+Z

Γ(3F + 1)
. (4.12)

• Implementation of MTIM
Consider the fractional PDE

DF
t
P(R,K,Z, t) = −

∂2P(R,K,Z, t)
∂R2 −

∂2P(R,K,Z, t)
∂K2 −

∂2P(R,K,Z, t)
∂Z2 ,

where 0 < F ≤ 1.
(4.13)

The initial condition is

P(R,K,Z, 0) = eR+K+Z. (4.14)

MT is used on Eq (4.13), giving

M[DF
t
P(R,K,Z, t)] =

1
sF

( m−1∑
k=0

P(k)(R,K,Z, 0)
s2−F+k + M

[
−
∂2P(R,K,Z, t)

∂R2 −
∂2P(R,K,Z, t)

∂K2

−
∂2P(R,K,Z, t)

∂Z2

)])
.

(4.15)

Applying IMT on Eq (4.15), we obtain

P(R,K,Z, t) = M−1
[ 1
sF

( m−1∑
k=0

P(k)(R,K,Z, 0)
s2−F+k + M

[
−
∂2P(R,K,Z, t)

∂R2 −
∂2P(R,K,Z, t)

∂K2

−
∂2P(R,K,Z, t)

∂Z2

])]
.

(4.16)

Recursively applying the MT, we obtain

P0(R,K,Z, t) = M−1
[ 1
sF

( m−1∑
k=0

P(k)(R,K,Z, 0)
s2−F+k

)]
= M−1

[P(R,K,Z, 0)
s2

]
= eR+K+Z.

The RL integral is implemented on Eq (4.13), giving

P(R,K,Z, t) = eR+K+Z + M
[
−
∂2P(R,K,Z, t)

∂R2 −
∂2P(R,K,Z, t)

∂K2 −
∂2P(R,K,Z, t)

∂Z2

]
. (4.17)
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By using MTIM approach, we obtain the following terms:

P0(R,K,Z, t) = eR+K+Z, (4.18)

P1(R,K,Z, t) = −
3tFeR+K+Z

Γ(F + 1)
, (4.19)

P2(R,K,Z, t) =
9t2FeR+K+Z

Γ(2F + 1)
, (4.20)

P3(R,K,Z, t) = −
27t3FeR+K+Z

Γ(3F + 1)
. (4.21)

The final solution is represented as follows:

P(R,K,Z, t) = P0(R,K,Z, t) +P1(R,Z,K, t) +P2(R,K,Z, t) +P3(R,K,Z, t) + · · · , (4.22)

P(R,K,Z, t) = eR+K+Z −
3tFeR+K+Z

Γ(F + 1)
+

9t2FeR+K+Z

Γ(2F + 1)
−

27t3FeR+K+Z

Γ(3F + 1)
+ · · · . (4.23)

Example 4.2. • Implementation of MRPSM

Consider the system of nonlinear PDEs

DF
t
P1(R, t) +

∂3P1(R, t)
∂R3 − 3P2(R, t)

∂P2(R, t)
∂R

+ 6P1(R, t)
∂P1(R, t)

∂R
= 0,

DF
t
P2(R, t) +

∂3P2(R, t)
∂R3 + 3P1(R, t)

∂P2(R, t)
∂R

= 0 where 0 < F ≤ 1.
(4.24)

The IC’s are given as

P1(R, 0) =
4c2ecR(

ecR + 1
)2 ,

P2(R, 0) =
4c2ecR(

ecR + 1
)2 .

(4.25)

Equation (4.24) is subjected to MT, and using Eq (4.25), we get the following result:

P1(R, s) +

4c2ecR

(ecR+1)2

s
+

1
sF

[∂3P1(R, s)
∂R3

]
−

3
sF
Mt

[
M−1
t P2(R, s) ×

∂M−1
t
P2(R, s)
∂R

]
+

6
sF
Mt

[
M−1
t P1(R, s) ×

∂M−1
t
P1(R, s)
∂R

]
= 0,

P2(R, s) −

4c2ecR

(ecR+1)2

s
+

1
sF

[∂3P2(R, s)
∂R3

]
+

3
sF
Mt

[
M−1
t P1(R, s) ×

∂M−1
t
P2(R, s)
∂R

]
= 0.

(4.26)

The kth term’s series is represented as

P1(R, s) =

4c2ecR

(ecR+1)2

s
+

k∑
r=1

fr(R, s)
srF+1 ,

P2(R, s) =

4c2ecR

(ecR+1)2

s
+

k∑
r=1

gr(R, s)
srF+1 , r = 1, 2, 3, 4 · · · .

(4.27)
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The residual function of Mohand is given by

AtRes(R, s) = P1(R, s) +

4c2ecR

(ecR+1)2

s
+

1
sF

[∂3P1(R, s)
∂R3

]
−

3
sF
Mt

[
M−1
t P2(R, s) ×

∂M−1
t
P2(R, s)
∂R

]
+

6
sF
Mt

[
M−1
t P1(R, s) ×

∂M−1
t
P1(R, s)
∂R

]
= 0,

AtRes(R, s) = P2(R, s) −

4c2ecR

(ecR+1)2

s
+

1
sF

[∂3P2(R, s)
∂R3

]
+

3
sF
Mt

[
M−1
t P1(R, s) ×

∂M−1
t
P2(R, s)
∂R

]
= 0,

(4.28)

and the kth-MRFs as

AtResk(R, s) = P1k(R, s) +

4c2ecR

(ecR+1)2

s
+

1
sF

[∂3P1k(R, s)
∂R3

]
−

3
sF
Mt

[
M−1
t P2k(R, s) ×

∂M−1
t
P2k(R, s)
∂R

]
+

6
sF
Mt

[
M−1
t P1k(R, s) ×

∂M−1
t
P1k(R, s)
∂R

]
= 0,

AtResk(R, s) = P2k(R, s) −

4c2ecR

(ecR+1)2

s
+

1
sF

[∂3P2k(R, s)
∂R3

]
+

3
sF
Mt

[
M−1
t P1k(R, s) ×

∂M−1
t
P2k(R, s)
∂R

]
= 0.

(4.29)

Now, we use these steps to find the values of fr(R,K,Z, s) and gr(R,K,Z, s) for r = 1, 2, 3, ...: Put
the rth-Mohand residual function Eq (4.29) for the rth-truncated series Eq (4.27), and then multiply the
equation by srF+1, and solveMtResP1,r(R, s) = 0 andMtResP2,r(R, s) = 0 for r = 1, 2, 3, · · · . Using
this procedure, we obtain

f1(R, s) =
4c5ecR

(
ecR − 1

)
(
ecR + 1

)3 , g1(R, s) =
4c5ecR

(
ecR − 1

)
(
ecR + 1

)3 , (4.30)

f2(R, s) =
4c8ecR

(
−4ecR + e2cR + 1

)
(
ecR + 1

)4 , g2(R, s) =
4c8ecR

(
−4ecR + e2cR + 1

)
(
ecR + 1

)4 , (4.31)

and so on.
The values of Eqs (4.30) and (4.31) are inserted into Eq (4.27) to obtain the following result:

P1(R, s) =
4c2ecR

s
(
ecR + 1

)2 +
4c5ecR

(
ecR − 1

)
sF+1 (

ecR + 1
)3 +

4c8ecR
(
−4ecR + e2cR + 1

)
s2F+1 (

ecR + 1
)4 + · · · ,

P2(R, s) =
4c2ecR

s
(
ecR + 1

)2 +
4c5ecR

(
ecR − 1

)
sF+1 (

ecR + 1
)3 +

4c8ecR
(
−4ecR + e2cR + 1

)
s2F+1 (

ecR + 1
)4 + · · · .

(4.32)

Using IMT, we obtain the final solution:

P1(R, t) =
4c2ecR(

ecR + 1
)2 +

4c5tFecR
(
ecR − 1

)
Γ(F + 1)

(
ecR + 1

)3 +
4c8t2FecR

(
−4ecR + e2cR + 1

)
Γ(2F + 1)

(
ecR + 1

)4 + · · · ,

P2(R, t) =
4c2ecR(

ecR + 1
)2 +

4c5tFecR
(
ecR − 1

)
Γ(F + 1)

(
ecR + 1

)3 +
4c8t2FecR

(
−4ecR + e2cR + 1

)
Γ(2F + 1)

(
ecR + 1

)4 + · · · .

(4.33)
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• Implementation of MTIM
Consider the system of nonlinear PDEs

DF
t
P1(R, t) = −

∂3P1(R, t)
∂R3 + 3P2(R, t)

∂P2(R, t)
∂R

− 6P1(R, t)
∂P1(R, t)

∂R
,

DF
t
P2(R, t) = −

∂3P2(R, t)
∂R3 − 3P1(R, t)

∂P2(R, t)
∂R

, where 0 < F ≤ 1.
(4.34)

The IC’s are given as

P1(R, 0) =
4c2ecR(

ecR + 1
)2 , P2(R, 0) =

4c2ecR(
ecR + 1

)2 . (4.35)

MT is used on Eq (4.34), giving

M[DF
t
P1(R, t)] =

1
sF

( m−1∑
k=0

P
(k)
1 (R, 0)
s2−F+k +M

[
−
∂3P1(R, t)

∂R3 + 3P2(R, t)
∂P2(R, t)

∂R
− 6P1(R, t)

∂P1(R, t)
∂R

])
,

M[DF
t
P2(R, t)] =

1
sF

( m−1∑
k=0

P
(k)
2 (R, 0)
s2−F+k +M

[
−
∂3P2(R, t)

∂R3 − 3P1(R, t)
∂P2(R, t)

∂R

])
.

(4.36)

Applying IMT on Eq (4.36), we obtain

P1(R, t) =M−1
[ 1
sF

( m−1∑
k=0

P
(k)
1 (R, 0)
s2−F+k +M

[
−
∂3P1(R, t)

∂R3 + 3P2(R, t)
∂P2(R, t)

∂R
− 6P1(R, t)

∂P1(R, t)
∂R

])]
,

P2(R, t) =M−1
[ 1
sF

( m−1∑
k=0

P
(k)
2 (R, 0)
s2−F+k +M

[
−
∂3P2(R, t)

∂R3 − 3P1(R, t)
∂P2(R, t)

∂R

])]
.

(4.37)

Recursively applying the MT, we obtain

P10(R, t) =M−1
[ 1
sF

( m−1∑
k=0

P
(k)
1 (R, 0)
s2−F+k

)]
=M−1

[P1(R, 0)
s2

]
=

4c2ecR(
ecR + 1

)2 ,

P20(R, t) =M−1
[ 1
sF

( m−1∑
k=0

P
(k)
2 (R, 0)
s2−F+k

)]
=M−1

[P2(R, 0)
s2

]
=

4c2ecR(
ecR + 1

)2 .

The RL integral is implemented on Eq (4.34), giving

P1(R, t) =
4c2ecR(

ecR + 1
)2 −M

[
−
∂3P1(R, t)

∂R3 + 3P2(R, t)
∂P2(R, t)

∂R
− 6P1(R, t)

∂P1(R, t)
∂R

]
,

P2(R, t) =
4c2ecR(

ecR + 1
)2 −M

[
−
∂3P2(R, t)

∂R3 − 3P1(R, t)
∂P2(R, t)

∂R

]
.

(4.38)
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By using the MTIM approach, we obtain the following terms:

P10(R, t) =
4c2ecR(

ecR + 1
)2 ,

P11(R, t) =
c5tF tanh

(
cR
2

)
sech2

(
cR
2

)
Γ(F + 1)

,

P12(R, t) = −
c8t2F

(
3sech2

(
cR
2

)
− 2

) (
3c3tFΓ(2F + 1)2 tanh

(
cR
2

)
sech2

(
cR
2

)
+ Γ(F + 1)2Γ(3F + 1)

)
Γ(F + 1)2Γ(2F + 1)Γ(3F + 1)(cosh(cR) + 1)

.

(4.39)

P20(R, t) =
4c2ecR(

ecR + 1
)2 ,

P21(R, t) =
c5tF tanh

(
cR
2

)
sech2

(
cR
2

)
Γ(F + 1)

,

P22(R, t) = −
c8t2F

(
3sech2

(
cR
2

)
− 2

) (
3c3tFΓ(2F + 1)2 tanh

(
cR
2

)
sech2

(
cR
2

)
+ Γ(F + 1)2Γ(3F + 1)

)
Γ(F + 1)2Γ(2F + 1)Γ(3F + 1)(cosh(cR) + 1)

.

(4.40)

The final solution is represented as follows:

P1(R, t) = P10(R, t) +P11(R, t) +P12(R, t) + · · · , (4.41)

P2(R, t) = P20(R, t) +P21(R, t) +P22(R, t) + · · · . (4.42)

P1(R, t) =
4c2ecR(

ecR + 1
)2 +

c5tF tanh
(

cR
2

)
sech2

(
cR
2

)
Γ(F + 1)

−
c8t2F

(
3sech2

(
cR
2

)
− 2

) (
3c3tFΓ(2F + 1)2 tanh

(
cR
2

)
sech2

(
cR
2

)
+ Γ(F + 1)2Γ(3F + 1)

)
Γ(F + 1)2Γ(2F + 1)Γ(3F + 1)(cosh(cR) + 1)

+ · · · ,

(4.43)

P2(R, t) =
4c2ecR(

ecR + 1
)2 +

c5tF tanh
(

cR
2

)
sech2

(
cR
2

)
Γ(F + 1)

−
c8t2F

(
3sech2

(
cR
2

)
− 2

) (
3c3tFΓ(2F + 1)2 tanh

(
cR
2

)
sech2

(
cR
2

)
+ Γ(F + 1)2Γ(3F + 1)

)
Γ(F + 1)2Γ(2F + 1)Γ(3F + 1)(cosh(cR) + 1)

+ · · · .

(4.44)

5. Results and discussion

The graphical and tabular results offer a comprehensive evaluation of the effectiveness and accuracy
of the MTIM and MRPSM for solving FPDEs.

5.1. Graphical analysis

Figures 1 and 2 demonstrate the influence of fractional order on the solutions of the equation
P(R,K,Z, t) for specific values of the parameters K, Z, and t. Both 3D and 2D plots highlight the
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effectiveness of MTIM and MRPSM in accurately capturing the behavior of the solution for varying
fractional orders. Figures 3 and 4 provide a comparison between the exact solution and the solutions
obtained via MTIM and MRPSM. The close agreement between these solutions demonstrates the
reliability of the proposed methods for fractional PDEs. Figures 5 and 6 offer further insights into
the effect of fractional order on MRPSM solutions for two distinct cases, P1 and P2. These plots
indicate that MRPSM is highly sensitive to fractional-order variations, which enhances its adaptability
for different problems. Figures 7 and 8 depict the results for MTIM in comparison with MRPSM for
P1 and P2 under different conditions. The strong correlation between the solutions obtained by the
two methods further validates the applicability of both techniques. Figures 9 and 10 show a direct
comparison of MRPSM and MTIM for the same fractional order, demonstrating their consistency
across both 2D and 3D perspectives. The graphical results affirm that the methods provide nearly
identical results, emphasizing their robustness.

Figure 1. Graphical comparison of the fractional-order effect on our proposed method’s
solutions of P(R,K,Z, t) for K = Z = 0.1 and t = 0.01 in 3D.
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Figure 2. Graphical comparison of the fractional-order effect on our proposed method’s
solutions of P(R,K,Z, t) for K = Z = 0.1 and t = 0.01 in 2D.

Figure 3. Graphical depiction of the exact solution and our proposed method’s solutions of
P(R,K,Z, t) for K = Z = 0.1 and t = 0.01 in 3D.

Figure 4. Graphical depiction of the exact solution and our proposed method’s solutions of
P(R,K,Z, t) for K = Z = 0.1 and t = 0.01 in 2D.
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Figure 5. Graphical comparison of the fractional-order effect on the MRPSM solution of
P1(R, t) and P2(R, t) for t = 0.1 in 3D.

Figure 6. Graphical comparison of the fractional-order effect on the MRPSM solution of
P1(R, t) and P2(R, t) for t = 0.1 in 2D.
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Figure 7. Graphical comparison of the fractional-order effect on the MTIM solution of
P1(R, t) and P2(R, t) for t = 0.1 in 3D.

Figure 8. Graphical comparison of the fractional-order effect on the MTIM solution of
P1(R, t) and P2(R, t) for t = 0.1 in 2D.
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Figure 9. Graphical comparison of the MRPSM and MTIM solutions for t = 0.1 in 3D.

Figure 10. Graphical comparison of the MRPSM and MTIM solutions for t = 0.1 in 2D.

5.2. Tabular results

Table 1 presents an absolute error comparison for the solutions of example 1 using MTIM and
MRPSM. The minimal error values indicate that both methods provide highly accurate solutions,
making them practical for solving complex fractional PDEs. Table 2 extends this error comparison
to example 2, where both P1 and P2 are evaluated. Once again, the absolute errors are minimal,
supporting the precision and reliability of MTIM and MRPSM for different cases. In conclusion,
the graphical and tabular results strongly support the efficacy of the proposed methods. MTIM and
MRPSM not only simplify the solution process for fractional PDEs, but also provide highly accurate
and adaptable solutions. The methods demonstrate strong potential for application in various scientific
and engineering fields requiring the analysis of fractional-order systems.
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Table 1. Absolute error comparison for our proposed method’s solutions for P(R,K,Z, t) for K = Z = 0.1.

t R MRPS MF=1 MT IMF=1 Exact MRPS M ErrorF=1 MT IM ErrorF=1

0.01 0.10 1.30996440544749 1.30996440544749 1.30996445073324 4.528574915063×10−8 4.528574915063×10−8

0.35 1.68202759155083 1.68202759155083 1.68202764969888 5.814805303927×10−8 5.814805303927×10−8

0.60 2.15976617912133 2.15976617912133 2.15976625378491 7.466357798691×10−8 7.466357798691×10−8

0.85 2.77319466809436 2.77319466809436 2.77319476396429 9.586993199306×10−8 9.586993199306×10−8

0.03 0.10 1.23367443521972 1.23367443521972 1.23367805995674 3.624737017871×10−6 3.624737017871×10−6

0.35 1.58406933074002 1.58406933074002 1.58407398499448 4.654254460056×10−6 4.654254460056×10−6

0.60 2.03398528246572 2.03398528246572 2.03399125864675 5.976181022049×10−6 5.976181022049×10−6

0.85 2.61168879985479 2.61168879985479 2.61169647342311 7.673568327426×10−6 7.673568327426×10−6

0.05 0.10 1.16180660244557 1.16180660244557 1.16183424272828 2.764028271173×10−5 2.764028271173×10−5

0.35 1.49178920681574 1.49178920681574 1.49182469764127 3.549082552645×10−5 3.549082552645×10−5

0.60 1.91549525789186 1.91549525789186 1.91554082901389 4.557112203484×10−5 4.557112203484×10−5

0.85 2.45954459667798 2.45954459667798 2.45960311115694 5.851447895999×10−5 5.851447895999×10−5

0.07 0.10 1.09406933762259 1.09406933762259 1.09417428370521 1.049460826105×10−4 1.049460826105×10−4

0.35 1.40481283712613 1.40481283712613 1.40494759056359 1.347534374536×10−4 1.347534374536×10−4

0.60 1.80381538855917 1.80381538855917 1.80398841539785 1.730268386763×10−4 1.730268386763×10−4

0.85 2.31614480592246 2.31614480592246 2.31636697678109 2.221708586298×10−4 2.221708586298×10−4

0.10 0.10 0.99957044701003 0.99957044701003 1.00000000000000 4.295529899697×10−4 4.295529899697×10−4

0.35 1.28347385973080 1.28347385973080 1.28402541668774 5.515569569352×10−4 5.515569569352×10−4

0.60 1.64801305754867 1.64801305754867 1.64872127070012 7.082131514557×10−4 7.082131514557×10−4

0.85 2.11609065292577 2.11609065292577 2.11700001661267 9.093636869019×10−4 9.093636869019×10−4

A
IM

S
M

athem
atics

Volum
e

9,Issue
11,32157–32181.



32177
Table 2. Absolute error comparison for our proposed method’s solutions for P1(R, t) and P2(R, t).

t R MRPS MF=0.7 MT IMF=0.7 MRPS MF=1.0 MT IMF=1.0 |MRPS M − MT IM|F=0.7 |MRPS M − MT IM|F=1.0

0.1 0.10 0.2499527853 0.2499526861 0.2499121337 0.2499121276 9.9242792095×10−8 6.0831994996×10−8

0.35 0.2486293113 0.2486289768 0.2483568594 0.2483568389 3.3452402567×10−7 2.0505029479×10−8

0.60 0.2454001942 0.2453996649 0.2449043498 0.2449043174 5.2929990035×10−7 3.2444037623×10−8

0.85 0.2403639798 0.2403633177 0.2396597476 0.2396597070 6.6212486968×10−7 4.0585694638×10−8

0.3 0.10 0.2499229699 0.2499219730 0.2499903237 0.2499901595 9.9690462096×10−7 1.6424638585×10−7

0.35 0.2490954767 0.2490921164 0.2488224297 0.2488218760 3.3603301558×10−6 5.5363579581×10−7

0.60 0.2463478586 0.2463425417 0.2457429414 0.2457420654 5.3168749624×10−6 8.7598901432×10−7

0.85 0.2417642150 0.2417575638 0.2408460059 0.2408449101 6.6511162011×10−6 1.0958137564×10−6

0.5 0.10 0.2497783238 0.2497754095 0.2499905839 0.2499898235 2.9143115888×10−6 7.6039993426×10−7

0.35 0.2493515651 0.2493417416 0.2492122418 0.2492096786 9.8234564366×10−6 2.5631286842×10−6

0.60 0.2469966017 0.2469810585 0.2465102198 0.2465061643 1.5543142236×10−5 4.0555046959×10−6

0.85 0.2427855197 0.2427660760 0.2419673860 0.2419623128 1.9443610367×10−5 5.0732118353×10−6

0.7 0.10 0.2495611717 0.2495552642 0.2499129141 0.2499108276 5.9075153423×10−6 2.0865374195×10−6

0.35 0.2494909149 0.2494710021 0.2495262957 0.2495192624 1.9912839737×10−5 7.0332251095×10−6

0.60 0.2474879230 0.2474564159 0.2472061853 0.2471950570 3.1507046666×10−5 1.1128304885×10−5

0.85 0.2436133438 0.2435739303 0.2430238880 0.2430099671 3.9413570944×10−5 1.3920893276×10−5

1.0 0.10 0.2491344789 0.2491219850 0.2496502911 0.2496442079 1.2493927289×10−5 6.0831994737×10−6

0.35 0.2495497378 0.2495076238 0.2498553300 0.2498348249 4.2114079676×10−5 2.0505029473×10−5

0.60 0.2480300251 0.2479633902 0.2481164215 0.2480839774 6.6634909492×10−5 3.2444037567×10−5

0.85 0.2446212213 0.2445378648 0.2444869946 0.2444464089 8.3356582432×10−5 4.0585694683×10−5
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6. Conclusions

In conclusion, this study has demonstrated the efficacy of MTIM and MRPSM in solving fractional-
order PDEs and systems of PDEs. By employing the Caputo operator to define fractional derivatives,
we have shown that these methods provide a powerful and flexible framework for tackling complex
problems in applied mathematics. The results obtained through our examples confirm that MTIM and
MRPSM not only simplify the solution process, but also improve the accuracy and reliability of the
solutions. These methods hold significant potential for application in various scientific and engineering
disciplines, particularly in situations where traditional approaches may fall short. Future work can
extend these techniques to more complex and higher-dimensional problems, further establishing their
utility in the field of fractional calculus and beyond.
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