A topological space $ \left(X, \tau \right) $ is called a $ KC $-space when every compact subset of $ X $ is closed. The aim of this paper is to introduce new, namely $ KC $-bitopological spaces and pairwise $ KC $-topological spaces "$ P $-$ KC $-topological spaces". We examined the properties of these concepts and showed the relationships between these concepts and other bitopological spaces. We also discussed the effect of some types of functions on $ KC $-bitopological spaces and pairwise $ KC $-topological spaces. Several examples are discussed, and many well-known theories are generalized.
Citation: Hamza Qoqazeh, Ali Atoom, Maryam Alholi, Eman ALmuhur, Eman Hussein, Anas Owledat, Abeer Al-Nana. $ KC $-bitopological spaces[J]. AIMS Mathematics, 2024, 9(11): 32182-32199. doi: 10.3934/math.20241545
A topological space $ \left(X, \tau \right) $ is called a $ KC $-space when every compact subset of $ X $ is closed. The aim of this paper is to introduce new, namely $ KC $-bitopological spaces and pairwise $ KC $-topological spaces "$ P $-$ KC $-topological spaces". We examined the properties of these concepts and showed the relationships between these concepts and other bitopological spaces. We also discussed the effect of some types of functions on $ KC $-bitopological spaces and pairwise $ KC $-topological spaces. Several examples are discussed, and many well-known theories are generalized.
[1] | J. Kelly, Bitopological spaces, Proc. London Math. Soc., 13 (1963), 71–89. https://doi.org/10.1112/plms/s3-13.1.71 doi: 10.1112/plms/s3-13.1.71 |
[2] | J. W. Kim, Pairwise compactness, Publ. Math. Debrecen, 10 (1968), 87–90. https://doi.org/10.5486/pmd.1968.15.1-4.12 doi: 10.5486/pmd.1968.15.1-4.12 |
[3] | P. Fletcher, H. Hoyle, C. Patty, The comparison of topologies, Duke Math. J., 36 (1969), 325–331. https://doi.org/10.1215/S0012-7094-69-03641-2 doi: 10.1215/S0012-7094-69-03641-2 |
[4] | M. Datta, Projective bitopological spaces, J. Aust. Math. Soc., 13 (1972), 327–334. https://doi.org/10.1017/S1446788700013744 doi: 10.1017/S1446788700013744 |
[5] | I. Cooke, L. Reilly, On bitopological compactness, J. London Math. Soc., 4 (1975), 518–522. https://doi.org/10.1112/jlms/s2-9.4.518 doi: 10.1112/jlms/s2-9.4.518 |
[6] | A. Fora, H. Hdeib, On pairwise Lindelöf spaces, Revista Colomb. Mat., 17 (1983), 37–57. |
[7] | A. Zarif, F. Razzak, $COKC$-topology, Tishreen Univ. J. Basic Sci. Ser., 33 (2011), 193–199. |
[8] | R. Ali, Minimal $KC$-spaces and minimal $LC$-spaces, Tishreen Univ. J. Stud. Sci. Res., 28 (2006), 147–154. |
[9] | A. Bella, C. Costantini, Minimal $KC$ spaces are compact, Topol. Appl., 13 (2008), 1426–1429. https://doi.org/10.1016/j.topol.2008.04.005 doi: 10.1016/j.topol.2008.04.005 |
[10] | H. A. Künzi, D. Zypen, Maximal (sequentially) compact topologies, Categor. Structers Appl., 2004,173–187. https://doi.org/10.1142/9789812702418_0013 doi: 10.1142/9789812702418_0013 |
[11] | A. Zarif, F. Razzak, $KC$-spaces and minimal $KC$-spaces, Tishreen Univ. J. Basic Sci. Ser., 32 (2010), 79–85. |
[12] | A. Wilansky, Between $T_{1}$ and $T_{2}$, Amer. Math. Month., 3 (1967), 261–266. https://doi.org/10.1080/00029890.1967.11999950 doi: 10.1080/00029890.1967.11999950 |
[13] | H. Hdeib, A note on $L$-closed spaces, Quest. Answer Gen. Topol., 6 (1988), 67–72. |
[14] | S. Maheshwari, R. Prasad, Some new separations axioms, Ann. Soc. Sci. Bruxelles Ser. I, 89 (1975), 395–402. |
[15] | T. Vidalis, Minimal $KC$-spaces are countably compact, Comment. Math. Univ. Carol., 45 (2004), 543–547. https://doi.org/10338.dmlcz/119481 |
[16] | O. Alas, M. Tkachenko, V. Tkachuk, R. Wilson, The $FDS$-property and spaces in which compact sets are closed, Sci. Math. Japonicae, 61 (2005), 473–480. |
[17] | O. Alas, R. Wilson, Spaces in which compact sets are closed and the lattic of $T_{1}$-topologies on a set, Comment. Math. Univ. Carol., 43 (2002), 641–652. http://doi.org/10338.dmlcz/119353 |
[18] | O. Alas, R. Wilson, Weaker connected Hausdorff topologies on spaces with a $\sigma$-locally finite base, Houston J. Math., 31 (2005), 427–439. |
[19] | O. Alas, R. Wilson, Minimal properties between $T_{1}$ and $T_{2}$, Houston J. Math., 32 (2006), 493–504. |
[20] | J. Oprsal, Minimalni $KC$ prostory, Ph. D thesis, Univerzita Karlova, 2009. https://doi.org/20.500.11956/27483 |
[21] | A. Bella, C. Costantini, Further remarks on $KC$ and related spaces, Comment. Math. Univ. Carol., 52 (2011), 417–426. https://doi.org/10338.dmlcz/141612 |
[22] | H. Ali, H. Saleh, On $K(SC)$ and $L(SC)$-spaces, Al-Mustansiriyah J. Sci., 25 (2014), 125–132. |
[23] | H. Ali, New forms of $KC$ and $LC$-spaces, Al-Mustansiriyah J. Sci., 5 (2011), 321–327. |
[24] | R. Ali, On weaker forms of $LC$-spaces, Iraqi Al-Khwarizmi Soc., 1 (2017), 62–67. |
[25] | R. Ali, A. Abker, On $MKC$-spaces, $MLC$-spaces and $Mh$-spaces, J. Al-Qadisiyah Comput. Math., 7 (2015), 72–84. https://doi.org/10.29304/jqcm.2015.7.1 doi: 10.29304/jqcm.2015.7.1 |
[26] | A. Zarif, A. Wraid, A study in $\alpha$-compact topological spaces and $\alpha$-$kc$-spaces, Tishreen Univ. J. Basic Sci. Ser., 37 (2015), 153–161. |
[27] | H. Hdeib, C. Pareek, On spaces in which lindlöf sets are closed, Quest. Answer Gen. Topol., 4 (1986), 986. |
[28] | E. Almuhor, H. Hdeib, On pairwise $L$-closed spaces in bitopological spaces, J. Semigroup Theory Appl., 2018 (2018), 7. https://doi.org/10.28919/jsta/3668 doi: 10.28919/jsta/3668 |
[29] | N. Nadhim, H. Ali, R. Majeed, Strong and weak forms of $\hat{I} \frac{1}{4}$-$Kc$-spaces, Iraqi J. Sci., 61 (2020), 1080–1088. https://doi.org/10.24996/ijs.2020.61.5.16 doi: 10.24996/ijs.2020.61.5.16 |