Research article

Dynamic cumulative residual Rényi entropy for Lomax distribution: Bayesian and non-Bayesian methods

  • Received: 18 October 2020 Accepted: 21 January 2021 Published: 02 February 2021
  • MSC : 62G07, 62C05, 62E20

  • An alternative measure of uncertainty related to residual lifetime function is the dynamic cumulative residual entropy which plays a significant role in reliability and survival analysis. This article deals with estimating dynamic cumulative residual Rényi entropy (DCRRE) for Lomax distribution using maximum likelihood and Bayesian methods of estimation. The maximum likelihood estimates and approximate confidence intervals of DCRRE are derived. Bayesian estimates and Bayesian credible intervals are derived based on gamma priors for the DCRRE under squared error, linear exponential (LINEX) and precautionary loss functions. The Metropolis-Hastings algorithm is employed to generate Markov chain Monte Carlo samples from the posterior distributions. The Bayes estimates are compared through Monte Carlo simulations. Regarding simulation results, we observe that the maximum likelihood and Bayesian estimates of the DCRRE are decreasing function on time. Further, maximum likelihood and Bayesian estimates of the DCRRE perform well as the sample size increases. Bayesian estimate of the DCRRE under LINEX loss function is more convenient than the other estimates in the most of the situations. Real data set is analyzed for clarifying purposes.

    Citation: Abdulhakim A. Al-Babtain, Amal S. Hassan, Ahmed N. Zaky, Ibrahim Elbatal, Mohammed Elgarhy. Dynamic cumulative residual Rényi entropy for Lomax distribution: Bayesian and non-Bayesian methods[J]. AIMS Mathematics, 2021, 6(4): 3889-3914. doi: 10.3934/math.2021231

    Related Papers:

  • An alternative measure of uncertainty related to residual lifetime function is the dynamic cumulative residual entropy which plays a significant role in reliability and survival analysis. This article deals with estimating dynamic cumulative residual Rényi entropy (DCRRE) for Lomax distribution using maximum likelihood and Bayesian methods of estimation. The maximum likelihood estimates and approximate confidence intervals of DCRRE are derived. Bayesian estimates and Bayesian credible intervals are derived based on gamma priors for the DCRRE under squared error, linear exponential (LINEX) and precautionary loss functions. The Metropolis-Hastings algorithm is employed to generate Markov chain Monte Carlo samples from the posterior distributions. The Bayes estimates are compared through Monte Carlo simulations. Regarding simulation results, we observe that the maximum likelihood and Bayesian estimates of the DCRRE are decreasing function on time. Further, maximum likelihood and Bayesian estimates of the DCRRE perform well as the sample size increases. Bayesian estimate of the DCRRE under LINEX loss function is more convenient than the other estimates in the most of the situations. Real data set is analyzed for clarifying purposes.



    加载中


    [1] C. E. Shannon, A Mathematical Theory of Communication, Bell. Syst. Tech. J., 27 (1948), 379–432. doi: 10.1002/j.1538-7305.1948.tb01338.x
    [2] A. Rényi, On measures of Entropy and Information, Proc. Fourth Berkeley Symp. Math. Statist. Prob., 1 (1961), 547–561.
    [3] R. Renner, N. Gisin, B. Kraus, An Information-Theoretic Security Proof for Quantum-Key-Distribution Protocols, Phys. Rev. A., 72 (2005), 1–18.
    [4] P. Lévay, S. Nagy, J. Pipek, Elementary Formula for Entanglement Entropies of Fermionic Systems, Phys. Rev. A., 72 (2005), 1–8
    [5] A. Motahari, G. Bresler, D. Tse, Information Theory of DNA Shotgun Sequencing, 2013, Available from: https://arXiv.org/pdf/1203.6233.pdf.
    [6] S. Gabarda, G. Cristobal, Multifocus Image Fusion Through Pseudo-Wigner Distribution, Opt. Eng., 44 (2005), 1–9.
    [7] E. Martina, E. Rodriguez, R. Escarela-Perez, J. Alvarez-Ramirezd, Multiscale Entropy Analysis of Crude Oil Price Dynamics, Energy Econ., 33 (2011), 936–947.
    [8] G. Resconi, I. Licata, D. Fiscaletti, Unification of Quantum and Gravity by Non Classical Information Entropy Space, Entropy, 15 (2013), 3602–3619. doi: 10.3390/e15093602
    [9] S. Kayal, S. Kumar, Estimating the Entropy of an Exponential Population under the Linex Loss Function, J. Indian. Stat. Assoc. (JISA), 49 (2011), 91–112.
    [10] J. I. Seo, H. J. Lee, S. B. Kang, Estimation for Generalized Half Logistic Distribution Based on Records, J. Korea Inf. Sci. Soc., 23 (2012), 1249–1257.
    [11] Y. Cho, H. Sun, K. Lee, Estimating the Entropy of a Weibull Distribution Under Generalized Progressive Hybrid Censoring, Entropy, 17 (2015), 102–122. doi: 10.3390/e17010102
    [12] M. Chacko, P. S. Asha, Estimation of Entropy for Generalized Exponential Distribution Based on Record values, J. Indian Soc. Probab. Stat., 19 (2018), 79–96. doi: 10.1007/s41096-018-0033-4
    [13] L.K. Patra, S. Kayal, S. Kumar, Estimating a Function of Scale Parameter of an Exponential Population with Unknown Location under General Loss Function, Stat. Papers, 61 (2020), 2511–2527. doi: 10.1007/s00362-018-1052-7
    [14] A. S. Hassan, A. N. Zaky, Estimation of Entropy for Inverse Weibull Distribution Under Multiple Censored Data, J. Taibah. Univ. Sci., 13 (2019), 331–337. doi: 10.1080/16583655.2019.1576493
    [15] C. Petropoulos, L. K. Patra, S. Kumar, Improved Estimators of the Entropy in Scale Mixture of Exponential Distributions, Braz. J. Probab. Stat., 34 (2020), 580–593. doi: 10.1214/19-BJPS450
    [16] R. A. R. Bantan, M. Elgarhy, C. Chesneau, F. Jamal, Estimation of Entropy for Inverse Lomax Distribution under Multiple Censored Data, Entropy, 22 (2020), 601. doi: 10.3390/e22060601
    [17] A. S. Hassan, A. N. Zaky, Entropy Bayesian Estimation for Lomax Distribution Based on Record, Thail. Stat., 19 (2021), 96–115.
    [18] S. M. Sunoj, M. N. Linu, Dynamic Cumulative Residual Rényi's Entropy, Statistics, 46 (2012), 41–56. doi: 10.1080/02331888.2010.494730
    [19] M. Rao, Y. Chen, B. C. Vemuri, F. Wang, Cumulative Residual Entropy: A New Measure of Information, IEEE Trans. Inf. Theory, 50 (2004), 1220–1228. doi: 10.1109/TIT.2004.828057
    [20] O. Kamari, On Dynamic Cumulative Residual Entropy of Order Statistics, J. Stat. Appl. Prob., 5 (2016), 515–519. doi: 10.18576/jsap/050315
    [21] C. Kundu, A.D. Crescenzo, M. Longobardi, On Cumulative Residual (Past) Inaccuracy for Truncated Random Variables, Metrika, 79 (2016), 335–356. doi: 10.1007/s00184-015-0557-5
    [22] K. R. Renjini, E. I. Abdul Sathar, G. Rajesh, Bayes Estimation of Dynamic Cumulative Residual Entropy for Pareto Distribution Under Type-II Right Censored Data, Appl. Math. Model., 40 (2016), 8424–8434. doi: 10.1016/j.apm.2016.04.017
    [23] K. R. Renjini, E. I. Abdul Sathar, G. Rajesh, A Study of The Effect of Loss Functions On the Bayes Estimates Of Dynamic Cumulative Residual Entropy For Pareto Distribution Under Upper Record Values, J. Stat. Comput. Sim., 86 (2016), 324–339. doi: 10.1080/00949655.2015.1007986
    [24] K. R. Renjini, E. I. Abdul Sathar, G. Rajesh, Bayesian Estimation of Dynamic Cumulative Residual Entropy for Classical Pareto Distribution, Am. J. Math. Manage. Sci., 37 (2018), 1–13.
    [25] A. A. H. Ahmadini, A. S. Hassan, A. N. Zaky, S. S Alshqaq, Bayesian Inference of Dynamic Cumulative Residual Entropy from Pareto II Distribution with Application to COVID-19, AIMS Math., 6 (2020), 2196–2216.
    [26] K. S. Lomax, Business Failures: Another Example of the Analysis of Failure Data, J. Am. Stat. Assoc., 49 (1954), 847–852. doi: 10.1080/01621459.1954.10501239
    [27] A. Corbellini, L. Crosato, P. Ganugi, Mazzoli M, Fitting Pareto II Distributions on Firm Size: Statistical Methodology and Economic Puzzles, In: Advances in Data Analysis, 2010,321–328.
    [28] A. M. Abd-Elfattah, F. M Alaboud, H. A. Alharbey, On Sample Size Estimation for Lomax Distribution, Aust. J. Basic Appl. Sci., 1 (2007), 373–378.
    [29] M. Ahsanullah, Record Values of Lomax Distribution, Statistica Nederlandica., 45 (1991), 21–29. doi: 10.1111/j.1467-9574.1991.tb01290.x
    [30] N. Balakrishnan, M. Ahsanullah, Relations for Single and Product Moments of Record Values from Lomax Distribution, Sankhya B., 56 (1994), 140–146
    [31] A. S. Hassan, A. Al-Ghamdi, Optimum Step Stress Accelerated Life Testing for Lomax Distribution, J. Appl. Sci. Res., 5 (2009), 2153–2164.
    [32] A. S. Hassan, S. M. Assar, A. Shelbaia, Optimum Step-Stress Accelerated Life Test Plan for Lomax Distribution with an Adaptive Type-II Progressive Hybrid Censoring, J. Adv. Math. Comp. Sci., 13 (2016), 1–19.
    [33] A. S. Hassan, M. Abd-Allah, Exponentiated Lomax Geometric Distribution: Properties and Applications, Pak. J. Stat. Oper. Res., 13 (2017), 545–566.
    [34] A. S. Hassan, S. G Nassr, Power Lomax Poisson distribution: Properties and Estimation, J. Data Sci. (JDS), 16 (2018), 105–128.
    [35] A. S. Hassan, R. E. Mohamed, Parameter Estimation for Inverted Exponentiated Lomax Distribution with Right Censored Data, Gazi Univ. J. Sci., 32 (2019), 1370–1386. doi: 10.35378/gujs.452885
    [36] A. S. Hassan, M. A. H Sabry, A. Elsehetry, Truncated Power Lomax Distribution with Application to Flood Data, J. Stat. Appl. Prob., 9 (2020), 347–359. doi: 10.18576/jsap/090214
    [37] A. S. Hassan, M. Elgarhy, R. E. Mohamed, Statistical Properties and Estimation of Type II Half Logistic Lomax Distribution, Thail. Stat., 18 (2020), 290–305.
    [38] R. Bantan, A. S. Hassan, M. Elsehetry, Zubair Lomax Distribution: Properties and Estimation based on Ranked Set Sampling, CMC- Comput. Mater. Con., 65 (2020), 2169–2187.
    [39] A. Pak, M. R. Mahmoudi, Estimating the Parameters of Lomax Distribution from Imprecise Information, J. Stat. Theory Appl., 17 (2018), 122–135.
    [40] M. H. Chen, Q. M. Shao, Monte Carlo Estimation of Bayesian Credible and HPD Intervals, J. Comput. Graph. Stat., 8 (1999), 69–92.
    [41] B. Jorgensen, Statistical Properties of the Generalized Inverse Gaussian Distribution, Springer-Verlag, New York, 1982.
    [42] S. Dey, I. Ghosh, D Kumar, Alpha power transformed Lindley distribution: properties and associated inference with application to earthquake data, Ann. Data. Sci., 6 (2019), 623–650.
    [43] M. Nassar, A. Alzaatreh, M. Mead, O. Abo-Kasem, Alpha power Weibull distribution: Properties and applications, Commun. Stat. Theory Methods, 46 (2017), 10236–10252.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2524) PDF downloads(137) Cited by(5)

Article outline

Figures and Tables

Figures(13)  /  Tables(17)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog