

AIMS Mathematics, 9(11): 32182–32199. DOI: 10.3934/math.20241545 Received: 20 August 2024 Revised: 29 October 2024 Accepted: 05 November 2024 Published: 13 November 2024

https://www.aimspress.com/journal/Math

Research article

KC-bitopological spaces

Hamza Qoqazeh^{1,*}, Ali Atoom², Maryam Alholi³, Eman ALmuhur⁴, Eman Hussein⁵, Anas Owledat⁶ and Abeer Al-Nana⁷

- ¹ Faculty of Science and Information Technology, Department of Mathematics, Irbid National University, Irbid, Jordan
- ² Faculty of Science, Department of Mathematics, Ajloun National University, Ajloun, Jordan
- ³ Faculty of Applied, Taibah University, Al Ula, Saudi Arabia
- ⁴ Faculty of Arts and Science, Department of Mathematics, Applied Science Private University, Amman, Jordan
- ⁵ Faculty of Arts and Science, Department of Mathematics, Amman Arab University, Amman, Jordan
- ⁶ Ministry of Education, Amman, Jordan
- ⁷ Faculty of Science, Department of Mathematics, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- * Correspondence: Email: hhaaqq983@gmail.com; Tel: +962776820543.

Abstract: A topological space (X, τ) is called a *KC*-space when every compact subset of *X* is closed. The aim of this paper is to introduce new, namely *KC*-bitopological spaces and pairwise *KC*-topological spaces "*P-KC*-topological spaces". We examined the properties of these concepts and showed the relationships between these concepts and other bitopological spaces. We also discussed the effect of some types of functions on *KC*-bitopological spaces and pairwise *KC*-topological spaces. Several examples are discussed, and many well-known theories are generalized.

Keywords: bitopological space; *KC*-spaces; *P-KC*-spaces; *K*-function; compact function; *P*-Hausdorff; *P*-compact **Mathematics Subject Classification:** 54A05, 54A10, 54A20, 54D25, 54D30

Abbreviations:

P: pairwise spaces; *KC*: closed compact spaces; *P-KC*: pairwise closed compact spaces; *P*-Hausdorff: pairwise Hausdorff spaces; *KC*-spaces: closed compact spaces; *P-KC*-spaces: pairwise closed lindlöf spaces; *P-LC*-spaces: pairwise closed lindlöf

spaces; \mathbb{R} : the set of all real numbers; \mathbb{Q} : the set of all rational numbers; \mathbb{Z} : the set of all integers; \mathbb{N} : the set of all natural numbers; τ_u : the usual topology; τ_s : the Sorgenfrey line topology; τ_{cof} : the coffinite topology; τ_{coc} : the cocountable topology; $\tau_{l.r}$: the left-ray topology; $\tau_{r.r}$: the right-ray topology; τ_{dis} : the discrete topology; τ_{ind} : the indiscrete topology; Cl_iA : the τ_i -closure of A

1. Introduction

The basic concepts of bitopological spaces began to be studied in 1963 by mathematician Kelly [1]. Several authors have since addressed the problem of defining compactness in bitopological spaces, as seen in Kim [2].

In 1969, Fletcher et al. [3] introduced the main definitions of $\tau_i \tau_j$ -open covers and *P*-open covers in bitopological spaces. A cover \tilde{U} of a bitopological space (X, τ_i, τ_j) is called $\tau_i \tau_j$ -open if

$$\tilde{U} \subset \tau_i \cup \tau_j.$$

If \tilde{U} contains at least one non-empty member of τ_i and at least one non-empty member of τ_j , it is called *P*-open. They also defined the concepts of pairwise compact (*P*-compact) spaces. In 1972, Datta [4] studied the concept of semi-compact (*S*-compact) spaces in the bitopological space (X, τ_i, τ_j) . Cooke and Reilly [5] discussed the relationships between these previous definitions in 1975. In 1983, Fora and Hdieb [6] introduced the concepts of pairwise Lindelöf (*P*-Lindelöf) and semi-Lindelöf (*S*-Lindelöf) spaces. They also provided the definitions of certain types of functions as follows: function

$$g: (X, \tau_i, \tau_j) \longrightarrow (Y, \sigma_i, \sigma_j)$$

is called *P*-continuous (or *P*-closed, respectively) if both functions

$$g: (X, \tau_i) \longrightarrow (Y, \sigma_i)$$

and

$$g:(X,\tau_j)\longrightarrow (Y,\sigma_j)$$

are continuous (or closed, respectively).

This overview introduces *KC*-bitopological spaces, emphasizing their importance in relation to compactness and closedness. The concept of *KC*-topological spaces was first developed by Hewitt in the early 1940s, with foundational definitions and illustrative examples provided, see [7]. Hewitt introduced minimal topological spaces, establishing that every Hausdorff compact space is a minimal *KC*-space "*mKC*-space". By 1947, it was proven that every compact *KC*-space is an *mKC*-space. In 1965, the auther Aull, shows his contribution in [7] developed a space thats found between T_1 and T_2 , namely, *KC*-space. The relationship between them is represented by the following diagram: $T_2 \rightarrow KC \rightarrow T_1$, researchers examined space in [8–11]. Wilansky [12] explored the relationships between separation axioms between T_1 and T_2 spaces, highlighting *KC*-topological spaces. It was established that every T_2 -space is a *KC*-space, and every *KC*-space is a T_1 -space, see also [13, 14]. In 2004, Valdis showed that a minimal space where every compact subset is closed is countably compact [15], leading to the result that every minimal *KC*-space is countably compact [16–18]. Ali [8] in 2006 expanded on this by introducing *KC*-space, minimal *KC*-space, and minimal Hausdorff spaces, as well as minimal

AIMS Mathematics

LC-topological spaces. Ali found that the direct image of a *KC*-space under a continuous function is not necessarily a *KC*-space unless certain conditions are met. Further, the relationships between minimal *KC*-topological spaces and minimal Hausdorff or *LC*-topological spaces were studied.

In 2006, Alas and Wilson [19] examined the minimal properties of spaces between T_1 and T_2 spaces, noting that KC-spaces extend Hausdorff spaces. They introduced KC-closed spaces and discussed their relationship with KC-spaces, see also [9, 16, 19]. In 2008, Bella and Costantini [9] showed that any minimal KC-space must be compact, though not necessarily Hausdorff. In 2009, Oprsal [20] addressed the problem of whether every KC-space with a weaker KC-topology is compact, a question resolved by Bella and Costantini [9]. In 2010, Zarif and Razzak [11] linked KC-topological spaces with concepts such as connected functions, closed functions, and K-functions, yielding significant results. In 2011, Adnan [7] introduced Cooke-topological spaces and analyzed their properties and relationships with KC-spaces. Bella and Costantini [21] introduced SC-spaces, defined by closed convergent sequences and their limits, and explored the relationships between T_2 , KC, SC, and T_1 spaces as $T_2 \longrightarrow KC \longrightarrow SC \longrightarrow T_1$. Jebour and Saleh [22] introduced K-(SC)-spaces as weaker versions of KC-topological spaces, developing new results, see also [23,24]. In 2015, Ali and Abker [25] introduced minimal compact closed spaces "mKC-spaces" and examined their relations with other spaces, including KC-topological spaces. A new definition for α -KC-spaces was proposed, with results indicating that every KC-space is an α -KC-space, see the study [26]. For more studies about this topic, see [13, 27]. In 2018, Almohor and Hdieb [28] explored properties of pairwise L-closed spaces (LC-topological spaces), contributing to the field by generalizing relationships between LC-topological spaces and KC-topological spaces. Nadhim et al. introduced concepts of strong and weak forms of KC-topological spaces [29].

In this paper, we first introduce the concept of closed compactness, referred to as "*KC*-spaces" in bitopological spaces. We provide basic definitions for *KC*-bitopological spaces and pairwise *KC*-topological spaces, deriving many related results. Illustrative examples and theories of these two main concepts are discussed. We also explore how these concepts relate to other topological concepts within bitopological spaces.

Next, we study the effect of various types of functions on *KC*-bitopological spaces and pairwise *KC*-topological spaces. We examine the necessary conditions for the direct image of a *KC*-bitopological space and a pairwise *KC*-topological space to remain a *KC*-bitopological space and a pairwise *KC*-topological space, respectively. Additional conditions are established for the inverse image of these spaces to retain their properties.

Finally, we analyze the relationship between *KC*-bitopological spaces, pairwise *KC*-topological spaces, and other bitopological spaces, such as *P*-compact spaces. This involves studying the impact of different functions on *KC*-bitopological spaces and pairwise *KC*-topological spaces. For instance, a bitopological space (X, τ_i, τ_j) is considered compact if both (X, τ_i) and (X, τ_j) are compact spaces.

2. KC-bitopological spaces

In this section, we introduce the concepts of *KC*-bitopological spaces and pairwise *KC*-topological spaces.

We will examine their properties and explore their relationships with other bitopological spaces.

Definition 1. (1) A bitopological space (X, τ_1, τ_2) is said to be a P-KC-space if each τ_i -compact

subset of X is τ_i -closed for all $(i \neq j, i, j = 1, 2)$.

(2) A bitopological space (X, τ_1, τ_2) is said to be a KC-space if each τ_i -compact subset of X is τ_i -closed for all (i = 1, 2).

Remark 1. *Part* (2) *in the above definition is equivalent to that both* (X, τ_1) *and* (X, τ_2) *are KC-spaces.*

In general: If both (X, τ_i) and (X, τ_j) have the same topological property *P*, then the bitopological space (X, τ_i, τ_j) has property *P*.

So, we say that a bitopological space (X, τ_i, τ_j) is a *KC*-space, if both (X, τ_i) and (X, τ_j) are *KC*-spaces.

- **Example 1.** (1) The bitopological space $(\mathbb{R}, \tau_{ind}, \tau_{dis})$ is not a KC-space, since any compact subset of (\mathbb{R}, τ_{dis}) is closed but (1,2) is a compact subset in (\mathbb{R}, τ_{ind}) , which is not closed.
- (2) The bitopological space $(\mathbb{R}, \tau_{dis}, \tau_u)$ is KC-space since any compact subset of both (\mathbb{R}, τ_{dis}) and (\mathbb{R}, τ_u) is closed.
- (3) The bitopological space $(\mathbb{R}, \tau_{cof}, \tau_{coc})$ is a KC-space.
- **Example 2.** (1) The bitopological space $(\mathbb{R}, \tau_{ind}, \tau_{dis})$ is not a P-KC-space.
- (2) The bitopological space $(\mathbb{R}, \tau_{cof}, \tau_{dis})$ is a P-KC-space.
- (3) The bitopological space $(\mathbb{R}, \tau_{coc}, \tau_{dis})$ is a P-KC-space.

Example 3. (1) The bitopological space $(\mathbb{R}, \tau_u, \tau_s)$ is a KC-space, but not a P-KC-space.

- (2) The bitopological space $(\mathbb{R}, \tau_{l,r}, \tau_{r,r})$ is never a KC-space nor a P-KC-space.
- (3) The bitopological space $(\mathbb{R}, \tau_{ind}, \tau_{l,r})$ is never a KC-space nor a P-KC-space.
- **Definition 2.** (1) A bitopological space (X, τ_1, τ_2) is said to be a P-LC-space. Each τ_i -lindlöf subset of X is τ_i -closed for all $(i \neq j, i, j = 1, 2)$.
- (2) A bitopological space (X, τ_1, τ_2) is said to be a LC-space. Each τ_i -lindlöf subset of X is τ_i -closed for all (i = 1, 2).

Since every compact (τ_i -compact, respectively) is lindelöf (τ_i -lindelöf, respectively) the prove of the following two theorems is clear.

Theorem 1. Every P-LC-bitopological space is a P-KC-space.

Theorem 2. Every LC-bitopological space is a KC-space.

Example 4. (\mathcal{R} , τ_{dis} , τ_{coc}) is a *P*-*LC*-space.

- **Example 5.** (\mathcal{R} , τ_{dis} , τ_{ind}) is not a LC-space.
- **Example 6.** $(\mathcal{R}, \tau_{r,r}, \tau_{l,r})$ is never a LC-space nor a P-LC-space.

It is easy to prove the following theorems:

Theorem 3. Every discrete space is a KC-space.

Theorem 4. Every discrete bitopological space $(X, \tau_{dis}, \tau_{dis})$ is a KC-space.

AIMS Mathematics

Definition 3. Let (X, τ_X^1) and (X, τ_X^2) be two topological spaces defined on the same set X and $A \subseteq X$. If (A, τ_A^1) and (A, τ_A^2) are two subspaces of (X, τ_X^1) and (X, τ_X^2) , respectively, then (A, τ_A^1, τ_A^2) is a subspace of (X, τ_X^1, τ_X^2) .

Theorem 5. Every subspace of a P-KC-space is a P-KC-space.

Proof. Assume that (X, τ_X^1, τ_X^2) a *P-KC*-space and (A, τ_A^1, τ_A^2) a subspace of (X, τ_X^1, τ_X^2) . Let *K* be a τ_A^1 compact subset of (A, τ_A^1) , *K* is a τ_X^1 compact subset of (X, τ_X^1) but (X, τ_X^1, τ_X^2) is a *P-KC* space, so *K* is τ_X^2 closed. Hence,

$$K = K \cap A$$

is τ_A^2 closed in $\left(A, \tau_A^2\right)$.

Therefore, any τ_A^1 -compact subset of *A* is τ_A^2 -closed. In the same way, we prove that any τ_A^2 -compact subset of *A* is τ_A^1 -closed. Thus, $\left(A, \tau_A^1, \tau_A^2\right)$ is a *P*-*KC*-space.

Theorem 6. Every subspace of a KC-bitopological space $\left(X, \tau_X^1, \tau_X^2\right)$ is a KC-space.

Proof. Assume that (X, τ_X^1, τ_X^2) is a *KC*-space and (A, τ_A^1, τ_A^2) is a subspace of (X, τ_X^1, τ_X^2) . Let *K* be a τ_A^1 compact subset of (A, τ_A^1) , *K* is a τ_A^1 compact subset of (X, τ_X^1) , but (X, τ_X^1, τ_X^2) is a *KC*-space, so *K* is τ_X^1 closed. Hence,

$$K = K \cap A$$

is τ_A^1 closed in (A, τ_A^1) .

Therefore, any τ_A^1 -compact subset of *A* is τ_A^1 -closed. In the same way we prove that any τ_A^2 -compact subset of *A* is τ_A^2 -closed. Thus $\left(A, \tau_A^1, \tau_A^2\right)$ is *KC*-space.

Theorem 7. The intersection of any two KC-spaces is a KC-space. Proof. Let (X, τ_X^1) and (X, τ_X^2) be two KC-spaces. Let

$$\tau_X^3 = \tau_X^1 \cap \tau_X^2$$

and *K* be a compact subset of (X, τ_X^3) , *K* is a compact subset of both (X, τ_X^1) and (X, τ_X^2) . Thus, *K* is closed in both τ_X^1 and τ_X^2 , so *K* is closed in τ_X^3 . Therefore, (X, τ_X^3) is a *KC*-space.

Definition 4. The intersection of the bitopological spaces (X, τ_i, τ_j) and $(X, \overset{*}{\tau}_i, \overset{*}{\tau}_j)$ is the bitopological space $(X, \tau_i \cap \overset{*}{\tau}_i, \tau_j \cap \overset{*}{\tau}_j)$.

AIMS Mathematics

Volume 9, Issue 11, 32182-32199.

Theorem 8. The intersection of any two KC-bitopological spaces defined on the same set is a KC-bitopological space.

Proof. Let (X, τ_i, τ_j) and $(X, \overset{*}{\tau_i}, \overset{*}{\tau_j})$ be two *KC*-bitopological spaces, and

$$\left(X,\sigma_i,\sigma_j\right) = \left(X,\tau_i,\tau_j\right) \cap \left(X,\overset{*}{\tau_i},\overset{*}{\tau_j}\right) = \left(X,\tau_i\cap\overset{*}{\tau_i},\tau_j\cap\overset{*}{\tau_j}\right)$$

be the intersection of (X, τ_i, τ_j) and $(X, \overset{*}{\tau_i}, \overset{*}{\tau_j})$, where

$$\sigma_i = \tau_i \cap \tilde{\tau_i}$$

and

$$\sigma_j = \tau_j \cap \tilde{\tau_j}.$$

Let *K* be a σ_i -compact subset of (X, σ_i) . By above theorem, *K* is σ_i -closed subset of (X, σ_i) . Hence, (X, σ_i) is a *KC*-space. Similarly, (X, σ_j) is *KC*-space. Therefore, (X, σ_i, σ_j) is a *KC*-space.

Theorem 9. The intersection of any two P-KC-topological spaces defined on the same set is a P-KC-space.

Proof. Let (X, τ_i, τ_j) and $(X, \overset{*}{\tau_i}, \overset{*}{\tau_j})$ be two *P*-*KC*-topological spaces, and

$$(X, \sigma_i, \sigma_j) = (X, \tau_i \cap \overset{*}{\tau_i}, \tau_j \cap \overset{*}{\tau_j})$$

be the intersection of (X, τ_i, τ_j) and $(X, \overset{*}{\tau_i}, \overset{*}{\tau_j})$, where

$$\sigma_i = \tau_i \cap \hat{\tau_i}$$

and

$$\sigma_j = \tau_j \cap \tau_j^*.$$

Let *K* be a σ_i -compact subset of (X, σ_i) . *K* is τ_i -compact and τ_i^* -compact, but both (X, τ_i, τ_j) and (X, τ_i^*, τ_j^*) are *P*-*KC*-spaces, so *K* is closed in both τ_j and τ_j^* . Hence, *K* is σ_j -closed. Therefore, (X, σ_i, σ_j) is a *P*-*KC*-space.

Definition 5. A bitopological space (X, τ_i, τ_j) is called P-Hausdorff if for distinct points a and b, there is a τ_i -open set U and a τ_j -open set V such that $a \in U, b \in V$, and

$$U \cap V = \phi.$$

Definition 6. A bitopological space (X, τ_i, τ_j) is called Hausdorff (resp. compact) if both (X, τ_i) and (X, τ_j) are Hausdorff (resp. compact) spaces.

Theorem 10. Every Hausdorff space is a KC-space.

Proof. Let *A* be a τ_i -compact subset of *X*. Every compact subspace of a Hausdorff space is closed, then *A* is τ_i -closed. Similarly, we can show that if *A* is a τ_j -compact subset of *X*, then *A* is τ_j -closed.

Example 7. The bitopological space $(\mathbb{R}, \tau_{dis}, \tau_u)$ is a Hausdorff space; so it is a KC-space.

AIMS Mathematics

Remark 2. The converse of above theorem is not true; see the following example.

Example 8. The bitopological space $(\mathbb{R}, \tau_{cof}, \tau_{coc})$ is a KC-space but not a Hausdorff space.

Recall that: In a topological space (X, τ_X) , if every countable intersection of any collection of open sets is open, then *X* is called a *p*-space.

Theorem 11. *Every Hausdorff p-space is a LC-space.*

Proof. Assume that (X, τ_i, τ_j) is a Hausdroff *P*-space. Let *D* be a τ_i -Lindelöf subset of *X*. *D* is a τ_i -Lindelöf subset of Hausdroff *P*-space (X, τ_i) . Therefore, *D* is τ_i -closed.

Similarly, we can get if D is a τ_i -Lindelöf, then D is τ_i -closed.

Example 9. A space $(\mathbb{N}, \tau_{dis}, \tau_{coc})$ is a Hausdorff *P*-space, so it is a LC-space.

Definition 7. If (X, τ_X^1) and (X, τ_X^2) are two metric spaces, then (X, τ_X^1, τ_X^2) is called the bitopological metric space.

Corollary 1. Every metric space is a KC-space.

Proof. Since every metric space is a Hausdorff then it is a KC-space.

Corollary 2. Every bitopological metric space is a KC-space.

The following theorem can be found in [6].

Theorem 12. If a bitopological space (X, τ_i, τ_j) is a *P*-Hausdorff space, then for each x in X we have:

a)

$$\{x\} = \bigcap_{\alpha \in \Delta} \left\{ Cl_i V_\alpha : V_\alpha \text{ is a } \tau_j \text{-open set contains } x \right\}, \quad (i \neq j, i, j = 1, 2),$$

where $Cl_i V_{\alpha}$ is a τ_i -closure of V_{α} .

b)

$$\{x\} = \bigcap_{\beta \in \Gamma} \left\{ Cl_j \ U_{\beta} : \ U_{\beta} \text{ is a } \tau_i \text{-open set contains } x \right\}, \ (i \neq j, \ i, j = 1, 2),$$

where $Cl_j U_\beta$ is a τ_j -closure of U_β .

Proof. Let $y \in X$ such that $x \neq y$. There exists a τ_i -open set U_i and a τ_j -open set U_j such that $y \in U_i$, $x \in U_j$, and

$$U_i \cap U_j = \phi_i$$

Since

$$U_j \subseteq X - U_i,$$

then

$$x \in U_i \subseteq Cl_i \ U_i \subseteq X - U_i.$$

Hence, $x \in Cl_iU_j$, $\forall \tau_j$ -open sets U_j and

$$\{x\} = \bigcap_{\alpha \in \Delta} \{Cl_i V_\alpha : V_\alpha \text{ is a } \tau_j \text{ open set contains } x\}, \ (i \neq j, i, j = 1, 2) \ \forall x \in X.$$

AIMS Mathematics

Volume 9, Issue 11, 32182-32199.

This proves part (a). The proof of part (b) is similar to (a).

Theorem 13. Let (X, τ_i, τ_j) be a P-Hausdorff space. Then, every τ_i -compact subset of X is τ_j -closed $(i \neq j, i, j = 1, 2)$.

Proof. Let *B* be a τ_i -compact subset of *X* and $x \in X - B$. By above theorem,

$$\{x\} = \bigcap_{\alpha \in \Delta} \{Cl_i \ U_{\alpha} : \ U_{\alpha} \text{ is a } \tau_j \text{-open set contains } x\}, \ (i \neq j, i, \ j = 1, 2)$$

Since

$$B \subseteq X - \{x\} = X - \bigcap_{\alpha \in \Delta} \left\{ Cl_i \ U_\alpha : \ U_\alpha \text{ is a } \tau_j \text{-open set contains } x \right\} = \bigcup_{\alpha \in \Delta} \left(X - Cl_i \ U_\alpha \right),$$

 $\{X - Cl_i \ U_\alpha : \alpha \in \Delta\}$ is a τ_i -open cover of a τ_i -compact set *B*. So, there exists a finite subset $\overset{*}{\Delta} \subseteq \Delta$ such that $\{X - Cl_i \ U_\alpha : \alpha \in \overset{*}{\Delta}\}$ is a cover of *B*.

Hence,

$$B \subseteq \bigcup_{\alpha \in \Delta}^{*} (X - Cl_i U_{\alpha}) = X - \bigcap_{\alpha \in \Delta}^{*} \{Cl_i U_{\alpha}\} \subseteq X - \bigcap_{\alpha \in \Delta}^{*} U_{\alpha}.$$

Letting

$$U = \bigcap_{\alpha \in \Delta}^{*} U_{\alpha},$$

then U is a τ_i -open set such that

$$x \in U \subseteq X - B.$$

Hence, *B* is τ_i -closed.

Theorem 14. Every P-Hausdorff space (X, τ_i, τ_j) is a p-KC-space.

Proof. Let *A* be a τ_i -compact subset of a *P*-Hausdorff space *X*. By above theorem, *A* is τ_j -closed where $(i \neq j, i, j = 1, 2)$. Hence, (X, τ_i, τ_j) is a *P*-*KC*-space.

Example 10. The bitopological space $(\mathbb{R}, \tau_{cof}, \tau_{dis})$ is a P-Hausdorff, so it is a P-KC-space.

Remark 3. The converse of above theorem is not true, see the following example:

Example 11. The bitopological space $(\mathbb{R}, \tau_{cof}, \tau_{coc})$ is a P-KC-space but not a P-Hausdorff.

Theorem 15. Every P-Hausdorff P-space is a P-LC-space.

Proof. Let *B* be a τ_i -lindelöf subset of *X* and $x \in X - B$.

 $\{x\} = \bigcap_{\alpha \in \Delta} \{Cl_i \ U_{\alpha} : U_{\alpha} \text{ is a } \tau_j \text{-open set contains } x\}, \ (i \neq j, i, j = 1, 2).$

AIMS Mathematics

Volume 9, Issue 11, 32182-32199.

Since

$$B \subseteq X - \{x\} = X - \bigcap_{\alpha \in \Delta} \left\{ Cl_i \ U_\alpha : \ U_\alpha \text{ is a } \tau_j \text{-open set contains } x \right\} = \bigcup_{\alpha \in \Delta} \left(X - Cl_i \ U_\alpha \right)$$

 $\{X - Cl_i \ U_\alpha : \alpha \in \Delta\}$ is a τ_i -open cover of a τ_i -lindelöf set *B*. So, there exists a countable subset $\stackrel{*}{\Delta} \subseteq \Delta$ such that $\{X - Cl_i \ U_\alpha : \alpha \in \stackrel{*}{\Delta}\}$ is a cover of *B*. Hence,

$$B \subseteq \bigcup_{\alpha \in \Delta}^{*} (X - Cl_i U_{\alpha}) = X - \bigcap_{\alpha \in \Delta}^{*} \{Cl_i U_{\alpha}\} \subseteq X - \bigcap_{\alpha \in \Delta}^{*} U_{\alpha}.$$

Letting

$$U = \bigcap_{\substack{\alpha \in \Delta \\ \\ \alpha \in \Delta}} U_{\alpha},$$

then U is a τ_i -open set such that $x \in U \subseteq X - B$. Hence, B is τ_i -closed.

Example 12. (\mathbb{Z} , τ_{coc} , τ_{dis}) is a *P*-Hausdorff *P*-space, so it is a *P*-LC-space.

Example 13. $(\mathbb{N}, \tau_{coc}, \tau_{cof})$ is a *P*-*LC*-space but not a *P*-Hausdorff and *P*-space.

Theorem 16. Let (X, τ_i, τ_j) be a compact *P*-KC-space. Then, $\tau_i = \tau_j$.

Proof. Let $\phi \neq W$ and $w \in \tau_i$. Then, X - W is a τ_i -closed subset of a compact space (X, τ_i) . So, X - W is τ_i -compact subset of *P*-*KC*-space *X*. Therefore, X - W is a τ_j -closed. Hence, *W* is a τ_j -open and $\tau_i \subseteq \tau_j$. Similarly, we can get $\tau_j \subseteq \tau_i$. Consequently, $\tau_i = \tau_j$.

Corollary 3. If a space (X, τ_i, τ_j) is a compact P-Hausdorff, then $\tau_i = \tau_j$.

Proof. Let $H \in \tau_i$. X - H is a τ_i -closed subset of a compact space (X, τ_i) . Therefore, X - H is a τ_i -compact subset of *P*-Hausdorff space *X*. Hence, X - H is τ_j -closed, so *H* is τ_j -open. So, $H \in \tau_j$, and then $\tau_i \subseteq \tau_j$. In the same way, we get $\tau_j \subseteq \tau_i$. Consequently, $\tau_i = \tau_j$.

Theorem 17. Let (X, τ_i, τ_j) be a Lindelöf P-LC-space P-space. Then, $\tau_i = \tau_j$.

Proof. Let $\phi \neq O \in \tau_i$. Then, X - O is τ_i -closed subset of a Lindelöf *P*-space (X, τ_i) . So, X - O is τ_i -Lindelöf. But, *X* is a *P*-*LC*-space, so X - O is τ_j -closed and then $O \in \tau_j$. Therefore, $\tau_i \subseteq \tau_j$. By the same technique, we obtained $\tau_j \subseteq \tau_i$. Consequently, $\tau_i = \tau_j$.

Corollary 4. If the space (X, τ_i, τ_j) is a Lindelöf P-Hausdorff P-space, then $\tau_i = \tau_j$.

The proof comes directly from the fact that "every P-Hausdorff P-space is a P-LC-space".

3. Mappings on *KC*-bitopological spaces

In this section, we discuss the effects of various types of functions on *KC*-bitopological spaces and pairwise *KC*-topological spaces.

AIMS Mathematics

Definition 8. A function

$$g: (X, \tau_i, \tau_j) \longrightarrow (Y, \sigma_i, \sigma_j)$$

is said to be a compact function, if $g^{-1} \{y\}$ is τ_i -compact and τ_j -compact for each $y \in Y$.

We can find the following definition in [11].

Definition 9. A function

$$g: (X, \tau_i) \longrightarrow (Y, \sigma_i)$$

is said to be a K-function, if g^{-1} {B} is a compact subset of X for all compact subsets B of Y and g (A) is a compact subset of Y for all compact subsets A of X.

Definition 10. A function

$$g: (X, \tau_i, \tau_j) \longrightarrow (Y, \sigma_i, \sigma_j)$$

is said to be a K-function, if both functions

$$g: (X, \tau_i) \longrightarrow (Y, \sigma_i)$$

and

$$g:(X,\tau_j)\longrightarrow (Y,\sigma_j)$$

are K-functions.

Theorem 18. Let

$$g:(X,\tau_i,\tau_j)\longrightarrow (Y,\sigma_i,\sigma_j)$$

be an onto closed K-function. If X is a P-KC-space, then so is Y.

Proof. Let *B* be a σ_i -compact subset of *Y*. To show that *B* is a σ_j -closed subset of *Y*. Since *g* is a *K*-function, then $g^{-1}\{B\}$ is a τ_i -compact subset of *X*.

But, X is a *P*-KC-space, so g^{-1} {*B*} is a τ_j -closed. Since g is an onto closed, function then

$$g\left(g^{-1}\left\{B\right\}\right) = B$$

is σ_i -closed in Y. So, Y is a P-KC-space.

We presented some definitions that will be used later.

Definition 11. [6] A function

$$g: (X, \tau_i, \tau_j) \longrightarrow (Y, \sigma_i, \sigma_j)$$

is called P-continuous (P-closed, respectively) if the functions

 $g: (X, \tau_i) \longrightarrow (Y, \sigma_i)$

and

$$g:(X,\tau_j)\longrightarrow (Y,\sigma_j)$$

are continuous (closed, respectively).

AIMS Mathematics

Theorem 19. Let

$$g: (X, \tau_i, \tau_j) \longrightarrow (Y, \sigma_i, \sigma_j)$$

be an onto P-closed K-function. If X is P-Hausdorff, then Y is a P-KC-space.

Proof. Assume that

$$g: (X, \tau_i, \tau_j) \longrightarrow (Y, \sigma_i, \sigma_j)$$

be an onto *P*-closed *K*-function. Let *A* be a σ_i -compact subset of *Y*. Since *g* is a *K*-function, then $g^{-1}(A)$ is a τ_i -compact subset of *X*. Since *X* is *P*-Hausdorff, then $g^{-1}(A)$ is τ_j -closed. Hence,

$$g\left(g^{-1}\left(A\right)\right) = A$$

is σ_i -closed because

$$g:(X,\tau_j)\longrightarrow (Y,\sigma_j)$$

is closed. Hence, *Y* is a *P*-*KC*-space.

Theorem 20. Let

$$g: (X, \tau_i, \tau_j) \longrightarrow (Y, \sigma_i, \sigma_j)$$

be an onto P-closed K-function. If X is Hausdorff, then Y is a KC-space.

Proof. Assume that

$$g: (X, \tau_i, \tau_j) \longrightarrow (Y, \sigma_i, \sigma_j)$$

be an onto *P*-closed *K*-function. Let *A* be a σ_i -compact subset of *Y*. Since *g* is a *K*-function, then $g^{-1}(A)$ is a τ_i -compact subset of *X*. Since *X* is Hausdorff, then $g^{-1}(A)$ is τ_i - closed. Hence,

$$g\left(g^{-1}\left(A\right)\right) = A$$

is σ_i -closed because

$$g:(X,\tau_i)\longrightarrow(Y,\sigma_i)$$

is closed. Hence, Y is a KC-space.

Definition 12. [3] A cover \widetilde{U} of a bitopological space (X, τ_i, τ_j) is called a P-open cover if \widetilde{U} contains at least one non-empty element of τ_i and at least one non-empty element of τ_j .

Definition 13. [3] A bitopological space (X, τ_i, τ_j) is called P-compact (resp. Lindelöf) if each P-open cover of X has a finite (resp. countable) subcover.

Example 14. The bitopological space $(\mathbb{R}, \tau_{dis}, \tau_{coc})$ is not P-compact. Since

$$\widetilde{U} = \{\{x_i\} : x_i \in \mathbb{Q}\} \cup \{Irr\}$$

is a P-open cover of X which has no finite subcover if \tilde{U} has a finite subcover \hat{U} , then

 $\dot{U} = \{x_1, x_2, x_3, ..., x_n\} \cup \{Irr\},\$

where $x_i \in \mathbb{Q} \ \forall \ i = 1, 2, 3, ..., n$.

This means

$$\mathbb{R} \subseteq \{x_1, x_2, x_3, ..., x_n\} \cup \{Irr\}$$

which is a contradiction.

AIMS Mathematics

Example 15. Consider $X = \mathbb{R}$. Let

$$\beta_1 = \{X, \phi, \{x\} : x > 5\}$$

and

$$\beta_2 = \{X, \phi, \{x\} : x < 0\}$$

Let τ_1 and τ_2 be the topologies on X induced by the bases β_1 and β_2 , respectively. ($\mathbb{R}, \tau_1, \tau_2$) is a P-compact space since any P-open cover of X must contain {X}. Hence, {X} is a finite subcover of any P-open cover.

Theorem 21. Let (X, τ_i, τ_j) be a *P*-compact space, every τ_i -closed proper subset of X is τ_j -compact, where $(i \neq j, i, j = 1, 2)$.

Proof. Let *F* be a τ_i -closed proper subset of a *P*-compact *X*, and

$$U = \{U_{\alpha} : \alpha \in \Delta\}$$

be a τ_i -open cover of F.

For each $x \in X - F$, there exists a τ_i -open set U(x) such that

$$x \in U(x) \subseteq X - F$$

Now,

$$\{U_{\alpha} : \alpha \in \Delta\} \cup \{U(x) : x \in X - F\}$$

is a *P*-open cover of the *P*-compact space *X*, so there exists a finite set $\Delta_1 \subseteq \Delta$ and a finite set

$$\{x_1, x_2, x_3, ..., x_n\} \subseteq X - F$$

such that

$$\{U_{\alpha} : \alpha \in \Delta_1\} \cup \{U(x_1), U(x_2), U(x_3), ..., U(x_n)\}$$

is a finite cover of X. Since

$$U(x_i) \cap F = \phi, \ \forall i = 1, 2, ..., n,$$

then

$$\bigcup_{i=1}^{n} U(x_i) \cap F = \phi.$$

So, $\{U_{\alpha} : \alpha \in \Delta_1\}$ is a finite subcover of \widetilde{U} for *F*. Therefore, *F* is τ_i -compact.

Remark 4. The expression (proper subset) in the previous theory can not be dispensed with or removed.

Example 16. Consider (\mathbb{Z} , τ_{coc} , τ_{dis}). Then, \mathbb{Z} is τ_{coc} -closed but it is not τ_{dis} -compact.

Theorem 22. Let

$$g: (X, \tau_i, \tau_j) \longrightarrow (Y, \sigma_i, \sigma_j)$$

be P-continuous and X be P-compact. If Y is a P-KC-space then, g is P-closed.

AIMS Mathematics

Volume 9, Issue 11, 32182-32199.

Proof. Let A be a τ_i -closed subset of a P-compact space (X, τ_i, τ_j) . A is a τ_j -compact, where $(i \neq j, i, j = 1, 2)$. Since g is P-continuous, then g(A) is a σ_j -compact subset of Y. But, Y is a P-KC-space, so g(A) is a σ_i -closed subset of Y, where $(i \neq j, i, j = 1, 2)$. Hence,

$$g:(X,\tau_i)\longrightarrow(Y,\sigma_i)$$

is closed. Similarly, we can show that

$$g:(X,\tau_j)\longrightarrow (Y,\sigma_j)$$

is closed. Therefore, g is P-closed.

Theorem 23. Let

$$g: (X, \tau_i, \tau_j) \longrightarrow (Y, \sigma_i, \sigma_j)$$

be P-continuous and X be a compact space. If Y is a KC-space, then g is P-closed.

Proof. Let A be a τ_i -closed subset of a compact space (X, τ_i, τ_j) . Then, A is τ_i -compact. Since g is *P*-continuous, then g(A) is a σ_i -compact subset of Y. But, Y is a KC-space, so g(A) is a σ_i -closed subset of Y. Hence,

$$g: (X, \tau_i) \longrightarrow (Y, \sigma_i)$$

is closed. Similarly, we can show that

$$g: (X, \tau_j) \longrightarrow (Y, \sigma_j)$$

is closed. Therefore, g is P-closed.

We now remind an important theory in single topological spaces.

Theorem 24. *Every locally compact KC-space is T*₂*.*

This previous theory can be generelized in bitopological spaces and proven in the same way as follows:

Theorem 25. *Every locally compact KC-bitopological space is T*₂*.*

Theorem 26. Let

$$g: (X, \tau_i, \tau_j) \longrightarrow (Y, \sigma_i, \sigma_j)$$

be an onto P-continuous function. If X is T_2 compact, and Y is a KC-space, then Y is T_2 .

Proof. Since g is an onto, P-continuous function, then Y is compact, so Y is locally compact. But, Y is a KC-space, hence Y is T_2 .

Theorem 27. Let

$$g: (X, \tau_i, \tau_j) \longrightarrow (Y, \sigma_i, \sigma_j)$$

be a P-continuous bijective K-function. If Y is a P-KC-space, then

$$X = g^{-1}(Y)$$

is a P-KC-space.

AIMS Mathematics

Volume 9, Issue 11, 32182-32199.

Proof. Let A be a τ_i -compact subset of X. We prove that A is τ_j -closed subset of X. Since A is a τ_i -compact subset of X, then g(A) is σ_i -compact subset of Y because g is a K-function. But, Y is a *P*-KC-space, so g(A) is a σ_i -closed subset of Y. Since g is *P*-continuous bijective function, then

$$g^{-1}\left(g\left(A\right)\right) = A$$

is τ_i -closed in X. Similarly, if A is a τ_i -compact subset of X, then A is τ_i -closed. Hence,

 $X = g^{-1}(Y)$

is a P-KC-space.

Theorem 28. Let

$$g: (X, \tau_i, \tau_j) \longrightarrow (Y, \sigma_i, \sigma_j)$$

be a P-continuous bijective K-function. If Y is a KC-space, then

$$X = g^{-1}\left(Y\right)$$

is a KC-space.

Proof. Let *A* be a τ_i -compact subset of *X*. We prove that *A* is a τ_i -closed subset of *X*. Since *A* be a τ_i -compact subset of *X*, then *g*(*A*) is a σ_i -compact subset of *Y* because *g* is a *K*-function. But, *Y* is a *KC*-space, so *g*(*A*) is a σ_i -closed subset of *Y*. Since *g* is a *P*-continuous bijective function, then

$$g^{-1}\left(g\left(A\right)\right) = A$$

is τ_i -closed in X. Similarly, if A is a τ_i -compact subset of X, then A is τ_i -closed. Hence,

$$X = g^{-1}(Y)$$

is a KC-space.

Theorem 29. Let

 $g: \left(X, \tau_i, \tau_j\right) \longrightarrow \left(Y, \sigma_i, \sigma_j\right)$

be a K-function. If X and Y are P-compact P-KC-spaces, then g is P-continuous and P-closed.

Proof. First, we show that g is P-continuous. Let A be a σ_i -closed subset of Y. Since Y is P-compact, then A is σ_j -compact ($i \neq j$, i, j = 1, 2). Since g is a K-function, then $g^{-1}(A)$ is a τ_j -compact subset of X. Hence, $g^{-1}(A)$ is a τ_i -closed subset of X because X is a P-KC-space. So,

$$g: (X, \tau_i) \longrightarrow (Y, \sigma_i)$$

is continuous. Similarly, we can show that

$$g:(X,\tau_j)\longrightarrow (Y,\sigma_j)$$

is continuous. Hence, g is P-continuous.

Second, we show that g is P-closed.

AIMS Mathematics

In the introduction to this research we noted, this research carefully reviewed previous studies on the topic, highlighting the main results and contributions of those studies. At the end of the introduction to the study, we provided an overview and summary of the results and conclusions we reached. The key

(1) The study introduces and develops the fundamental definitions of KC-bitopological spaces and

(2) A variety of illustrative examples are provided to support and reinforce the study's subject matter.

is closed. Hence, g is P-closed.

Theorem 30. Let

$$g: (X, \tau_i, \tau_j) \longrightarrow (Y, \sigma_i, \sigma_j)$$

Let C be a τ_i -closed subset of X, then, C is a τ_i -compact subset of X. Since g is a K-function, then g(C) is a σ_i -compact subset of Y. So, g(C) is σ_i -closed subset of Y because Y is P-KC-space. Hence,

 $g: (X, \tau_i) \longrightarrow (Y, \sigma_i)$

 $g: (X, \tau_j) \longrightarrow (Y, \sigma_j)$

be a K-function. If X and Y are compact KC-spaces, then g is P-continuous and P-closed.

Proof. First, we show that g is *P*-continuous.

is closed. Similarly, we can show that

is closed. Hence, g is P-closed.

Let A be a σ_i -closed subset of Y. Since Y is compact, then A is σ_i -compact. Since g is a K-function, then $g^{-1}(A)$ is a τ_i -compact subset of X. Hence, $g^{-1}(A)$ is a τ_i -closed subset of X because X is a KC-space. So,

$$g:(X,\tau_i)\longrightarrow(Y,\sigma_i)$$

is continuous. Similarly, we can show that

 $g: (X, \tau_j) \longrightarrow (Y, \sigma_j)$

is continuous. Hence, g is P-continuous.

Second, we show that g is P-closed. Let C be a τ_i -closed subset of X. C is a τ_i -compact subset of X. Since, g is a K-function, then g(C) is a σ_i -compact subset of Y. So, g(C) is a σ_i -closed subset of Y because Y is a KC-space. Hence,

$$g:(X,\tau_i)\longrightarrow(Y,\sigma_i)$$

is closed. Similarly, we can show that

$$g: (X, \tau_j) \longrightarrow (Y, \sigma_j)$$

pairwise KC-topological spaces.

4. Conclusions

findings are as follows:

AIMS Mathematics

Volume 9, Issue 11, 32182-32199.

- (3) The concepts of *KC*-bitopological spaces and pairwise *KC*-topological spaces are linked to other important topological concepts within bitopological spaces, clarifying their interrelationships.
- (4) The study examines the effects of different types of functions on the direct and indirect images of *KC*-bitopological spaces and pairwise *KC*-topological spaces.
- (5) Necessary and sufficient conditions are established for certain functions to ensure that the direct and indirect images of *KC*-bitopological spaces and pairwise *KC*-topological spaces remain within these respective categories.

Author contributions

Hamza Qoqazeh: proposed and set the main title, wrote the basic definitions of the subject of the study, established and provd the basic theories contained, general supervision of the research implementation process; Ali Atoom: wrote the introduction, added a number of theories and proved them; Maryam Alholi: wrote a summary; enriched the subject with illustrative examples; Eman ALmuhur: developed the main results and conclusions, checked the examples; Eman Hussein: carried out a scientific audit on the correctness of the formulation of the theories contained in the research and their proof; Anas Owledat: checked the grammar and linguistics; Abeer Al-Nana: reviewed the previous studies, documented the main references, examined the percentage of scientific inference. All authors have read and agreed to the published version of the manuscript.

Acknowledgments

The researchers express their sincere thanks and appreciation to all who contributed to the preparation and enhancement of this research. We also extend our gratitude and respect to the esteemed scholars whose work in this field has been cited.

Conflict of interest

The researchers declare no personal interests in the publication of this paper. This research is original, and its primary aim is to contribute to the advancement of scientific knowledge in the field of general topology.

References

- 1. J. Kelly, Bitopological spaces, *Proc. London Math. Soc.*, **13** (1963), 71–89. https://doi.org/10.1112/plms/s3-13.1.71
- 2. J. W. Kim, Pairwise compactness, *Publ. Math. Debrecen*, **10** (1968), 87–90. https://doi.org/10.5486/pmd.1968.15.1-4.12
- 3. P. Fletcher, H. Hoyle, C. Patty, The comparison of topologies, *Duke Math. J.*, **36** (1969), 325–331. https://doi.org/10.1215/S0012-7094-69-03641-2
- 4. M. Datta, Projective bitopological spaces, *J. Aust. Math. Soc.*, **13** (1972), 327–334. https://doi.org/10.1017/S1446788700013744

- 5. I. Cooke, L. Reilly, On bitopological compactness, J. London Math. Soc., 4 (1975), 518–522. https://doi.org/10.1112/jlms/s2-9.4.518
- 6. A. Fora, H. Hdeib, On pairwise Lindelöf spaces, Revista Colomb. Mat., 17 (1983), 37-57.
- 7. A. Zarif, F. Razzak, COKC-topology, Tishreen Univ. J. Basic Sci. Ser., 33 (2011), 193–199.
- 8. R. Ali, Minimal KC-spaces and minimal LC-spaces, Tishreen Univ. J. Stud. Sci. Res., 28 (2006), 147–154.
- 9. A. Bella, C. Costantini, Minimal *KC* spaces are compact, *Topol. Appl.*, **13** (2008), 1426–1429. https://doi.org/10.1016/j.topol.2008.04.005
- 10. H. A. Künzi, D. Zypen, Maximal (sequentially) compact topologies, *Categor. Structers Appl.*, 2004, 173–187. https://doi.org/10.1142/9789812702418_0013
- 11. A. Zarif, F. Razzak, KC-spaces and minimal KC-spaces, Tishreen Univ. J. Basic Sci. Ser., 32 (2010), 79–85.
- 12. A. Wilansky, Between T_1 and T_2 , Amer. Math. Month., **3** (1967), 261–266. https://doi.org/10.1080/00029890.1967.11999950
- 13. H. Hdeib, A note on L-closed spaces, Quest. Answer Gen. Topol., 6 (1988), 67-72.
- 14. S. Maheshwari, R. Prasad, Some new separations axioms, *Ann. Soc. Sci. Bruxelles Ser. I*, **89** (1975), 395–402.
- 15. T. Vidalis, Minimal *KC*-spaces are countably compact, *Comment. Math. Univ. Carol.*, **45** (2004), 543–547. https://doi.org/10338.dmlcz/119481
- 16. O. Alas, M. Tkachenko, V. Tkachuk, R. Wilson, The *FDS*-property and spaces in which compact sets are closed, *Sci. Math. Japonicae*, **61** (2005), 473–480.
- O. Alas, R. Wilson, Spaces in which compact sets are closed and the lattic of T₁-topologies on a set, *Comment. Math. Univ. Carol.*, 43 (2002), 641–652. http://doi.org/10338.dmlcz/119353
- 18. O. Alas, R. Wilson, Weaker connected Hausdorff topologies on spaces with a σ -locally finite base, *Houston J. Math.*, **31** (2005), 427–439.
- 19. O. Alas, R. Wilson, Minimal properties between T_1 and T_2 , Houston J. Math., **32** (2006), 493–504.
- 20. J. Oprsal, *Minimalni KC prostory*, Ph. D thesis, Univerzita Karlova, 2009. https://doi.org/20.500.11956/27483
- A. Bella, C. Costantini, Further remarks on *KC* and related spaces, *Comment. Math. Univ. Carol.*, 52 (2011), 417–426. https://doi.org/10338.dmlcz/141612
- 22. H. Ali, H. Saleh, On K(SC) and L(SC)-spaces, Al-Mustansiriyah J. Sci., 25 (2014), 125–132.
- 23. H. Ali, New forms of KC and LC-spaces, Al-Mustansiriyah J. Sci., 5 (2011), 321–327.
- 24. R. Ali, On weaker forms of LC-spaces, Iraqi Al-Khwarizmi Soc., 1 (2017), 62-67.
- R. Ali, A. Abker, On MKC-spaces, MLC-spaces and Mh-spaces, J. Al-Qadisiyah Comput. Math., 7 (2015), 72–84. https://doi.org/10.29304/jqcm.2015.7.1
- 26. A. Zarif, A. Wraid, A study in α -compact topological spaces and α -kc-spaces, Tishreen Univ. J. Basic Sci. Ser., **37** (2015), 153–161.

- 27. H. Hdeib, C. Pareek, On spaces in which lindlöf sets are closed, *Quest. Answer Gen. Topol.*, 4 (1986), 986.
- 28. E. Almuhor, H. Hdeib, On pairwise *L*-closed spaces in bitopological spaces, *J. Semigroup Theory Appl.*, **2018** (2018), 7. https://doi.org/10.28919/jsta/3668
- 29. N. Nadhim, H. Ali, R. Majeed, Strong and weak forms of \hat{I}_4^1 -Kc-spaces, Iraqi J. Sci., **61** (2020), 1080–1088. https://doi.org/10.24996/ijs.2020.61.5.16

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)