
In this study, the ψ-Haar wavelets operational matrix of integration is derived and used to solve linear ψ-fractional partial differential equations (ψ-FPDEs) with the fractional derivative defined in terms of the ψ-Caputo operator. We approximate the highest order fractional partial derivative of the solution of linear ψ-FPDE using Haar wavelets. By combining the operational matrix and ψ-fractional integration, we approximate the solution and its other ψ-fractional partial derivatives. Then substituting these approximations in the given ψ-FPDEs, we obtained a system of linear algebraic equations. Finally, the approximate solution is obtained by solving this system. The simplicity and effectiveness of the proposed method as a mathematical tool for solving ψ-Fractional partial differential equations is one of its main advantages. The sparse nature of the operational matrices improves the ability of the proposed method to execute with less computation complexity. Numerical examples are provided to show the efficiency and effectiveness of the method.
Citation: Amjid Ali, Teruya Minamoto, Rasool Shah, Kamsing Nonlaopon. A novel numerical method for solution of fractional partial differential equations involving the ψ-Caputo fractional derivative[J]. AIMS Mathematics, 2023, 8(1): 2137-2153. doi: 10.3934/math.2023110
[1] | Iyad Suwan, Mohammed S. Abdo, Thabet Abdeljawad, Mohammed M. Matar, Abdellatif Boutiara, Mohammed A. Almalahi . Existence theorems for Ψ-fractional hybrid systems with periodic boundary conditions. AIMS Mathematics, 2022, 7(1): 171-186. doi: 10.3934/math.2022010 |
[2] | Ibtisam Aldawish, Mohamed Jleli, Bessem Samet . Blow-up of solutions to fractional differential inequalities involving ψ-Caputo fractional derivatives of different orders. AIMS Mathematics, 2022, 7(5): 9189-9205. doi: 10.3934/math.2022509 |
[3] | Dinghong Jiang, Chuanzhi Bai . On coupled Gronwall inequalities involving a ψ-fractional integral operator with its applications. AIMS Mathematics, 2022, 7(5): 7728-7741. doi: 10.3934/math.2022434 |
[4] | Choukri Derbazi, Zidane Baitiche, Mohammed S. Abdo, Thabet Abdeljawad . Qualitative analysis of fractional relaxation equation and coupled system with Ψ-Caputo fractional derivative in Banach spaces. AIMS Mathematics, 2021, 6(3): 2486-2509. doi: 10.3934/math.2021151 |
[5] | Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad . On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172 |
[6] | Arjumand Seemab, Mujeeb ur Rehman, Jehad Alzabut, Yassine Adjabi, Mohammed S. Abdo . Langevin equation with nonlocal boundary conditions involving a ψ-Caputo fractional operators of different orders. AIMS Mathematics, 2021, 6(7): 6749-6780. doi: 10.3934/math.2021397 |
[7] | Deepak B. Pachpatte . On some ψ Caputo fractional Čebyšev like inequalities for functions of two and three variables. AIMS Mathematics, 2020, 5(3): 2244-2260. doi: 10.3934/math.2020148 |
[8] | Shazia Sadiq, Mujeeb ur Rehman . Solution of fractional boundary value problems by ψ-shifted operational matrices. AIMS Mathematics, 2022, 7(4): 6669-6693. doi: 10.3934/math.2022372 |
[9] | Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha . On ψ-Hilfer generalized proportional fractional operators. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005 |
[10] | Reny George, Fahad Al-shammari, Mehran Ghaderi, Shahram Rezapour . On the boundedness of the solution set for the ψ-Caputo fractional pantograph equation with a measure of non-compactness via simulation analysis. AIMS Mathematics, 2023, 8(9): 20125-20142. doi: 10.3934/math.20231025 |
In this study, the ψ-Haar wavelets operational matrix of integration is derived and used to solve linear ψ-fractional partial differential equations (ψ-FPDEs) with the fractional derivative defined in terms of the ψ-Caputo operator. We approximate the highest order fractional partial derivative of the solution of linear ψ-FPDE using Haar wavelets. By combining the operational matrix and ψ-fractional integration, we approximate the solution and its other ψ-fractional partial derivatives. Then substituting these approximations in the given ψ-FPDEs, we obtained a system of linear algebraic equations. Finally, the approximate solution is obtained by solving this system. The simplicity and effectiveness of the proposed method as a mathematical tool for solving ψ-Fractional partial differential equations is one of its main advantages. The sparse nature of the operational matrices improves the ability of the proposed method to execute with less computation complexity. Numerical examples are provided to show the efficiency and effectiveness of the method.
Fractional calculus is considered the generalization of classical calculus. Fractional differential equations have been widely employed in various science and engineering fields [1,2,3]. Many researchers have defined fractional order derivatives and integrals in various forms. New definitions of fractional differential operators and ψ-fractional derivatives and integrals have been considered by several researchers, such as the Riemann-Liouville, Caputo, Hilfer, Erdelyi-Kober, Hadamard [4,5,6,7]. Additionally, studies by Sousa et al. contain fascinating details concerning the ψ-Riemann-Liouville fractional partial integral, and the ψ-Caputo fractional partial derivative [8]. Furthermore, many interesting results from the qualitative analysis of fractional ordinary and partial differential equations involving different fractional derivatives have been recorded [9,10,11,12,13,14,15,16]. However, numerical solutions for fractional partial differential equations (FPDEs) involving the ψ-Caputo fractional partial derivatives have not been performed using the ψ-Haar wavelet operational matrix method. Thus, this study establishes a numerical technique for solving ψ-Caputo FPDEs.
The rest of the paper is organized as follows: Section 2 presents some fundamental definitions and results from ψ-Fractional calculus. Section 3 reviews Haar wavelets and their applications in function approximation. Furthermore, we derive the operational matrix of ψ-fractional integration of Haar wavelets. Section 4 presents a detailed numerical procedure for solving ψ-FPDEs using constant and variable coefficients. Finally, Section 5 presents the conclusion.
This section highlights concepts, definitions, and basic conclusions from the ψ-fractional calculus that are important in later sections.
Let the function f:[a,b]→R be integrable, α a positive real number, n a natural number and ψ∈C1([a,b]) be an increasing function such that ψ′(ϰ)≠0 for all ϰ∈[a,b].
Definition 1. [4,5,17] The ψ-Riemann-Liouvile (ψ-RL) fractional integral operator of order α is defined by
Jα,ψaf(ϰ)=1Γ(α)∫ϰaψ′(ℑ)(ψ(ϰ)−ψ(ℑ))α−1f(ℑ)dℑ. | (2.1) |
The ψ-RL fractional differential operator is given by
Dα,ψaf(ϰ)=(1ψ′(ϰ)ddϰ)nJn−α,ψaf(ϰ)=1Γ(n−α)(1ψ′(ϰ)ddϰ)n∫ϰaψ′(ℑ)(ψ(ϰ)−ψ(ℑ))n−α−1f(ℑ)dℑ, |
where n=⌊α⌋+1.
Definition 2. [6] Let α be a positive real number, n a natural number and f,ψ∈Cn([a,b]) such that ψ is increasing and ψ′(ϰ)≠0 for all ϰ∈[a,b]. The ψ-Caputo differential operator of fractional order α is defined by
CDα,ψaf(ϰ)=1Γ(n−α)∫ϰaψ′(ℑ)(ψ(ϰ)−ψ(ℑ))n−α−1f[n]ψ(ℑ)dℑ, |
where f[n]ψ(ϰ)=(1ψ′(ϰ)ddϰ)nf(ϰ), here n=⌊α⌋+1 for α∉N, or
CDα,ψaf(ϰ)=Jn−α,ψaf[n]ψ(ϰ). |
Also, the ψ-Caputo derivative can be defined as
CDα,ψaf(ϰ)=Dα,ψa[f(ϰ)−n−1∑k=0f[k]ψ(a)k!(ψ(ϰ)−ψ(a))k], |
where n=⌈α⌉, whenever α∉N and for α∈N,n=α.
Definition 3. The two-parameter Mittag–Leffler function Eα,β(ℑ) is defined as
Eα,β(ℑ)=∞∑k=0ℑkΓ(αk+β),ℑ∈R,α,β>0. | (2.2) |
The Mittag-Leffler function can also be given for these exceptional cases:
(ⅰ) E0,1(ℑ)=11+ℑ;
(ⅱ) E1,1(ℑ)=eℑ;
(ⅲ) E2,1(−ℑ2)=cos(ℑ);
(ⅳ) E2,2(−ℑ2)=sin(ℑ)ℑ.
Properties of the ψ-fractional operators include:
Property 2.1. The following property holds:
Jα,ψaJβ,ψaf(ℑ)=Jα+β,ψaf(ℑ). |
Property 2.2. If f(ℑ)=(ψ(ℑ)−ψ(a))β, where β>n and α>0, then
CDα,ψaf(ℑ)=Γ(β+1)Γ(β−α+1)(ψ(ℑ)−ψ(a))β−α. |
Property 2.3. The following property holds:
CDα,ψaJα,ψaf(ℑ)=f(ℑ). |
Proof. By definition, we have
CDα,ψaJα,ψaf(ℑ)=Dα,ψa[Jα,ψaf(ℑ)−n−1∑k=0[Jα,ψaf][k]ψ(a)k!(ψ(ℑ)−ψ(a))k]. | (2.3) |
Note that
[Jα,ψaf][k]ψ(ℑ)=(1ψ′(ℑ)ddℑ)kJα,ψaf(ℑ)=(1ψ′(ℑ)ddℑ)k−11ψ′(ℑ)ddℑ∫ℑa(ψ(ℑ)−ψ(s))α−1Γ(α)ψ′(s)f(s)ds=(1ψ′(ℑ)ddℑ)k−11ψ′(ℑ)∫ℑa(α−1)(ψ(ℑ)−ψ(s))α−2Γ(α)ψ′(ℑ)ψ′(s)f(s)ds=(1ψ′(ℑ)ddℑ)k−1∫ℑa(ψ(ℑ)−ψ(s))α−2Γ(α−1)ψ′(s)f(s)ds=(1ψ′(ℑ)ddℑ)k−1Jα−1af(ℑ). |
Then, we have
[Jα,ψaf][k]ψ(ℑ)=[Jα−1,ψaf][k−1]ψ(ℑ). |
Repeating the process k-times, we have
[Jα,ψaf][k]ψ(ℑ)=Jα−k,ψaf(ℑ). | (2.4) |
Now, substituting (2.4) into (2.3), we have
CDα,ψaJα,ψaf(ℑ)=Dα,ψa[Jα,ψaf(ℑ)−n−1∑k=0Jα−k,ψaf(a)k!(ψ(ℑ)−ψ(a))k]. | (2.5) |
Next, we show that Jα−k,ψaf(a)=0. That is, we prove that limℑ→aJα−k,ψaf(ℑ)=0. Now, we have
‖Jα,ψaf(ℑ)‖=‖1Γ(α)∫ℑa(ψ(ℑ)−ψ(s))α−1ψ′(s)f(s)ds‖≤1Γ(α)∫ℑa‖(ψ(ℑ)−ψ(s))α−1ψ′(s)f(s)‖ds≤‖f‖Γ(α)∫ℑa(ψ(ℑ)−ψ(s))α−1ψ′(s)ds≤‖f‖(ψ(ℑ)−ψ(a))αΓ(α+1), |
since ψ′(ℑ)>0 and Γ(α+1)=(α)Γ(α). Hence, Jα,ψaf(ℑ) tends to 0 as ℑ tends to a. Thus, from (2.5), we have
CDα,ψaJα,ψaf(ℑ)=Dα,ψaJα,ψaf(ℑ)=(1ψ′(ℑ)ddℑ)nJn−α,ψaJα,ψaf(ℑ)=(1ψ′(ℑ)ddℑ)nJn−α+α,ψaf(ℑ)=(1ψ′(ℑ)ddℑ)nJn,ψaf(ℑ). |
Consequently, we have CDα,ψaJα,ψaf(ℑ)=f(ℑ). This complete the proof.
By Leibnitz rule, we have
1ψ′(ℑ)ddℑJ1,ψaf(ℑ)=1ψ′(ℑ)ddℑ∫ℑa(ψ(ℑ)−ψ(s))1−1ψ′(s)f(s)ds=1ψ′(ℑ)ψ′(ℑ)f(ℑ)=f(ℑ). |
Repeating the above process n-times we have
(1ψ′(ℑ)ddℑ)nJn,ψaf(ℑ)=f(ℑ). |
Lemma 1. The following property holds:
Jn,ψaf[n]ψ(ℑ)=f(ℑ)−n−1∑k=0f[n]ψ(a)k!(ψ(ℑ)−ψ(a))k. |
Proof. For n=1, we have
J1,ψaf[1]ψ(ℑ)=∫ℑa(ψ(ℑ)−ψ(s))1−1Γ(1)ψ′(s)1ψ′(s)ddsf(s)ds=∫ℑaddsf(s)ds=f(ℑ)−f(a). | (2.6) |
For n=2, we have
J2,ψaf[2]ψ(ℑ)=J1,ψaJ1,ψa[f[1]ψ]1ψ(ℑ)=J1,ψa[f[1]ψ−f[1]ψ]=J1,ψaf[1]ψ(ℑ)−J1,ψaf[1]ψ(a)=f(ℑ)−f(a)−f[1]ψ(a)∫ℑa(ψ(ℑ)−ψ(a))1−1ψ′(s)ds=f(ℑ)−f(a)−f[1]ψ(a)(ψ(ℑ)−ψ(a)). | (2.7) |
Repeating the above process n-times, we have
Jn,ψaf[n]ψ(ℑ)=f(ℑ)−n−1∑k=0f[k]ψ(a)k!(ψ(ℑ)−ψ(a))k. |
This completes the proof.
Lemma 2. The following property holds:
Jα,ψaCDα,ψaf(ℑ)=f(ℑ)−n−1∑k=0f[k]ψ(a)k!(ψ(ℑ)−ψ(a))k. |
Proof. Since
CDα,ψaf(ℑ)=Jn−α,ψaf[n]ψ(ℑ), |
thus
Jα,ψaCDα,ψaf(ℑ)=Jα,ψaJn−α,ψaf[n]ψ(ℑ)=Jα+n−α,ψaf[n]ψ(ℑ)=Jn,ψaf[n]ψ(ℑ). |
Therefore, we have
Jα,ψaCDα,ψaf(ℑ)=f(ℑ)−n−1∑k=0f[k]ψ(a)k!(ψ(ℑ)−ψ(a))k. |
The proof is completed.
The Haar wavelet, invented by Hungarian mathematician Alfred Haar in 1909, is the most basic example of an orthogonal wavelet. The Haar mother wavelet is defined by a two-scale relation for the scaling function φ(ℑ)=χ[0,1) as:
h(ℑ)=φ(2ℑ)−φ(2ℑ−1)=χ[0,12)(ℑ)−χ[12,1)(ℑ). | (3.1) |
Define
hj,k(ℑ)=2j2h(2j(ℑ)−k),0≤k<2j,j=0,1,2,…. | (3.2) |
Then, the Haar system φ,hj,k:j≥0,0≤k<2j forms an orthonormal basis for the Hilbert space L2(0,1). Thus, for some fixed j, the inner product expansion of f∈L2[0,1] is given as
f(ℑ)≈⟨f,φ⟩φ(ℑ)j−1∑j=02j−1∑k=0⟨f,hj,k⟩hj,k(ℑ)=CTH(ℑ), | (3.3) |
where C, determined by the inner product ci=⟨f(ℑ),hj,k(ℑ)⟩,⟨⋅⟩ is a 1×2j coefficient matrix and H(ℑ)=[φ,h,h1,0,h1,1,h2,0,…,h2,3,…,hj−1,0,…,hj−1,2j−1] represents the vector of the Haar functions. For simplicity, consider ϕ=h0,h0,0=h=h1 and hi=hj,k, where i=0,1,2,…,m−1,m:2j, then, equation (3.3) becomes
f(ℑ)≈m−1∑i=0kihi(ℑ)=CTH(ℑ). | (3.4) |
Also, a function of two variables, y(ϰ,ℑ)∈L2([0,1]×[0,1]) can be approximated using Haar wavelets as:
y(ϰ,ℑ)≈m−1∑i=0m−1∑j=0ci,jhi(ϰ)hj(ℑ)=HT(ϰ)CH(ℑ), | (3.5) |
where C, a 2j×2j coefficient matrix, is computed using the inner product
ci,j=⟨hi(ϰ),⟨y(ϰ,ℑ)hj(ℑ)⟩⟩. |
ψ-Haar wavelets operational matrix:
The operational matrix of ψ-fractional integration of Haar wavelet is defined as
Pα,ψi(ϰ)=1Γ(α)∫ϰaψ′(ℑ)(ψ(ϰ)−ψ(ℑ))α−1hi(ℑ)dℑ. | (3.6) |
Furthermore, the ψ-fractional integral can be generalized and approximated analytically as:
Pα,ψi(ϰ)={0,ifϰ<ζ1(i);1Γ(α+1)[ψ(ϰ)−ψ(ζ1(i))]α,ifϰ∈[ζ1(i),ζ2(i));1Γ(α+1)[(ψ(ϰ)−ψ(ζ1(i)))α−2(ψ(ϰ)−ψ(ζ2(i)))α],ifϰ∈(ζ2(i),ζ3(i)];1Γ(α+1)[(ψ(ϰ)−ψ(ζ1(i)))α−2(ψ(ϰ)−ψ(ζ2(i)))α+(ψ(ϰ)−ψ(ζ3(i)))α],ifϰ>ζ3(i). | (3.7) |
Equation (3.7) is true for i>1 and for i=1, we have
Pα,ψ(ϰ)=1Γ(α+1)[ψ(ϰ)−ψ(a)]α. | (3.8) |
Below is the operational matrix Pα,ψ of ψ-Haar wavelets computed for ψ(ϰ)=sin(ϰ) and α=0.8.
Pα,ψ=[0.5606−0.2219−0.1403−0.0847−0.08164−0.0611−0.0484−0.03620.27690.0617−0.14030.1369−0.08164−0.06110.08960.05210.06560.08260.05017−0.0093−0.081640.0935−0.0092−0.00200.0689−0.068900.0349200−0.06900.06960.01500.01880.04881−0.00110.03404−0.0054−0.0008−0.00030.01750.0231−0.04066−0.004400.0318−0.0048−0.00070.0178−0.017800.0401000.0279−0.00410.0166−0.01660−0.03320000.0224]. | (3.9) |
This section discusses numerical solutions for linear ψ-FPDEs using a technique based on two-dimensional ψ-Haar wavelets.
This section considers linear FPDEs with constant coefficients involving ψ-Caputo fractional derivative
∂α,ψy(ϰ,ℑ)∂ℑα,ψ+λ∂β,ψy(ϰ,ℑ)∂ℑβ,ψ+μy(ϰ,ℑ)=η∂γ,ψy(ϰ,ℑ)∂ϰγ,ψ+f(ϰ,ℑ), | (4.1) |
for 0<α≤2,0≤β≤1,1≤γ≤2 and have non-homogeneous boundary and initial conditions given by
y(ϰ,0)=ρ(ϰ),∂y(ϰ,ℑ)∂ℑ|ℑ=0=σ(ϰ),y(0,ℑ)=ξ(ℑ),y(1,ℑ)=ζ(ℑ). | (4.2) |
For 1<α≤2 and λ,μ,η>0, then (4.1) reduces to the fractional telegraph equation. For special cases, it includes the heat, wave, and Poisson equations. The ψ-Haar wavelets technique provides numerical solutions. By approximating ∂α,ψy(ϰ,ℑ)∂ℑα,ψ using two-dimensional Haar wavelets, we have
∂α,ψy(ϰ,ℑ)∂ℑα,ψ=HTm(ϰ)Cm×mHm(ℑ). | (4.3) |
Operating both sides of (4.3) by Jα,ψℑ, we get
y(ϰ,ℑ)=HTm(ϰ)Cm×m(∫ℑ0ψ′(ℑ)(ψ(ℑ)−ψ(s))α−1Γ(α)Hm(s)ds)+p(ϰ)ℑ+q(ϰ). | (4.4) |
Applying the initial conditions y(ϰ,0)=ρ(ϰ) and ∂y(ϰ,ℑ)∂t|ℑ=0=σ(ϰ), from (4.2), we have q(ϰ)=ρ(ϰ) and p(ϰ)=σ(ϰ). Therefore, (4.4) becomes
y(ϰ,ℑ)=HTm(ϰ)Cm×mPα,ψm×mHm(ℑ)+σ(ϰ)ℑ+ρ(ϰ). | (4.5) |
Applying ∂β,ψ∂ℑβ,ψ to (4.5), we obtain
∂β,ψy(ϰ,ℑ)∂ℑβ,ψ=HTm(ϰ)Cm×mPα−β,ψm×mHm(ℑ)+σ(ϰ)ℑ1−βΓ(2−β). | (4.6) |
By substituting (4.3), (4.5) and (4.6) in (4.1), we have
η∂γ,ψy(ϰ,ℑ)∂ϰγ,ψ=HTm(ϰ)Cm×mHm(ℑ)+λHTm(ϰ)Cm×mPα−β,ψm×mHm(ℑ)+μHTm(ϰ)Cm×mPα,ψm×mHm(ℑ)+g(ϰ,ℑ)=HTm(ϰ)(Cm×m(I+λPα−β,ψm×m+μPα,ψm×m+Gm×m))Hm(ℑ), | (4.7) |
where
g(ϰ,ℑ)=σ(ϰ)(λℑ1−βΓ(2−β)+μℑ)+μρ(ϰ)−f(ϰ,ℑ)=HTm(ϰ)Gm×mHm(ℑ). |
Applying Jγ,ψϰ on both sides of (4.7), we have
ηy(ϰ,ℑ)=Jγ,ψϰHTm(ϰ)(Cm×m(I+λPα−β,ψm×m+μPα,ψm×m+Gm×m))Hm(ℑ)+xϕ1(ℑ)+ϕ2. | (4.8) |
Implementing the conditiony(0,ℑ)=ξ(ℑ), we get ϕ2(ℑ)=ξ(ℑ) and y(1,ℑ)=ζ(ℑ) gives
ϕ1(ℑ)=Jγ,ψϰHTm(1)(Cm×m(I+λPα−β,ψm×m+μPα,ψm×m+Gm×m))Hm(ℑ)+ζ(ℑ)−ξ(ℑ). | (4.9) |
Substituting (4.9) in (4.8), we have
ηy(ϰ,ℑ)=HTm(ϰ)((Pγ,ψm×m)T−(Qγ,ψm×m)T)×(Cm×m(I+λPα−β,ψm×m+μPα,ψm×m+Gm×m))Hm(ℑ)+x(ζ(ℑ)−ξ(ℑ))+ξ(ℑ), | (4.10) |
where
Jγ,ψϰHm(ϰ)=Pγ,ψm×mHm(ϰ)=HTm(ϰ)(Pγ,ψm×m)T |
and
xJγ,ψϰHm(1)=Qγ,ψm×mHm(ϰ). |
From (4.5) and (4.10), we get the Sylvester equation
((Pγ,ψm×m)T−(Qγ,ψm×m)T)(Cm×m(I+λPα−β,ψm×m+μPα,ψm×m)−ηCm×mPα,ψm×m=Sm×m−((Pγ,ψm×m)T−(Qγ,ψm×m)T)Gm×m, | (4.11) |
where
s(ϰ,ℑ)=ϰ(ζ(ℑ)−ξ(ℑ))+ξ(ℑ)−η(σ(ϰ)ℑ+ϱ(ℑ))=HTm(ϰ)Sm×mHm(ℑ). |
Solving (4.11) for Cm×m and using (4.5) or (4.6), we can get the solution of the problem (4.1).
This section discusses the procedure for numerical solutions of the following class of ψ-FPDEs.
∂γ,ψy(ϰ,ℑ)∂ℑγ,ψ−a(ϰ)∂α,ψy(ϰ,ℑ)∂ϰα,ψ+b(ϰ)∂β,ψy(ϰ,ℑ)∂ϰβ,ψ+d(ϰ)y(ϰ,ℑ)=f(ϰ,ℑ),1<α≤2, 1<β≤2, 0<γ≤2, | (4.12) |
with the initial conditions
y(ϰ,0)=ϕ1(ϰ),y(ϰ,ℑ)∂ℑ|ℑ=0=ψ1(ϰ),or y(ϰ,0)=ϕ1(ϰ),y(ϰ,1)=ψ2(ϰ), | (4.13) |
and boundary conditions:
y(0,ℑ)=μ(ℑ),y(1,ℑ)=ν(ℑ). | (4.14) |
Here, we present a numerical technique based on ψ-Haar wavelets operational matrices for ψ-fractional integration. We approximate ∂α,ψy(ϰ,ℑ)∂ϰα,ψ with Haar wavelets as
∂α,ψy(ϰ,ℑ)∂ϰα,ψ=HTm(ϰ)Cm×mHm(ℑ). | (4.15) |
Operating Jα,ψϰ on (4.15), we get
y(ϰ,ℑ)=Jα,ψϰHTm(ϰ)Cm×mHm(ℑ)+p(ℑ)ϰ+q(ℑ). | (4.16) |
Applying boundary conditions in (4.14) to (4.16), we have
q(ℑ)=μ(ℑ), p(ℑ)=−Jα,ψϰHTm(ϰ)Cm×mHm(ℑ)+ν(ℑ)−μ(ℑ). | (4.17) |
Therefore, (4.16) can be written as
y(ϰ,ℑ)=Jα,ψϰHTm(ϰ)Cm×mHm(ℑ)−ϰJα,ψϰHTm(ϰ)Cm×mHm(ℑ)+ϰ(nu(ℑ)−μ(ℑ))+μ(ℑ). | (4.18) |
Since Jα,ψϰHm(ϰ)=Pα,ψm×mHm(ϰ) and ϕ1(ϰ)Jα,ψϰHm(ϰ)=Qα,1m×m, where ϕ1(ϰ)=ϰ. Therefore, (4.18) takes the form
y(ϰ,ℑ)=HTm(ϰ)(Pα,ψm×m)TCm×mHm(ℑ)−HTm(ϰ)(Qα,1m×m)TCm×mHm(ℑ)+ϰ(ν(ℑ)−μ(ℑ))+μ(ℑ). | (4.19) |
Applying the ψ-Caputo operator ∂β,ψ∂ϰβ on (4.18), we have
∂β,ψy(ϰ,ℑ)∂ϰβ=Jα,ψϰHTm(ϰ)Cm×mHm(ℑ)−ϰ1−βΓ(2−β)Jα,ψϰHTm(ϰ)Cm×mHm(ℑ)+ϰ1−βΓ(2−β)(nu(ℑ)−μ(ℑ))+μ(ℑ). | (4.20) |
For simplicity, we introduced some convenient notations.
ϕ2=b(ϰ)ϰ1−βΓ(2−β),ϕ3=ϰd(ϰ),r(ϰ,ℑ)=ϰ1−βΓ(2−β)(nu(ℑ)−μ(ℑ))+d(ϰ)q(ℑ)+(ν(ℑ)−μ(ℑ))ϰd(ϰ),s(ϰ,ℑ)=ϰ(ν(ℑ)−μ(ℑ))+μ(ℑ)+ψ1(ϰ)ℑ+ϕ1(ϰ),g(ϰ,ℑ)=ϰ(ν(ℑ)−μ(ℑ))−μ(ℑ)+(ψ2(ϰ)−ϕ1(ϰ))ℑ+ϕ1(ϰ)d(ϰ)Jα,ψϰHm(ϰ)=ˉPα,ψm×mHm(ϰ),b(ϰ)Jα,ψϰHm(ϰ)=ˉPα,ψm×mHm(ϰ). |
Substituting (4.15), (4.18) and (4.20) in (4.12), we have
∂γ,ψy(ϰ,ℑ)∂ℑγ,ψ=(a(ϰ)HTm(ϰ)−HTm(ϰ)(ˉPα−βm×m)T+HTm(ϰ)(Q2,αm×m)T−HTm(ϰ)(ˉPαm×m)T+HTm(ϰ)(Qα,3m×m)T)×Cm×mHm(ℑ)+HTm(ϰ)Rm×mHm(ℑ). |
Applying Jγ,ψϰ on previous equation, we get
y(ϰ,ℑ)=(a(ϰ)HTm(ϰ)−HTm(ϰ)(Pα−βm×m)T+HTm(ϰ)(Q2,αm×m)T−HTm(ϰ)(ˉPαm×m)T+HTm(ϰ)(Qα,3m×m)T)×Cm×mJγ,ψϰHm(ℑ)+HTm(ϰ)Rm×mJγ,ψϰHm(ℑ)+w(ϰ)ℑ+ω(ϰ). |
Using the initial conditions, we get ω(ϰ)=ϕ1(ϰ) and w(ϰ)=ψ1(ϰ). Therefore,
y(ϰ,ℑ)=(a(ϰ)HTm(ϰ)−HTm(ϰ)(ˉPα−βm×m)T+HTm(ϰ)(Q2,αm×m)T−HTm(ϰ)(ˉPαm×m)T+HTm(ϰ)(Qα,3m×m)T)×Cm×mJγ,ψϰHm(ℑ)+HTm(ϰ)Rm×mJγ,ψϰHm(ℑ)+ψ1(ϰ)ℑ+ϕ1(ϰ). | (4.21) |
Now, we employ the boundary conditions to get w(ϰ)=ϕ1(ϰ) and
v(ϰ)=[(a(ϰ)HTmϰ−HTmϰ(ˆPα−β,ψm×m)T+HTmϰ(Qα,ψ,2m×m)T−HTmϰ(ˉPα,ψm×m)T+HTmϰ(Qα,ψ,3m×m)T)Cm×m+HTmϰRm×m]JγtHm(1)+ψ2ϰ−ϕ1(ϰ). | (4.22) |
Therefore, (4.21) becomes
y(ϰ,ℑ)=[(a(ϰ)ΨTM(ϰ)−HTm(ϰ)(ˆPα−β,ψm×m)T+HTm(ϰ)(Qα,ψ,2m×m)T−HTm(ϰ)(ˉPα,ψm×m)T+HTm(ϰ)(Qα,ψ,3m×m)T)Cm×m+HTm(ϰ)Rm×m](Pγm×m−Qγm×m)Ψm(ℑ)+(ψ2(ϰ)−ϕ(ϰ))ℑ+ϕ1(ϰ). | (4.23) |
Combining (4.19) and (4.21) gives the Sylvester equation
((Pα,ψm×m)T−(Qα,ψ,1m×m)T)Cm×m−(ηmΨm×mAm×mHTm×m−(ˆPα−β,ψm×m)−(ˉPα,ψm×m)T+(Qα,ψ,2m×m)T+(Qα,ψ,3m×m)T)Cm×mPγm×m=Rm×mPγm×m+Sm×m, | (4.24) |
where Am×m:=diag[(a(ϰi))],xi=2i−12m,i=1,2,3,…,m. Also, using (4.19) and (4.23), we obtain the following matrix form:
((Pα,ψm×m)T−(Qα,ψ,1m×m)T)Cm×m−(ηmΨm×mAm×mHTm×m−(ˆPα−β,ψm×m)−(ˉPα,ψm×m)T+(Qα,ψ,2m×m)T+(Qα,ψ,3m×m)T)Cm×m(Pγm×m−Qγm×m)=Rm×m(Pγm×m−Qγm×m)+Gm×m. | (4.25) |
By solving (4.25) for Gm×m and substituting it into (4.19), we get the approximate solution of problem (4.12).
To solve various ψ-FPDEs, we use the ψ-Haar wavelets technique. Additionally, we compared the graphical results obtained using the proposed method with the exact solutions. For the first two examples, we use the technique discussed in subsection 4.1 and for the other two examples, we follow the procedure discussed in subsection 4.2.
Example 1. Consider the time-fractional telegraph equation with ψ-Caputo fractional derivative
∂α,ψy(ϰ,ℑ)∂ℑα,ψ+∂α−1,ψy(ϰ,ℑ)∂ℑα−1,ψ+y(ϰ,ℑ)=∂2y(ϰ,ℑ)∂ϰ2+Γ(2α+1)Γ(α+1)(1+ψ(ℑ)α+1)(ψ(ℑ))α,ψcos(7ϰ)+50(ψ(ℑ))2αcos(7ϰ) | (4.26) |
satisfying the initial and boundary conditions
y(ϰ,0)=0,∂y(ϰ,ℑ)∂ℑ|ℑ=0=0,y(0,ℑ)=(ψ(ℑ))2α,y(1,ℑ)=0.7539022(ψ(ℑ))2α. |
The exact solution for the problem (4.26) is given by
y(ϰ,ℑ)=(ψ(ℑ))2αcos(7ϰ). |
Exact and approximate solutions of the problem (4.26) and their absolute error are plotted in Figure 1.
Also absolute error for problem (4.26) is given in Table 1 for various choices of the parameters α,J,ℑ and ϰ.
ℑ | ϰ | α | J=3 | J=4 | J=5 | J=6 | J=7 |
0.25 | 0.20 | 1.5 | 3.3780×10−3 | 7.4702×10−4 | 2.4498×10−5 | 8.0425×10−6 | 2.6428×10−6 |
0.50 | 1.6 | 2.1513×10−3 | 6.5313×10−4 | 1.9862×10−5 | 6.0507×10−6 | 1.8462×10−6 | |
0.80 | 1.7 | 2.0818×10−3 | 5.8754×10−4 | 1.6603×10−5 | 4.6985×10−6 | 1.3317×10−6 | |
0.50 | 0.20 | 1.8 | 2.0718×10−3 | 5.4730×10−4 | 1.4458×10−5 | 3.8213×10−6 | 1.0106×10−6 |
0.50 | 1.9 | 2.0363×10−3 | 5.3432×10−4 | 1.3359×10−5 | 3.3400×10−6 | 8.3502×10−7 | |
0.80 | 2.0 | 2.0363×10−4 | 5.3432×10−4 | 1.3359×10−5 | 3.3400×10−6 | 8.3502×10−7 |
Example 2. Consider the ψ-FPDE given by
∂α,ψy(ϰ,ℑ)∂ℑα,ψ−λ∂2y(ϰ,ℑ)∂ϰ2=((ψ(ℑ))1−αΓ(2−α)−Γ(3α+1)Γ(2α+1)(ψ(ℑ))2α)+144λψ(ℑ)[1−(ψ(ℑ))3α−1]sin(12ϰ),0≤α≤1 | (4.27) |
with the initial and boundary conditions
y(ϰ,0)=y(0,ℑ)=0,y(1,ℑ)=−0.536573ψ(ℑ)[1−(ψ(ℑ))3α−1]. |
The exact solution of problem (4.27) is given by
y(ϰ,ℑ)=sin(12ϰ)ψ(ℑ)[1−(ψ(ℑ))3α−1]. |
Approximate and exact solution of the problem (4.27) and their absolute error are plotted in Figure 2.
Also the maximum absolute error is presented in the Table 2.
ℑ | ϰ | α | J=3 | J=4 | J=5 | J=6 | J=7 |
0.25 | 0.20 | 0.5 | 4.3007×10−2 | 4.1167×10−4 | 4.5672×10−5 | 3.2361×10−5 | 3.4349×10−6 |
0.50 | 0.6 | 6.3553×10−3 | 6.2332×10−4 | 5.4130×10−5 | 4.2321×10−6 | 2.6340×10−7 | |
0.80 | 0.7 | 4.6571×10−3 | 2.7212×10−5 | 4.2014×10−6 | 3.1478×10−6 | 4.3216×10−7 | |
0.50 | 0.20 | 0.8 | 6.5786×10−4 | 6.7634×10−5 | 6.3132×10−6 | 4.7324×10−7 | 3.6210×10−7 |
0.50 | 0.9 | 2.1714×10−4 | 5.3452×10−6 | 3.0884×10−6 | 4.2703×10−7 | 5.7381×10−8 | |
0.80 | 1.0 | 3.2738×10−5 | 1.2753×10−6 | 2.8801×10−7 | 4.6721×10−8 | 8.5382×10−9 |
Example 3. Consider the linear fractional diffusion equation with ψ-Caputo derivative
∂y(ϰ,ℑ)∂ℑ=a(ϰ)∂1.8,ψy(ϰ,ℑ)∂ϰ1.8,ψ+f(ϰ,ℑ) | (4.28) |
with initial and boundary conditions
y(ϰ,0)=(ψ(ϰ))2(1−ψ(ϰ))andy(0,ℑ)=0,y(1,ℑ)=0. |
For a(ϰ)=Γ(1.2)(ψ(ϰ))1.8 and f(ϰ,ℑ)=(6ψ(ϰ)−3)(ψ(ϰ))2e−ℑ, the problem (4.28) has the exact solution as
y(ϰ,ℑ)=((ψ(ϰ))2−(ψ(ϰ))3)e−ℑ. |
Numerical and exact solutions using ψ-Haar wavelets technique and their absolute error for α=1.8 and J=5 are shown in Figure 3. Also absolute error for problem (4.28) is given in Table 3 for various choices of the parameters α,J,ℑ and ϰ.
ℑ | ϰ | α | J=3 | J=4 | J=5 | J=6 | J=7 |
0.25 | 0.20 | 1.5 | 1.2733×10−3 | 6.2471×10−4 | 3.0934×10−4 | 1.5391×10−4 | 7.6766×10−5 |
0.50 | 1.6 | 1.2910×10−3 | 6.3216×10−4 | 3.1273×10−4 | 1.5552×10−4 | 7.7551×10−5 | |
0.80 | 1.7 | 1.1161×10−3 | 5.4369×10−4 | 2.6824×10−4 | 1.3321×10−4 | 6.6382×10−5 | |
0.50 | 0.20 | 1.8 | 7.1349×10−4 | 3.4173×10−4 | 1.6710×10−4 | 8.2612×10−5 | 4.1071×10−5 |
0.50 | 2.0 | 6.1030×10−5 | 1.5258×10−5 | 3.8146×10−6 | 9.5367×10−7 | 2.3841×10−7 |
Example 4. Consider the convection-diffusion equation with ψ-Caputo fractional derivative:
∂γ,ψy(ϰ,ℑ)∂ℑγ,ψ=−aϰ∂α,ψy(ϰ,ℑ)∂ϰα,ψ+bϰ∂β,ψy(ϰ,ℑ)∂ϰβ,ψ+f(ϰ,ℑ),1<α≤2,0<β≤1,0<γ≤2 | (4.29) |
with initial and boundary conditions
y(ϰ,0)=y(ϰ,1)=0,y(0,ℑ)=0,y(1,ℑ)=0. |
We solve this problem with
a(ϰ)=Γ(β+2)Γ(5−{α+β})ψ(ϰ)β,b(ϰ)=Γ(2β+2−α)Γ(5−2α)ψ(ϰ)α,f(ϰ,ℑ)=(2πψ(ϰ)2β+1−ψ(ϰ)4−α)ψ(ℑ)1−γE2,2−γ(−(2πψ(ℑ))2)+(Γ(2β+2)Γ(5−{α+β})−Γ(5−2α)ψ(ϰ)2β+1+Γ(5−2α)(Γ(2β+2−α)−Γ(β+2))ψ(ϰ)4−α)sin(2πψ(ℑ)). |
The exact solution of the problem (4.29) is
y(ϰ,ℑ)=(ψ(ϰ)2β+1−ψ(ϰ)4−α)sin(2πψ(ℑ)). |
Exact and approximate solutions of problem 4.29 and their absolute error is plotted in Figure 4.
Also absolute error is given in Table 4 for various values of α,ϰ and J at ℑ=0.25 and ℑ=0.50.
ℑ | ϰ | α | J=3 | J=4 | J=5 | J=6 | J=7 |
0.25 | 0.20 | 1.5 | 4.3854×10−4 | 1.4252×10−4 | 4.6203×10−5 | 1.4996×10−5 | 4.8789×10−6 |
0.50 | 1.6 | 3.3031×10−4 | 1.0001×10−4 | 3.0183×10−5 | 9.1122×10−6 | 2.7562×10−6 | |
0.80 | 1.7 | 2.4252×10−4 | 6.8593×10−5 | 1.9314×10−5 | 5.4339×10−6 | 1.5301×10−6 | |
0.50 | 0.20 | 1.8 | 1.7673×10−4 | 4.6930×10−5 | 1.2396×10−5 | 3.2674×10−6 | 8.6081×10−7 |
0.50 | 2.0 | 1.3575×10−4 | 3.4133×10−5 | 8.5580×10−6 | 2.1426×10−6 | 5.3605×10−7 |
We developed and used the ψ-Haar wavelets operational matrix of integration of fractional order for the first time for the numerical solution of ψ-FPDEs. The numerical results of the proposed method are compared to the exact solutions and illustrated along with their absolute error in the figures. Furthermore, the absolute errors are presented in tables, indicating that our method agrees well with the exact solutions. The proposed method can also be applied to other wavelet bases, such as Legendre, Chebyshev, and Gegenbauer wavelets, and can also be applied to nonlinear ψ-FPDEs.
The authors declare no conflicts of interest.
[1] | V. E. Tarasov, Handbook of fractional calculus with applications, Boston, Berlin: de Gruyter, 5 (2019). |
[2] |
L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003 (2003), 753601. https://doi.org/10.1155/S0161171203301486 doi: 10.1155/S0161171203301486
![]() |
[3] |
H. G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
![]() |
[4] | R. Almeida, A. B. Malinowska, T. Odzijewicz, An extension of the fractional Gronwall inequality, In: Advances in non-tnteger order calculus and its applications, Springer, 2018, 20–28. |
[5] | R. Almeida, Fractional differential equations with mixed boundary conditions, B. Malays. Math. Sciences So., 42 (2019), 1687–1697. |
[6] |
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
![]() |
[7] |
C. Derbazi, Z. Baitiche, M. S. Abdo, T. Abdeljawad, Qualitative analysis of fractional relaxation equation and coupled system with ψ-Caputo fractional derivative in Banach spaces, AIMS Mathematics, 6 (2021), 2486–2509. https://doi.org/10.3934/math.2021151 doi: 10.3934/math.2021151
![]() |
[8] |
J. V. da C. Sousa, E. C. de Oliveira, On the stability of a hyperbolic fractional partial differential equation, Differ. Equat. Dyn. Sys., 2019, 1–22. https://doi.org/10.48550/arXiv.1805.05546 doi: 10.48550/arXiv.1805.05546
![]() |
[9] |
N. Adjimi, A. Boutiara, M. S. Abdo, M. Benbachir, Existence results for nonlinear neutral generalized Caputo fractional differential equations, J. Pseudo-Differ. Oper., 12 (2021), 1–17. https://doi.org/10.1007/s11868-021-00400-3 doi: 10.1007/s11868-021-00400-3
![]() |
[10] |
S. Abbas, M. Benchohra, N. Hamidi, J. Henderson, Caputo-Hadamard fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 21 (2018), 1027–1045. https://doi.org/10.1515/fca-2018-0056 doi: 10.1515/fca-2018-0056
![]() |
[11] |
D. Vivek, E. M. Elsayed, K. Kanagarajan, Theory and analysis of partial differential equations with a ψ-Caputo fractional derivative, Rocky Mt. J. Math., 49 (2019), 1355–1370. https://doi.org/10.1216/RMJ-2019-49-4-1355 doi: 10.1216/RMJ-2019-49-4-1355
![]() |
[12] |
A. Suechoei, P. S. Ngiamsunthorn, Existence uniqueness and stability of mild solutions for semilinear ψ-Caputo fractional evolution equations, Adv. Differ. Equ., 2020 (2020), 114. https://doi.org/10.1186/s13662-020-02570-8 doi: 10.1186/s13662-020-02570-8
![]() |
[13] |
Y. Yang, M. H. Heydari, Z. Avazzadeh, A. Atangana, Chebyshev wavelets operational matrices for solving nonlinear variable-order fractional integral equations, Adv. Differ. Equ., 2020 (2020), 611. https://doi.org/10.1186/s13662-020-03047-4 doi: 10.1186/s13662-020-03047-4
![]() |
[14] |
M. Bilal, A. R. Seadawy, M. Younis, S. T. R. Rizvi, H. Zahed, Dispersive of propagation wave solutions to unidirectional shallow water wave Dullin-Gottwald-Holm system and modulation instability analysis, Math. Method. Appl. Sci., 44 (2021), 4094–4104. https://doi.org/10.1002/mma.7013 doi: 10.1002/mma.7013
![]() |
[15] |
A. R. Seadawy, A. Ali, W. A. Albarakati, Analytical wave solutions of the (2+1)-dimensional first integro-differential Kadomtsev-Petviashivili hierarchy equation by using modified mathematical methods, Results. Phys., 15 (2019), 102775. https://doi.org/10.1016/j.rinp.2019.102775 doi: 10.1016/j.rinp.2019.102775
![]() |
[16] |
A. R. Seadawy, M. Arshad, D. Lu, The weakly nonlinear wave propagation of the generalized third-order nonlinear Schrodinger equation and its applications, Wave. Random. Complex., 32 (2022), 819–831. https://doi.org/10.1080/17455030.2020.1802085 doi: 10.1080/17455030.2020.1802085
![]() |
[17] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Sci. Limited., 204 (2006), 1–523. |
1. | Parisa Rahimkhani, A numerical method for Ψ-fractional integro-differential equations by Bell polynomials, 2025, 207, 01689274, 244, 10.1016/j.apnum.2024.09.011 | |
2. | Parisa Rahimkhani, Mohammad Hossein Heydari, Numerical investigation of Ψ-fractional differential equations using wavelets neural networks, 2025, 44, 2238-3603, 10.1007/s40314-024-02965-3 | |
3. | Majida H. Majeed, 2025, 3264, 0094-243X, 050133, 10.1063/5.0265328 |
ℑ | ϰ | α | J=3 | J=4 | J=5 | J=6 | J=7 |
0.25 | 0.20 | 1.5 | 3.3780×10−3 | 7.4702×10−4 | 2.4498×10−5 | 8.0425×10−6 | 2.6428×10−6 |
0.50 | 1.6 | 2.1513×10−3 | 6.5313×10−4 | 1.9862×10−5 | 6.0507×10−6 | 1.8462×10−6 | |
0.80 | 1.7 | 2.0818×10−3 | 5.8754×10−4 | 1.6603×10−5 | 4.6985×10−6 | 1.3317×10−6 | |
0.50 | 0.20 | 1.8 | 2.0718×10−3 | 5.4730×10−4 | 1.4458×10−5 | 3.8213×10−6 | 1.0106×10−6 |
0.50 | 1.9 | 2.0363×10−3 | 5.3432×10−4 | 1.3359×10−5 | 3.3400×10−6 | 8.3502×10−7 | |
0.80 | 2.0 | 2.0363×10−4 | 5.3432×10−4 | 1.3359×10−5 | 3.3400×10−6 | 8.3502×10−7 |
ℑ | ϰ | α | J=3 | J=4 | J=5 | J=6 | J=7 |
0.25 | 0.20 | 0.5 | 4.3007×10−2 | 4.1167×10−4 | 4.5672×10−5 | 3.2361×10−5 | 3.4349×10−6 |
0.50 | 0.6 | 6.3553×10−3 | 6.2332×10−4 | 5.4130×10−5 | 4.2321×10−6 | 2.6340×10−7 | |
0.80 | 0.7 | 4.6571×10−3 | 2.7212×10−5 | 4.2014×10−6 | 3.1478×10−6 | 4.3216×10−7 | |
0.50 | 0.20 | 0.8 | 6.5786×10−4 | 6.7634×10−5 | 6.3132×10−6 | 4.7324×10−7 | 3.6210×10−7 |
0.50 | 0.9 | 2.1714×10−4 | 5.3452×10−6 | 3.0884×10−6 | 4.2703×10−7 | 5.7381×10−8 | |
0.80 | 1.0 | 3.2738×10−5 | 1.2753×10−6 | 2.8801×10−7 | 4.6721×10−8 | 8.5382×10−9 |
ℑ | ϰ | α | J=3 | J=4 | J=5 | J=6 | J=7 |
0.25 | 0.20 | 1.5 | 1.2733×10−3 | 6.2471×10−4 | 3.0934×10−4 | 1.5391×10−4 | 7.6766×10−5 |
0.50 | 1.6 | 1.2910×10−3 | 6.3216×10−4 | 3.1273×10−4 | 1.5552×10−4 | 7.7551×10−5 | |
0.80 | 1.7 | 1.1161×10−3 | 5.4369×10−4 | 2.6824×10−4 | 1.3321×10−4 | 6.6382×10−5 | |
0.50 | 0.20 | 1.8 | 7.1349×10−4 | 3.4173×10−4 | 1.6710×10−4 | 8.2612×10−5 | 4.1071×10−5 |
0.50 | 2.0 | 6.1030×10−5 | 1.5258×10−5 | 3.8146×10−6 | 9.5367×10−7 | 2.3841×10−7 |
ℑ | ϰ | α | J=3 | J=4 | J=5 | J=6 | J=7 |
0.25 | 0.20 | 1.5 | 4.3854×10−4 | 1.4252×10−4 | 4.6203×10−5 | 1.4996×10−5 | 4.8789×10−6 |
0.50 | 1.6 | 3.3031×10−4 | 1.0001×10−4 | 3.0183×10−5 | 9.1122×10−6 | 2.7562×10−6 | |
0.80 | 1.7 | 2.4252×10−4 | 6.8593×10−5 | 1.9314×10−5 | 5.4339×10−6 | 1.5301×10−6 | |
0.50 | 0.20 | 1.8 | 1.7673×10−4 | 4.6930×10−5 | 1.2396×10−5 | 3.2674×10−6 | 8.6081×10−7 |
0.50 | 2.0 | 1.3575×10−4 | 3.4133×10−5 | 8.5580×10−6 | 2.1426×10−6 | 5.3605×10−7 |
ℑ | ϰ | α | J=3 | J=4 | J=5 | J=6 | J=7 |
0.25 | 0.20 | 1.5 | 3.3780×10−3 | 7.4702×10−4 | 2.4498×10−5 | 8.0425×10−6 | 2.6428×10−6 |
0.50 | 1.6 | 2.1513×10−3 | 6.5313×10−4 | 1.9862×10−5 | 6.0507×10−6 | 1.8462×10−6 | |
0.80 | 1.7 | 2.0818×10−3 | 5.8754×10−4 | 1.6603×10−5 | 4.6985×10−6 | 1.3317×10−6 | |
0.50 | 0.20 | 1.8 | 2.0718×10−3 | 5.4730×10−4 | 1.4458×10−5 | 3.8213×10−6 | 1.0106×10−6 |
0.50 | 1.9 | 2.0363×10−3 | 5.3432×10−4 | 1.3359×10−5 | 3.3400×10−6 | 8.3502×10−7 | |
0.80 | 2.0 | 2.0363×10−4 | 5.3432×10−4 | 1.3359×10−5 | 3.3400×10−6 | 8.3502×10−7 |
ℑ | ϰ | α | J=3 | J=4 | J=5 | J=6 | J=7 |
0.25 | 0.20 | 0.5 | 4.3007×10−2 | 4.1167×10−4 | 4.5672×10−5 | 3.2361×10−5 | 3.4349×10−6 |
0.50 | 0.6 | 6.3553×10−3 | 6.2332×10−4 | 5.4130×10−5 | 4.2321×10−6 | 2.6340×10−7 | |
0.80 | 0.7 | 4.6571×10−3 | 2.7212×10−5 | 4.2014×10−6 | 3.1478×10−6 | 4.3216×10−7 | |
0.50 | 0.20 | 0.8 | 6.5786×10−4 | 6.7634×10−5 | 6.3132×10−6 | 4.7324×10−7 | 3.6210×10−7 |
0.50 | 0.9 | 2.1714×10−4 | 5.3452×10−6 | 3.0884×10−6 | 4.2703×10−7 | 5.7381×10−8 | |
0.80 | 1.0 | 3.2738×10−5 | 1.2753×10−6 | 2.8801×10−7 | 4.6721×10−8 | 8.5382×10−9 |
ℑ | ϰ | α | J=3 | J=4 | J=5 | J=6 | J=7 |
0.25 | 0.20 | 1.5 | 1.2733×10−3 | 6.2471×10−4 | 3.0934×10−4 | 1.5391×10−4 | 7.6766×10−5 |
0.50 | 1.6 | 1.2910×10−3 | 6.3216×10−4 | 3.1273×10−4 | 1.5552×10−4 | 7.7551×10−5 | |
0.80 | 1.7 | 1.1161×10−3 | 5.4369×10−4 | 2.6824×10−4 | 1.3321×10−4 | 6.6382×10−5 | |
0.50 | 0.20 | 1.8 | 7.1349×10−4 | 3.4173×10−4 | 1.6710×10−4 | 8.2612×10−5 | 4.1071×10−5 |
0.50 | 2.0 | 6.1030×10−5 | 1.5258×10−5 | 3.8146×10−6 | 9.5367×10−7 | 2.3841×10−7 |
ℑ | ϰ | α | J=3 | J=4 | J=5 | J=6 | J=7 |
0.25 | 0.20 | 1.5 | 4.3854×10−4 | 1.4252×10−4 | 4.6203×10−5 | 1.4996×10−5 | 4.8789×10−6 |
0.50 | 1.6 | 3.3031×10−4 | 1.0001×10−4 | 3.0183×10−5 | 9.1122×10−6 | 2.7562×10−6 | |
0.80 | 1.7 | 2.4252×10−4 | 6.8593×10−5 | 1.9314×10−5 | 5.4339×10−6 | 1.5301×10−6 | |
0.50 | 0.20 | 1.8 | 1.7673×10−4 | 4.6930×10−5 | 1.2396×10−5 | 3.2674×10−6 | 8.6081×10−7 |
0.50 | 2.0 | 1.3575×10−4 | 3.4133×10−5 | 8.5580×10−6 | 2.1426×10−6 | 5.3605×10−7 |