Research article Special Issues

Ćirić type nonunique fixed point theorems in the frame of fuzzy metric spaces

  • Received: 24 August 2022 Revised: 12 September 2022 Accepted: 13 September 2022 Published: 28 October 2022
  • MSC : 47H10, 54H25

  • The paper defines a new contractive condition within $ \kappa- $orbitally complete fuzzy metric spaces $ (\Theta, \mathcal{M}, \mathcal{T}) $, as well as fixed point theorems for single-valued and multi-valued function on $ \Theta $ which is not necessarily continuous. The contractive condition is motivated by an idea proposed in Ćirić's paper "On some maps with a nonunique fixed points". Continuity of mapping $ \kappa $ is replaced by $ \kappa- $orbitally continuity property which provides the existence of the fixed point, but not necessarily uniqueness.

    Citation: Tatjana Došenović, Dušan Rakić, Stojan Radenović, Biljana Carić. Ćirić type nonunique fixed point theorems in the frame of fuzzy metric spaces[J]. AIMS Mathematics, 2023, 8(1): 2154-2167. doi: 10.3934/math.2023111

    Related Papers:

  • The paper defines a new contractive condition within $ \kappa- $orbitally complete fuzzy metric spaces $ (\Theta, \mathcal{M}, \mathcal{T}) $, as well as fixed point theorems for single-valued and multi-valued function on $ \Theta $ which is not necessarily continuous. The contractive condition is motivated by an idea proposed in Ćirić's paper "On some maps with a nonunique fixed points". Continuity of mapping $ \kappa $ is replaced by $ \kappa- $orbitally continuity property which provides the existence of the fixed point, but not necessarily uniqueness.



    加载中


    [1] H. H. Alsulami, E. Karapinar, V. Rakočević, Ćirić type nonunique fixed point theorems on $b-$metric spaces, Filomat, 31 (2017), 3147–3156. https://doi.org/10.2298/FIL1711147A doi: 10.2298/FIL1711147A
    [2] S. Banach, Sur les op$\acute{e}$rations dans les ensembles abstraits et leur application aux $\acute{e}$uations int$\acute{e}$grales, Fund. Math., 3 (1922), 133–181.
    [3] A. T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 82 (1976), 641–657. https://doi.org/10.1090/S0002-9904-1976-14091-8 doi: 10.1090/S0002-9904-1976-14091-8
    [4] L. B. Ćirić, On a family of contractive maps and fixed points, Publ. Inst. Math., 17 (1974), 45–51.
    [5] L. B. Ćirić, On some maps with a nonunique fixed points, Publ. Inst. Math., 31 (1974), 52–58.
    [6] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7
    [7] A. George, P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst., 90 (1997), 365–368. https://doi.org/10.1016/S0165-0114(96)00207-2 doi: 10.1016/S0165-0114(96)00207-2
    [8] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4
    [9] O. Hadžić, A fixed point theorem in Menger spaces, Publ. Inst. Math., 20 (1979), 107–112.
    [10] O. Hadžić, Fixed point theorems for multivalued mappings in probabilistic metric spaces, Mat. Vesnik, 3 (1979), 125–134.
    [11] O. Hadžić, Fixed point theory in probabilistic metric spaces, Serbian Academy of Sciences and Arts, 1995.
    [12] O. Hadžić, Fixed point theorems for multivalued mappings in probabilistic metric spaces, Fuzzy Sets Syst., 88 (1997), 219–226. https://doi.org/10.1016/S0165-0114(96)00072-3 doi: 10.1016/S0165-0114(96)00072-3
    [13] O. Hadžić, E. Pap, Fixed point theory in probabilistic metric spaces, Kluwer Academic Publishers, 2001. https://doi.org/10.1007/978-94-017-1560-7
    [14] O. Hadžić, E. Pap, M. Budinčević, Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces, Kybernetika, 38 (2002), 363–382.
    [15] H. A. Hammad, H. Aydi, Y. U. Gaba, Exciting fixed point results on a novel space with supportive applications, J. Funct. Spaces, 2021 (2021), 6613774. https://doi.org/10.1155/2021/6613774 doi: 10.1155/2021/6613774
    [16] H. A. Hammad, H. Aydi, N. Mlaiki, Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann–Liouville fractional integrals, and Atangana–Baleanu integral operators, Adv. Differ. Equ., 2021 (2021), 97. https://doi.org/10.1186/s13662-021-03255-6 doi: 10.1186/s13662-021-03255-6
    [17] H. Huang, B. Carić, T. Došenović, D. Rakić, M. Brdar, Fixed-point theorems in fuzzy metric spaces via fuzzy $F-$contraction, Mathematics, 9 (2021), 641. https://doi.org/10.3390/math9060641 doi: 10.3390/math9060641
    [18] K. Javed, H. Aydi, F. Uddin, M. Arshad, On orthogonal partial $b$-metric spaces with an application, J. Math., 2021 (2021), 6692063. https://doi.org/10.1155/2021/6692063 doi: 10.1155/2021/6692063
    [19] K. Javed, F. Uddin, H. Aydi, A. Mukheimer, M. Arshad, Ordered-theoretic fixed point results in fuzzy $b$-metric spaces with an application, J. Math., 2021 (2021), 6663707. https://doi.org/10.1155/2021/6663707 doi: 10.1155/2021/6663707
    [20] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer Academic Publishers, 2000.
    [21] I. Kramosil, J. Michálek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 336–344.
    [22] K. Menger, Statistical metric, Proc. Natl. Acad. Sci. U. S. A., 28 (1942), 535–537. https://doi.org/10.1073/pnas.28.12.53 doi: 10.1073/pnas.28.12.53
    [23] N. Mlaiki, N. Dedović, H. Aydi, M. Gardašević-Filipović, B. Bin-Mohsin, S. Radenović, Some new observations on Geraghty and Ćirić type results in $b$-metric spaces, Mathematics, 7 (2019), 643. https://doi.org/10.3390/math7070643 doi: 10.3390/math7070643
    [24] R. M. Nikolić, R. P. Pant, V. T. Ristić, A. Šebeković, Common fixed points theorems for self-mappings in Menger PM-spaces, Mathematics, 10 (2022), 2449. https://doi.org/10.3390/math10142449 doi: 10.3390/math10142449
    [25] D. Rakić, T. Došenović, Z. D. Mitrović, M. De la Sen, S. Radenović, Some fixed point theorems of Ćirić type in fuzzy metric spaces, Mathematics, 8 (2020), 297. https://doi.org/10.3390/math8020297 doi: 10.3390/math8020297
    [26] S. U. Rehman, H. Aydi, Rational fuzzy cone contractions on fuzzy cone metric spaces with an application to Fredholm integral equations, J. Funct. Spaces, 2021 (2021), 5527864. https://doi.org/10.1155/2021/5527864 doi: 10.1155/2021/5527864
    [27] N. A. Secelean, A new kind of nonlinear quasicontractions in metric spaces, Mathematics, 8 (2020), 661. https://doi.org/10.3390/math8050661 doi: 10.3390/math8050661
    [28] B. Schweizer, A. Sklar, Probabilistic metric spaces, Dover Publications, 2011.
    [29] V. M. Sehgal, A. T. Baharucha-Reid, Fixed points of contraction mappings on probabilistic metric spaces, Math. Syst. Theory, 6 (1972), 97–102. https://doi.org/10.1007/BF01706080 doi: 10.1007/BF01706080
    [30] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1585) PDF downloads(123) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog