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1. Introduction

In 1965, Zadeh [30] introduced the concept of a fuzzy set that found great application in various
branches of science and engineering, including mathematics as well as fixed point theory. Unlike a
classical set, where an element either belongs or does not belong to a set in the theory of fuzzy sets, the
elements belong to a set with a measure that it involves a continuous transition from non-belonging to
full belonging. In a fuzzy set, each element of the set is assigned a value from [0, 1] and that number
(fuzzy number) represents the degree of belonging to the fuzzy set. Mathematically, if a set Θ is given,
the fuzzy set is a mapping A : Θ → [0, 1]. This mapping is called the membership function, whose
value for a certain element in the set defines its degree of belonging.

Guided by the basic postulates of probability theory, the mathematician Karl Menger in 1942
defined probabilistic metric spaces as a generalization of the concept of metric spaces. The distance
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between two objects is not a fixed number but is assigned to points of space appropriate to the
distribution function. A further generalization is given by Kramosil and Michalek [21] in 1975 where
they use the following idea-the distance function does not have to be given by the distribution
function but by the fuzzy set. Now the distance function represents the degree of certainty with which
the points b and l are at a distance less than t. Next, George and Veeramani [6, 7], in order to obtain
Pompeiu-Hausdorff metric modify the concept of fuzzy metrics defined by Kramosil and Michalek.

In the fixed point theory, the first significant result is published by Sehgal and
Bharucha-Reid [3, 29] where they generalize the famous Banach’s contraction principle [2] in
probabilistic metric spaces using triangular norm TM. Following this result, scientists around the
world publish papers that represent a generalization of Banach’s contraction principle, both in
probabilistic and fuzzy metric spaces. The novelty of this topic is confirmed by many recent papers,
which includes the application of fixed point theory in solving various integral equations
(see [19, 26]). Important generalizations of Banach’s contraction principle in metric spaces were
given by the following mathematicians: Edelstein-Nemitskii, Boyd and Wong, Meir and Keeler,
Kannan, Chatterje, Zamfirescu, Reich, Hardy and Rogers, Geraghty, Ćirić which gives one of the
most general contractive conditions (quasi-contraction) and many others. Later on, the mentioned
contractive conditions and fixed point theorems related to a certain contractive condition are
generalized in probabilistic, fuzzy, but also in other spaces that represent the generalization of metric
spaces. Especially, Ćirić’s quasi-contraction as one of the strongest generalization of Banach’s
contraction is frequently used in recent studies [23, 25, 27]. As Banach’s contractive condition
implies the continuity of the mapping κ, Kannan’s work 1968 provides an answer to the question of
whether there is a contractive condition sufficient for the existence of a fixed point, but that the
continuity of the mapping f does not have to be implied. The question concerning the continuity of
the mapping f is also raised in the paper of Ćirić from 1974 [5], with a new contractive condition in
metric space (X, %) :

min{%(κb, κl), %(b, κb), %(l, κl)} −min{%(b, κl), %(κb, l)} ≤ q%(b, l), b, l ∈ X, q ∈ (0, 1),

where the existence of a fixed point is achieved by assuming that space X is κ− orbitally complete
and the mapping κ is orbitally continuous. Encouraged by this, in this paper we give a contractive
condition within fuzzy metric spaces, where the existence of a fixed point is achieved by assuming that
the mapping is f orbitally continuous. Both single-valued and multi-valued case is discussed in this
paper.

Before the main results, we look at the known definitions and results that are necessary for this
research.

Starting from the idea of the basic triangle inequality K. Menger [22] defined the term triangular
norms. The first area where triangular norms played a significant role was the theory of probabilistic
metric spaces. In addition, triangular norms are a significant operation in areas such as fuzzy sets and
phase logic, the theory of generalized measures and the theory of nonlinear differential and differential
equations. However, the original set of axioms was weak and B. Schweizer and A. Sklar [28] made
changes and defined axioms for triangular norms that are still used today.

Definition 1.1. [20] A binary operation T : [0, 1]× [0, 1]→ [0, 1] is a continuous triangular norm if it
satisfies the following conditions:
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(t1) T is associative and commutative,
(t2) T is continuous,
(t3) T (p, 1) = p, for all p ∈ [0, 1],
(t4) T (p, q) ≤ T (r, s) whenever p ≤ r and q ≤ s, for each p, q, r, s ∈ [0, 1].

Typical examples of a continuous t-norm are TP(p, q) = p · q, TM(p, q) = min{p, q} and TL(p, q) =

max{p + q − 1, 0}.
Very important class of triangular norms is given by O. Hadžić [9, 11].

Definition 1.2. [9] Let T be a triangular norm and Tn : [0, 1]→ [0, 1], n ∈ N. T is a triangular norm
of Hadžić-type if the family {Tn(b)}n∈N defined in the following way:

T1(b) = T (b, b), Tn+1(b) = T (Tn(b), b), n ∈ N, b ∈ [0, 1],

is equi-continuous at b = 1.

Minimum triangular norm is trivial example of triangular norm of Hadžić-type, for nontrivial
example readers are referred to the paper [9].

In the book Triangular norm writen by Klement, Mesiar and Pap is pointed out very useful statement
that using associativity of triangular norms every t-norm T can be extended in a unique way to an n-ary
operation taking for (b1, . . . , bn) ∈ [0, 1]n the values

T 1
i=1bi = b1, T

n
i=1bi = T (T n−1

i=1 bi, bn) = T (b1, b2, . . . , bn).

Example 1. [13] n-ary extensions of the Tmin, TL and TP t-norms:
TM(b1, . . . , bn) = min(b1, . . . , bn),

TL(b1, . . . , bn) = max(
n∑

i=1
bi − (n − 1), 0),

TP(b1, . . . , bn) = b1 · b2 · . . . · bn.

It has been shown in the paper [20] that the triangular norm T can be extended to a countable
infinite operation taking for any sequence (bn)n∈N from [0, 1] the value

T +∞
i=1 bi = lim

n→+∞
T n

i=1bi.

Since the sequence (T n
i=1bi), n ∈ N is non-increasing and bounded from below, the limit T +∞

i=1 bi exists.
In order to prove existence of fixed point the following condition is imposed [13, 14] investigate the

classes of triangular norms T and sequences (bn) from the interval [0, 1] such that lim
n→+∞

bn = 1 and

lim
n→+∞

T +∞
i=n bi = lim

n→+∞
T +∞

i=1 bn+i = 1. (1.1)

The next proposition concerning triangular norms of Hadžić type is proved in [13].

Proposition 1.3. Let (bn)n∈N be a sequence of numbers from [0, 1] such that lim
n→+∞

bn = 1 and triangular
norm T is of Hadžić type. Then lim

n→+∞
T +∞

i=n bi = lim
n→+∞

T +∞
i=1 bn+i = 1.
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Definition 1.4. ([6, 7]) A 3−tuple (Θ,M,T ) is called a fuzzy metric space if Θ is an arbitrary (non-
empty) set, T is a continuous triangular norm and M is a fuzzy set on Θ2 × (0,+∞), satisfying the
following conditions for each b, l, z ∈ Θ and p, q > 0,

(Fm-1)M(b, l, p) > 0,
(Fm-2)M(b, l, p) = 1 if and only if b = l,
(Fm-3)M(b, l, p) =M(l, b, p),
(Fm-4) T (M(b, l, p),M(l, z, q)) ≤ M(b, z, p + q),
(Fm-5)M(b, l, ·) : (0,+∞)→ [0, 1] is continuous.

Definition 1.5. ([6, 7]) Let (Θ, M, T ) be a fuzzy metric space.

(i) A sequence {bn}n∈N is a Cauchy sequence in (Θ, M, T ) if for every δ ∈ (0, 1) there exists i0 ∈ N

such thatM(b j, bk, p) > 1 − δ, j, k ≥ i0, p > 0.

(ii) A sequence {bn}n∈N converges to b in (Θ, M, T ) if for every δ ∈ (0, 1) there exists i0 ∈ N such that
M(b j, b, p) > 1 − δ, j ≥ i0, p > 0. Then, we say that {bn}n∈N is convergent.

(iii) A fuzzy metric space (Θ, M, T ) is complete if every Cauchy sequence in (Θ, M, T ) is
convergent.

Lemma 1.6. [8]M(b, l, ·) is non-decreasing for all b, l ∈ Θ.

Let Υ and Ω be two nonempty subsets of Θ, define the Hausdorff–Pompeiu fuzzy metric as

H(Υ,Ω, p) = min{inf
b∈Υ
E(b,Ω, p), inf

l∈Ω
E(l,Υ, p)}, p > 0,

where E(b, B, p) = supl∈ΩM(b, l, p).

Definition 1.7. [10, 12] Let (Θ, M, T ) be a fuzzy metric space, ∅ , A ⊂ Θ and F : A → C(A),
(C(A is the set of all closed subsets ofA).A mapping F is a weakly demicompact if for every sequence
{bn}n∈N fromA such that lim

n→+∞
M(bn, bn+1, p) = 1, p > 0, bn+1 ∈ F bn, n ∈ N, there exists a convergent

subsequence {bnk}k∈N.

Definition 1.8. [5] (i) An orbit of F : Θ → C(Θ) at the point b ∈ Θ is a sequence {bn : bn ∈ F bn−1},

where b0 = b.
(ii) A multivalued function F is orbitally upper-semicontinuous if bn → u ∈ Θ implies u ∈ F u

whenever {bn}n∈N is an orbit of F at some b ∈ Θ.

(iii) A space Θ is F−orbitally complete if every orbit of F at some b ∈ Θ which is Cauchy sequence
converges in Θ.

Lemma 1.9. [17] Let (Θ,M,T ) be a fuzzy metric space and let {bn} be a sequence in Θ such that

lim
p→0+
M(bn, bn+1, p) > 0, n ∈ N, (1.2)

and
lim

n→+∞
M(bn, bn+1, p) = 1, p > 0. (1.3)

If {bn} is not a Cauchy sequence in (Θ,M,T ), then there exist ε ∈ (0, 1), p0 > 0, and sequences of
positive integers {lk}, {ik}, lk > ik > k, k ∈ N, such that the following sequences

{M(bik , blk , p0)}, {M(bik , blk+1, p0)}, {M(bik−1, blk , p0)},
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{M(bik−1, blk+1, p0)}, {M(bik+1, blk+1, p0)},

tend to 1 − ε, as k → +∞.

Definition 1.10. [4, 5] A mapping κ is called a orbitally continuous if lim
i→+∞

κnib = u implies lim
i→+∞

κκnib =

κu, for every u ∈ Θ. A space Θ is called a κ−orbitally complete if every Cauchy sequence of the form
{κnib}+∞i=1 , b ∈ Θ converges in Θ.

Recently [24], orbitally continuous property is used to obtain common fixed points results in Menger
probabilistic metric spaces.

2. Main results

Instigated by the paper [5] we give the following contractive condition.

Theorem 2.1. Let (Θ,M,T ) be κ−orbitally complete fuzzy metric space such that lim
p→+∞

M(b, l, p) = 1

and let κ : Θ→ Θ be an orbitally continuous mapping on Θ. If κ satisfies the following condition:

max{M(κb, κl, p),M(κb, b, p),M(κl, l, p)} + min{1 −M(b, κl, p), 1 −M(κb, l, p)} (2.1)

≥ M(b, l,
p
q

),

for some q < 1 and for all b, l ∈ Θ, p > 0, and if triangular norm T satisfies the following condition:
For arbitrary b0 ∈ Θ and b1 = κb0 there exists ς ∈ (q, 1) such that

lim
n→+∞

T +∞
i=nM(b0, b1,

p
ςi ) = 1, p > 0, (2.2)

then for each b ∈ Θ the sequence {κnb}+∞n=1 converges to a fixed point of κ.

Proof. Let b0 ∈ Θ is arbitrary. Now, we can construct a sequence {bn}n∈N∪{0} such that bn+1 = κbn, for all
n ∈ N ∪ {0}. If bn0 = bn0+1 for some n0 ∈ N ∪ {0} then the proof is finished. So, suppose that bn , bn+1,

for all n ∈ N ∪ {0}.
Let n ∈ N and p > 0. By (2.1) for b = bn−1, l = bn, we have

max{M(κbn−1, κbn, p),M(κbn−1, bn−1, p),M(κbn, bn, p)}

+ min{1 −M(bn−1, κbn, p), 1 −M(κbn−1, bn, p)} ≥ M(bn−1, bn,
p
q

),

which means that

max{M(bn, bn+1, p),M(bn, bn−1, p)} ≥ M(bn−1, bn,
p
q

). (2.3)

Since p
q > p, by using Lemma 1.6, we get that

M(bn, bn+1, p) ≥ M(bn−1, bn,
p
q

), n ∈ N, p > 0. (2.4)

In the following, we will show that the sequence {bn} is a Cauchy sequence.
Let ϑ ∈ (q, 1). Then, sum

∑+∞
i=1 ϑ

i is convergent and there exists i0 ∈ N such that
∑+∞

i=n ϑ
i < 1, for

every j > i0. Let j > k > i0. SinceM is nondecreasing, by (Fm-4), for every p > 0 we have
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M(b j, b j+k, p) ≥ M(b j, b j+k, p
j+k−1∑
s= j

ϑs)

≥ T (M(b j, b j+1, pϑ j),M(b j+1, b j+k, p
j+k−1∑
s= j+1

ϑs))

≥ T (M(b j, b j+1, pϑ j),T (M(b j+1, b j+2, pϑ j+1,

. . . M(b j+k−1, b j+k, pϑ j+k−1) . . . ).

By (2.4) follows that
M(b j, b j+1, p) ≥ M(b0, b1,

p
qn ), n ∈ N, p > 0,

and for j > k > i0 we have

M(b j, b j+k, p) ≥ T (M(b0, b1,
pϑi

qi ),T (M(b0, b1,
pϑi+1

qi+1 ),

. . . M(b0, b1,
pϑ j+k−1

q j+k−1 ) . . . )

= T
j+k−1

s= j M(b0, b1,
pϑs

qs )

≥ T +∞
s= j M(b0, b1,

p
ςs ), p > 0,

where ς =
q
ϑ
. Since ς ∈ (q, 1) by (2.2) follows that {bn} is a Cauchy sequence.

Based on that Θ is κ−orbitally complete fuzzy metric space and {bn} is a Cauchy sequence it follows
that lim

n→+∞
κnb0 = u ∈ Θ, and using orbital continuity of κ we have that κu = u. �

Example 2. Let Θ = [0, 1], k ∈ [ 1
2 , 1), κb =

{
kb, b , 0
1, b = 0

, M(b, l, p) = e−
|b−l|

p and T = TP.

Further, condition (2.1), with q = m, will be checked.
Case 1. Let b, l , 0. Then

max{M(κb, κl, p),M(κb, b, p),M(κl, l, p)}
+ min{1 −M(b, κl, p), 1 −M(κb, l, p)}
≥ max{M(κb, κl, p),M(κb, b, p),M(κl, l, p)}

≥ e−k |b−l|
p =M(b, l,

p
q

), p > 0.

Case 2. Let b = 0 and l , 0. Then

max{M(κb, κl, p),M(κb, b, P),M(κl, l, p)}
+ min{1 −M(b, κl, p), 1 −M(κb, l, p)}
≥ e−(1−k) l

p
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= e−(1−k) |b−l|
p

≥ e−k |b−l|
p =M(b, l,

p
q

), p > 0.

Case 3. Let b = l = 0. Then

max{M(κb, κl, p),M(κb, b, p),M(κl, l, p)}
+ min{1 −M(b, κl, p), 1 −M(κb, l, p)}
= 2 − e−

1
p

≥ ek |b−l|
p =M(b, l,

p
q

), p > 0.

So, condition (2.1) is satisfied for all b, l ∈ Θ with q = k, but since κ is not orbital continuous
then the statement of the Theorem 2.1 does not have to be true, and there is not a fixed point of the
mapping κ.

Example 3. Let Θ = [0, 1], k ∈ [ 1
2 , 1), κb =

{
kb, b rational
b, b irrational.

, M(b, l, p) = e−
|b−l|

p and T = TP.

Then, condition (2.1) is satisfied for all b, l ∈ Θ with q = k, κ is not continuous but it is orbital
continuous and by Theorem 2.1 κ has fixed point. Moreover, κ has infinitely many fixed points.

Remark 1.
(i) Using Proposition 1.3 we conclude that the Theorem 2.1 holds if instead of condition (2.2) we use
a triangular norm of Hadžić type.

(ii) Let (bn)n∈N be a sequence from (0, 1) such that:

a)
+∞∑
n=1

(1 − bn)λ, λ ∈ (0, +∞) convergent. Then lim
n→+∞

(T ?
λ )+∞

i=nbi = 1, ? ∈ {D, AA}.

b)
+∞∑
n=1

(1 − bn), λ ∈ (−1, +∞] convergent. Then lim
n→+∞

(T S W
λ )+∞

i=nbn = 1.

Therefore, Theorem 2.1 is valid if instead of an arbitrary triangular norm that satisfies the condition
(2.2) one uses the Dombi (T D

λ )λ∈(0,+∞), Aczél-Alsina (T AA
λ )λ∈(0,+∞) or Sugeno-Weber (T S V

λ )λ∈[−1,+∞)

family of triangular norms with additional conditions:
+∞∑
i=1

(1 − 1
ςi )λ for Dombi and Aczél-Alsina family

of triangular norms, as well as
+∞∑
i=1

(1 − 1
ςi ) for the Sugeno-Weber family of triangular norms. Namely,

this statement is obvious by using the proposition given in [13].
For more information on the mentioned families of triangular norms, readers are referred to the

book [13].

Theorem 2.2. Let (Θ,M,T ) be a fuzzy metric such that lim
p→+∞

M(b, l, p) = 1. Let F : Θ → C(Θ) be

orbitally upper-semicontinuous, Θ is F−orbitally complete and F satisfies the following:
For every b, l ∈ Θ, u ∈ F b and 0 < δ < 1, there exists v ∈ F b such that

max{M(u, v, p),M(u, b, p),M(v, l, p)} + min{1 −M(u, l, p), 1 −M(v, b, p)} ≥ M(b, l,
p − δ

q
), (2.5)

for some q ∈ (0, 1) and every p > max{ q
1−q , δ}. Also, one of the conditions (i) or (ii) is satisfied:
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(i) F is weakly demicompact
or
(ii) there exists b0, b1 ∈ Θ, b1 ∈ F b0 and ς ∈ (q, 1) such that triangular norm T satisfies:

lim
n→+∞

T +∞
i=nM(b0, b1,

p
ςi ) = 1.

Then there exist b ∈ Θ such that b ∈ F b.

Proof. Let b0, b1 ∈ Θ such that b1 ∈ F b0. Using (2.5), for u = b1, b = b0, l = b1 and δ = q there exist
b2 ∈ Θ such that b2 ∈ F b1 and

max{M(b1, b2, p),M(b0, b1, p),M(b1, b2, p)}

+ min{1 −M(b0, b2, p), 1 −M(b1, b1, p)} ≥ M(b0, b1,
p − q

q
).

Then,
max{M(b1, b2, p),M(b0, b1, p)} ≥ M(b0, b1,

p − q
q

).

Suppose that max{M(b1, b2, p),M(b0, b1, p)} = M(b0, b1, p), we get M(b0, b1, p) ≥ M(b0, b1,
p−q

q ),
which means that p ≥ p−q

q . Since this is contradictory with assumption (p > q
1−q ), we conclude that

M(b1, b2, p) ≥ M(b0, b1,
p − q

q
). (2.6)

Further, for δ = q2 there exists b3 ∈ F b2 such that by (2.5) we have

max{M(b2, b3, p),M(b1, b2, p),M(b2, b3, p)}

+ min{1 −M(b1, b3, p), 1 −M(b2, b2, p)} ≥ M(b1, b2,
p − q2

q
).

which implies that max{M(b2, b3, p),M(b1, b2, p)} =M(b2, b3, p). So,

M(b2, b3, p) ≥ M(b1, b2,
p − q2

q
) ≥ M(b0, b1,

p − 2q2

q2 ).

Continuing, for δ = q3, δ = q4, . . . we can construct sequence {bn}n∈N from Θ such that the following
conditions are satisfied:

(a) bn+1 ∈ F bn,

(b)M(bn, bn+1, p) ≥ M(bn−1, bn,
p−qn

q ), n ∈ N.

Using (b) we have that

M(bn, bn+1, p) ≥ M(b1, b0,
p − nqn

qn ), n ∈ N.

Since, lim
n→+∞

M(b1, b0, pq−n − n) = 1 we conclude that

lim
n→+∞

M(bn, bn+1, p) = 1. (2.7)

AIMS Mathematics Volume 8, Issue 1, 2154–2167.
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If we suppose that F is weakly demicompact (condition (i)), using (2.7) and bn+1 ∈ F bn we
conclude that there exists a convergent subsequence (bnk)k∈N of the sequence (bn)n∈N.

It remains to be proved that a sequence (bn)n∈N is convergent if triangular norm T satisfies condition
(ii).

Let ϑ =
q
ς
. As ϑ ∈ (q, 1) follows that

+∞∑
i=1
ϑi is convergent, and there exists m0 ∈ N such that

+∞∑
i=m0

ϑi < 1. So, for all m > m0 and s ∈ N we have

p > p
+∞∑

i=m0

ϑi > p
m+s∑
i=m

ϑi.

Then,

M(bm+s+1, bm, p) ≥ M(bm+s+1, bm, p
m+s∑
i=m

ϑi)

≥ T (T (. . .T︸       ︷︷       ︸
s−times

(M(bm+s+1, bm+s, pϑm+s),

M(bm+s, bm+s−1, pϑm+s−1)), . . . ,M(bm+1, bm, pϑm))

≥ T (T (. . .T︸       ︷︷       ︸
s−times

(M(b1, b0,
pϑm+s − (m + s)qm+s

qm+s ),

M(b1, b0,
pϑm+s−1 − (m + s − 1)qm+s−1

qm+s−1 ),
. . .

M(b1, b0,
pϑm − mqm

qm ))

= T (T (. . .T︸       ︷︷       ︸
s−times

(M(b1, b0,
p

( q
ϑ
)m+s
− (m + s)),

M(b1, b0,
p

( q
ϑ
)m+s−1

− (m + s − 1)),
. . .

M(b1, b0,
p

( q
ϑ
)m
− m))

= T m+s
i=m M(b1, b0,

p
ςi − i).

Since, ς ∈ (q, 1), there exist m1(t) > m0 such that p
ςm −m > p

2ςm , for every m > m1(p). Now, for all s ∈ N
we have

M(bm+s+1, bm, p) ≥ T m+s
i=m M(b1, b0,

p
2ςi )

≥ T +∞
i=mM(b1, b0,

p
2ςi ).

Using assumption that lim
m→+∞

T +∞
i=mM(b1, b0,

1
ςi ) = 1, we conclude that lim

m→+∞
T +∞

i=mM(b1, b0,
p

2ςi ) = 1,
for every p > 0. So, for every p > 0, λ ∈ (0, 1), there exists m2(p, λ) > m1(p) such that
M(bm+s+1, bm, p) > 1 − λ, for all m > m2(p, λ) and every s ∈ N.
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Since, the sequence (bn)n∈N is a Cauchy and the space Θ is F−orbitally complete we have that
lim

n→+∞
bn exists.

So, in both cases (i) and (ii) there exists a subsequence (bnk)k∈N such that

u = lim
k→+∞

bnk ∈ Θ.

The upper semi-continuity of F implies that u ∈ F u. �

Theorem 2.3. Let (Θ,M,T ) be a fuzzy metric such thatM is increasing by t and lim
p→+∞

M(b, y, p) = 1.

Let F : Θ → C(Θ) be orbitally upper-semicontinuous. If Θ is F−orbitally complete and F satisfies
the following:

There exists q ∈ (0, 1) such that for every b, l ∈ Θ, p > 0,

max{H(F b,F l, p),E(F b, b, p),E(F l, l, p)} + (min{1 − E(F b, l, p), 1 − E(b,F l, p)}) ≥ M(b, l,
p
q

).

(2.8)
and if one of the conditions (i) or (ii) from the Theorem 2.2 is satisfied, then there exists b ∈ Θ such
that b ∈ F b.

Proof. Let a > 0 be an arbitrary small real number less then 1 and let t0 > 0 be arbitrary. Since
M(b, l, p) is increasing by p, for every b ∈ Θ there exists l ∈ F b, (l , b, otherwise b is a fixed point)
such that:

M(b, l, p0) ≥ E(b,F b, qa p0). (2.9)

Let κ : Θ→ Θ be a function such that κb = l, b ∈ Θ.

We take arbitrary b ∈ Θ and consider a orbit of κ defined as κbn−1 = bn, n ∈ N where b0 = b. Note
that bn ∈ F bn−1 implies E(bn,F bn, p) ≥ H(F bn−1,F bn, p) and E(bn,F bn−1, p) = 1, p > 0. Now, we
have using (2.8) for b = bn−1 and l = bn, n ∈ N :

max{E(F bn−1, bn−1, p),E(F bn, bn, p)}
= max{H(F bn−1,F bn, p),E(F bn−1, bn−1, p),E(F bn, bn, p)}
− (min{1 − E(F bn−1, bn, p), 1 − E(bn−1,F bn, p)})

≥ M(bn−1, bn,
p
q

), p > 0.

Then, by (2.9), we have

max{M(bn, bn−1, p0),M(bn+1, bn, p0)} ≥ max{E(F bn−1, bn−1, qa p0),E(F bn, bn, qa p0)}

≥ M(bn−1, bn,
p0

q1−a ),

which implies that
M(bn+1, bn, p0) ≥ M(bn−1, bn,

p0

q1−a ), n ∈ N.

Finally, we conclude that

M(bn+1, bn, p) ≥ M(bn−1, bn,
p

q1−a ), n ∈ N, p > 0.
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Let q1 = q1−a. Then q1 ∈ (0, 1) and we can use the same technique as in Theorem 2.1 to conclude
that the sequence {bn} is a Cauchy sequence and by the assumption that he mapping F is orbitally
complete we conclude that there exists b ∈ Θ such that b ∈ F b. �

Let Φ be collection of all continuous mappings ϕ : [0, 1] → [0, 1] such that
ϕ(p) > p, p ∈ (0, 1), ϕ(1) = 1.

Such type of collection Φ is, together with contraction condition proposed by Ćirić in [5], used
in [1] to obtain nonunique fixed point results in b−metric space. In the following theorem collection
Φ within slightly modified contraction condition is observed in fuzzy metric spaces and existence of
unique fixed point is proved. Open question: is it possible to obtain nonunique result with original
Ćirić’s condition, using collection Φ, as it is done in [1].

Theorem 2.4. Let (Θ,M,T ) be κ−orbitally complete fuzzy metric space and κ : Θ→ Θ be an orbitally
continuous mapping on Θ such that lim

p→+∞
M(b, l, p) = 1 and limt→0+M(bn, bn+1, p) > 0, n ∈ N. If κ

satisfies the following condition

M(κb, κl, p) + min{1 −M(κb, b, p), 1 −M(κl, l, p), 1 −M(b, κl, p), 1 −M(κb, l, p)} ≥ ϕ(M(b, l, p)).
(2.10)

ϕ ∈ Φ, b, l ∈ Θ, p > 0, then for each b ∈ Θ the sequence {κnb}+∞n=1 converges to a fixed point of κ.

Proof. Let b0 ∈ Θ is arbitrary. Now, we can construct a sequence {bn}n∈N∪{0} such that bn+1 = bn, for all
n ∈ N∪ {0}. If bn0 = bn0+1, for some n0 ∈ N∪ {0}, then the proof is finished. So, suppose that bn , bn+1,

for all n ∈ N ∪ {0}.
By (2.10), for b = bn−1, l = bn, n ∈ N, we have

M(bn+1, bn, p) ≥ ϕ(M(bn, bn−1, p)) >M(bn, bn−1, p), p > 0,

and conclude that

M(bn+1, bn, p) >M(bn, bn−1, p) > · · · >M(b1, b0, p), n ∈ N, p > 0.

Therefore, since the sequence {M(bn, bn+1, p)}, n ∈ N is monotone increasing we have that there exists
a ≤ 1 such that

lim
n→+∞

M(bn, bn+1, p) = a, p > 0.

Suppose that a < 1, then using (2.10) we have contradiction

a ≥ ϕ(a) > a,

and conclude that a = 1.
Further, we need to prove that {bn} is a Cauchy sequence. Suppose that is not true and by Lemma 1.9,

we have that there exist ε ∈ (0, 1), p0 > 0 and sequences {bmk} and {bnk} such that lim
k→+∞

M(bmk , bnk , p0) =

1 − ε. By (2.10)

M(bmk , bnk , p0) + min{1 −M(bmk−1, bmk , p0), 1 −M(bnk−1, bnk , p0),
1 −M(bmk , bnk−1, p0), 1 −M(bnk , bmk−1, p0)} ≥ ϕ(M(bmk−1, bnk−1, p0)),
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and when k → +∞ we get contradiction

1 − ε ≥ ϕ(1 − ε) > 1 − ε.

So, {bn} is a Cauchy sequence.
Since (Θ,M,T ) is complete there exists u ∈ Θ such that lim

n→+∞
bn = u. By condition (2.10), with

b = u, l = bn, we have

M(κu, bn+1, p) + min{1 −M(u, κu, p), 1 −M(bn, bn+1, p),
1 −M(u, bn+1, p), 1 −M(κu, bn, p)} ≥ ϕ(M(u, bn, p)), n ∈ N, p > 0.

If we take n→ +∞ it follows that u is a fixed point for κ:

M(κu, u, p) ≥ ϕ(M(u, u, p)) = ϕ(1) = 1.

Moreover, u is the unique fixed point for κ. Suppose that different u and v are fixed points and take
(2.10) with b = u, l = v:

M(κu, κv, p) + min{1 −M(u, κu, p), 1 −M(v, κv, p),
1 −M(u, κv, p), 1 −M(κu, v, p)} ≥ ϕ(M(u, v, p)), p > 0.

So, we have contradiction

M(κu, κv, p) ≥ ϕ(M(u, v, p)) >M(u, v, p) =M(κu, κv, p).

�

Example 4. Let Θ = R, κu = u
2 , M(b, l, p) = e−

|b−l|
p and T = TP and ϕ(p) =

√
p. Then all conditions

of Theorem 2.4 are satisfied and 0 is the unique fixed point.

3. Conclusions

Using the countable extension of the triangular norm, we were able to prove theorems about the
fixed point for the single-valued and multi-valued cases within fuzzy metric spaces. The mapping is
not assumed to be continuous, but orbitally continuous. A fixed point is not necessarily unique as
illustrated by an example. Potentially, obtained results could be applied for solving different integral
equations and integral operators as it is done, for example, in [15, 16, 18].
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