Research article

The Meir-Keeler type contractions in extended modular $ b $-metric spaces with an application

  • Received: 13 September 2020 Accepted: 22 November 2020 Published: 30 November 2020
  • MSC : 47H10, 54H25

  • In this paper, we introduce the notion of a modular $ p $-metric space (an extended modular $ b $-metric space) and establish some fixed point results for $ \alpha $-$ \widehat{\nu} $-Meir-Keeler contractions in this new space. Using these results, we deduce some new fixed point theorems in extended modular metric spaces endowed with a graph and in partially ordered extended modular metric spaces. Also, we develop an important relation between fuzzy-Meir-Keeler and extended fuzzy $ p $-metric with modular $ p $-metric and get certain new fixed point results in triangular fuzzy $ p $-metric spaces. We provide an example and an application to support our results which generalize several well known results in the literature.

    Citation: Abdolsattar Gholidahneh, Shaban Sedghi, Ozgur Ege, Zoran D. Mitrovic, Manuel de la Sen. The Meir-Keeler type contractions in extended modular $ b $-metric spaces with an application[J]. AIMS Mathematics, 2021, 6(2): 1781-1799. doi: 10.3934/math.2021107

    Related Papers:

  • In this paper, we introduce the notion of a modular $ p $-metric space (an extended modular $ b $-metric space) and establish some fixed point results for $ \alpha $-$ \widehat{\nu} $-Meir-Keeler contractions in this new space. Using these results, we deduce some new fixed point theorems in extended modular metric spaces endowed with a graph and in partially ordered extended modular metric spaces. Also, we develop an important relation between fuzzy-Meir-Keeler and extended fuzzy $ p $-metric with modular $ p $-metric and get certain new fixed point results in triangular fuzzy $ p $-metric spaces. We provide an example and an application to support our results which generalize several well known results in the literature.


    加载中


    [1] R. P. Agarwal, N. Hussain, M. A. Taoudi, Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations, Abstr. Appl. Anal., 2012 (2012), 1-15.
    [2] R. P. Agarwal, E. Karapinar, D. O'Regan, A. F. Roldan-Lopez-de-Hierro, Fixed point theory in metric type spaces, Switzerland: Springer International Publishing, 2015.
    [3] C. Alaca, M. E. Ege, C. Park, Fixed point results for modular ultrametric spaces, J. Comput. Anal. Appl., 20 (2016), 1259-1267.
    [4] A. H. Ansari, M. Demma, L. Guran, J. R. Lee, C. Park, Fixed point results for C-class functions in modular metric spaces, J. Fixed Point Theory Appl., 20 (2018), 1-19. doi: 10.1007/s11784-018-0489-6
    [5] T. D. Benavides, M. A. Japon, A. S. Hafshejani, Fixed point theorems for asymptotically regular mappings in modular and metric spaces, J. Fixed Point Theory Appl., 22 (2020), 1-19. doi: 10.1007/s11784-019-0746-3
    [6] R. K. Bisht, V. Rakocevic, Generalized Meir-Keeler type contractions and discontinuity at fixed point, Fixed Point Theory, 19 (2018), 57-64. doi: 10.24193/fpt-ro.2018.1.06
    [7] V. V. Chistyakov, Modular metric spaces, I: Basic concepts, Nonlinear Anal., 72 (2010), 1-14. doi: 10.1016/j.na.2009.04.057
    [8] V. V. Chistyakov, Modular metric spaces, Ⅱ: Application to superposition operators, Nonlinear Anal., 72 (2010), 15-30. doi: 10.1016/j.na.2009.04.018
    [9] L. B. Ćirić, Some recent results in metrical fixed point theory, Beograd: University of Belgrade, 2003.
    [10] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5-11.
    [11] T. P. Dence, A brief look into Lambert W function, Applied Math., 4 (2013), 887-892. doi: 10.4236/am.2013.46122
    [12] M. E. Ege, C. Alaca, Fixed point results and an application to homotopy in modular metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 900-908. doi: 10.22436/jnsa.008.06.01
    [13] M. E. Ege, C. Alaca, Some properties of modular S-metric spaces and its fixed point results, J. Comput. Anal. Appl., 20 (2016), 24-33.
    [14] M. E. Ege, C. Alaca, Some results for modular $b$-metric spaces and an application to system of linear equations, Azerb. J. Math., 8 (2018), 3-14.
    [15] A. George, P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets Syst., 64 (1994), 395-399. doi: 10.1016/0165-0114(94)90162-7
    [16] H. Hosseinzadeh, V. Parvaneh, Meir-Keeler type contractive mappings in modular and partial modular metric spaces, Asian-Eur. J. Math., 13 (2020), 1-18.
    [17] N. Hussain, V. Parvaneh, B. Samet, C. Vetro, Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl., 1 (2015), 1-17.
    [18] N. Hussain, P. Salimi, V. Parvaneh, Fixed point results for various contractions in parametric and fuzzy $b$-metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 719-739. doi: 10.22436/jnsa.008.05.24
    [19] N. Hussain, P. Salimi, Implicit contractive mappings in modular metric and fuzzy metric spaces, Sci. World J., 2014 (2014), 1-12.
    [20] J. Jachymski, Equivalent condition and the Meir-Keeler type theorems, J. Math. Anal. Appl., 194 (1995), 293-303. doi: 10.1006/jmaa.1995.1299
    [21] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359-1373.
    [22] Z. Kadelburg, S. Radenović, S. Shukla, Boyd-Wong and Meir-Keeler type theorems in generalized metric spaces, J. Adv. Math. Stud., 9 (2016), 83-93.
    [23] E. Karapinar, P. Kumam, P. Salimi, On $\alpha$-$\psi$-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013 (2013), 1-12. doi: 10.1186/1687-1812-2013-1
    [24] I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 326-334.
    [25] A. Meir, E. Keeler, A theorem on contraction mapping, J. Math. Anal. Appl., 28 (1969), 326-329. doi: 10.1016/0022-247X(69)90031-6
    [26] Z. D. Mitrovic, S. Radenovic, On Meir-Keeler contraction in Branciari $b$-metric spaces, Trans. A. Razmadze Math. Inst., 173 (2019), 83-90.
    [27] Z. D. Mitrovic, S. Radenović, H. Aydi, A. A. Altasan, C. Ozel, On a two new approach in modular spaces, Italian J. Pure Appl. Math., 41 (2019), 679-690.
    [28] B. Moeini, A. H. Ansari, C. Park, $\mathcal{JHR}$-operator pairs in $C^*$-algebra-valued modular metric spaces and related fixed point results via $C_*$-class functions, J. Fixed Point Theory Appl., 20 (2018), 1-17. doi: 10.1007/s11784-018-0489-6
    [29] J. Musielak, Orlicz spaces and modular spaces, Lect. Note Math., 1034 (1983), 1-216. doi: 10.1007/BFb0072211
    [30] H. Nakano, Modulared semi-ordered linear spaces, Tokyo: Maruzen, 1950.
    [31] W. Orlicz, Collected papers, part I, Ⅱ, Warsaw: PWN Polish Scientific Publishers, 1988.
    [32] A. Pant, R. P. Pant, M. C. Joshi, Caristi type and Meir-Keeler type fixed point theorems, Filomat, 33 (2019), 3711-3721. doi: 10.2298/FIL1912711P
    [33] R. P. Pant, N. Özgür, N. Taş, A. Pant, M. C. Joshi, New results on discontinuity at fixed point, J. Fixed Point Theory Appl., 22 (2020), 1-14. doi: 10.1007/s11784-019-0746-3
    [34] S. Park, B. E. Rhoades, Meir-Keeler type contractive condition, Math. Japon., 26 (1981), 13-20.
    [35] V. Parvaneh, S. J. H. Ghoncheh, Fixed points of $(\psi, \varphi)_{\Omega}$-contractive mappings in ordered p-metric spaces, Global Anal. Discrete Math., 4 (2020), 15-29.
    [36] V. Parvaneh, N. Hussain, M. Khorshidi, N. Mlaiki, H. Aydi, Fixed point results for generalized $F$-contractions in modular $b$-metric spaces with applications, Mathematics, 7 (2019), 1-16.
    [37] M. Pavlović, S. Radenović, A note on Meir-Keeler theorem in the context of $b$-metric spaces, Mil. Tech. Cour., 67 (2019), 1-12.
    [38] S. Saeidi, F. Golkar, Generalized asymptotic contractions, J. Fixed Point Theory Appl., 19 (2017), 3163-3176. doi: 10.1007/s11784-017-0478-1
    [39] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mapping, Nonlinear Anal., 75 (2012), 2154-2165. doi: 10.1016/j.na.2011.10.014
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3307) PDF downloads(411) Cited by(19)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog