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1. Introduction and preliminaries

In order to generalize the celebrated Banach contraction principle, many authors obtained various
types of contraction inequalities. Fixed point results in such spaces have been established in a large
number of works. Some of these works are noted in [2, 9, 22, 23, 26, 27, 37].

In 1969, Meir and Keeler [25] obtained the following interesting fixed point theorem.
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Theorem 1.1. Let (X, d) be a complete metric space and T : X → X a mapping such that for each
ε > 0 there exists δ(ε) > 0 such that

ε ≤ d(x, y) < ε + δ(ε) implies d(T x,Ty) < ε,

for all x, y ∈ X. Then T has a unique fixed point.

Meir-Keeler’s fixed point theorem has been extended in many directions [6, 20, 23, 32–34].
On the other hand, the concept of modular metric spaces were introduced in [7,8]. Here, we look at

modular metric space as the nonlinear version of the classical one introduced by Nakano [30] on vector
space and modular function space introduced by Musielak [29] and Orlicz [31]. For more details on
modular metric spaces, we recommend [3–5, 12, 13, 28, 38].

Let X be a nonempty set and ω : (0,+∞) × X × X → [0,+∞] be a function, for simplicity, we will
write

ωλ(x, y) = ω(λ, x, y),

for all λ > 0 and x, y ∈ X.

Definition 1.2. [7, 8] A function ω : (0,+∞) × X × X → [0,+∞] is called a modular metric on X if
the following axioms hold:

(i) x = y if and only if ωλ(x, y) = 0 for all λ > 0,
(ii) ωλ(x, y) = ωλ(y, x) for all λ > 0 and x, y ∈ X,

(iii) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y) for all λ, µ > 0 and x, y, z ∈ X.

A modular metric ω on X is called regular if the following weaker version of (i) is satisfied

x = y if and only if ωλ(x, y) = 0 for some λ > 0.

Samet et al. [39] defined the notion of α-admissible mappings as follows:

Definition 1.3. [39] Let T be a self-mapping on X and α : X × X → [0,+∞) a function. We say that
T is an α-admissible mapping if

x, y ∈ X, α(x, y) ≥ 1 ⇒ α(T x,Ty) ≥ 1.

Finally, we recall that Karapınar et al. [23] introduced the notion of triangular α-admissible mapping
as follows.

Definition 1.4. [23] Let α : X × X → [0,+∞) be a function. We say that a self-mapping T : X → X
is triangular α-admissible if

(i) x, y ∈ X, α(x, y) ≥ 1 ⇒ α(T x,Ty) ≥ 1,

(ii) x, y, z ∈ X,
{
α(x, z) ≥ 1
α(z, y) ≥ 1

⇒ α(x, y) ≥ 1.

Lemma 1.5. [23] Let f be a triangular α-admissible mapping. Assume that there exists x0 ∈ X such
that α(x0, f x0) ≥ 1. Define a sequence {xn} by xn = f nx0. Then

α(xm, xn) ≥ 1 for all m, n ∈ N with m < n.
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Now we deal with some notions required in b-metric, extended b-metric, modular b-metric and
extended modular b-metric spaces.

Recall that a b-metric d on a set X is a generalization of standard metric [10], where the triangular
inequality is replaced by

d(x, z) ≤ s(d(x, y) + d(y, z)),

for all x, y, z ∈ X and for some fixed s ≥ 1. Parvaneh and Ghoncheh [35] introduced the following
further generalization.

Definition 1.6. Let X be a nonempty set. A function d : X × X → R+ is a p-metric if there exists a
strictly increasing continuous function Ω : [0,∞)→ [0,∞) with t ≤ Ω(t) for t ∈ [0,+∞), such that for
all x, y, z ∈ X, the following conditions hold:

(1) d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x),
(3) d(x, z) ≤ Ω(d(x, y) + d(y, z)).

In this case, the pair (X, d) is called a p-metric space or an extended b-metric space.

It should be noted that the class of p-metric spaces is considerably larger than the class of b-metric
spaces since a b-metric is a p-metric with Ω(t) = st, while a metric is a p-metric with Ω(t) = t.

Definition 1.7. [7, 8] A function ω : (0,+∞) × X × X → [0,+∞] is called a modular metric on X if
the following axioms hold:

(i) x = y if and only if ωλ(x, y) = 0 for all λ > 0,
(ii) ωλ(x, y) = ωλ(y, x) for all λ > 0 and x, y ∈ X,

(iii) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y) for all λ, µ > 0 and x, y, z ∈ X.

Ege and Alaca [14] introduced the notion of modular b-metric space.

Definition 1.8. [14] Let X be a non-empty set and s ≥ 1 a real number. A map ν : (0,∞) × X × X →
[0,∞] is called a modular b-metric, if the following statements hold for all x, y, z ∈ X,

(i) νλ(x, y) = 0 for all λ > 0 if and only if x = y,
(ii) νλ(x, y) = νλ(y, x) for all λ > 0,

(iii) νλ+µ(x, y) ≤ s[νλ(x, z) + νµ(z, y)] for all λ, µ > 0.

Then (X, ν) is called a modular b-metric space.

The modular b-metric space could be seen as a generalization of the modular metric space.

Example 1.9. [14] Consider the space lp = {(xn) ⊂ R :
∑∞

n=1 |xn|
p < ∞}, 0 < p < 1, λ ∈ (0,∞) and

νλ(x, y) =
d(x,y)

2 such that

d(x, y) =
( ∞∑

n=1

|xn − yn|
p) 1

p , where x = (xn), y = (yn) ∈ lp.

It could be easily seen that (X, ν) is a modular b-metric space.
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Our aim in this study is to define a modular p-metric space. In the next section, we prove some fixed
point theorems on α-̂ν-Meir-Keeler contractions in the new space. In Sections 3 and 4, new fixed point
results are obtained in extended modular metric spaces endowed with a graph and in partially ordered
extended modular metric spaces. The Section 5 includes a relation between fuzzy-Meir-Keeler and
extended fuzzy p-metric with modular p-metric and some fixed point theorems in triangular fuzzy p-
metric spaces. The paper ends with an application on the solution of Volterra-type integral equations.

2. Main results

In this section, we define the concept of a modular p-metric space (an extended modular b-metric
spaces shortly denoted by EMbM spaces) and present some fixed point results. Our results generalize
the results in [16] if we take Ω(t) = t.

Definition 2.1. Let X be a nonempty set. A function ν̂λ : (0,∞)×X×X → [0,∞] is a modular p-metric
(an extended modular b-metric) if there exists a strictly increasing continuous function Ω : [0,∞) →
[0,∞) with Ω−1(t) ≤ t ≤ Ω(t) for t ∈ [0,+∞), such that for all x, y, z ∈ X, the following conditions
hold:

(i) ν̂λ(x, y) = 0 if and only if x = y for all λ > 0,
(ii) ν̂λ(x, y) = ν̂λ(y, x) for all λ > 0,

(iii) ν̂λ+µ(x, y) ≤ Ω[̂νλ(x, z) + ν̂µ(z, y)] for all λ, µ > 0.

Then we say that (X, ν̂) is a modular p-metric space.

It should be noted that the class of modular p-metric spaces is considerably larger than the class
of modular b-metric spaces, since a modular b-metric is a modular p-metric with Ω(t) = st, while a
modular metric is a modular p-metric with Ω(t) = t.

Example 2.2. Let (X, νλ) be a modular b-metric space with coefficient s ≥ 1 and

ν̂λ(x, y) = sinh(νλ(x, y)).

We show that ν̂λ is a modular p-metric with Ω(t) = sinh(st) for all t ≥ 0 (and Ω−1(u) = 1
s sinh−1 u for

u ≥ 0).
Obviously, the conditions (i) and (ii) of Definition 2.1 are satisfied. For each x, y, z ∈ X and λ, µ ≥ 0,

we have

ν̂λ+µ(x, y) = sinh(νλ+µ(x, y))
≤ sinh(sνλ(x, z) + sνµ(z, y))
≤ sinh(s sinh(νλ(x, z)) + s sinh(νµ(z, y)))
= Ω(̂νλ(x, z) + ν̂µ(z, y)).

So, the condition (iii) of Definition 2.1 is also satisfied and ν̂ is a modular p-metric.

Proposition 2.3. Let (X, νλ) be a modular b-metric space with coefficient s ≥ 1 and

ν̂λ(x, y) = ξ (νλ(x, y))

where ξ : [0,∞) → [0,∞) is a strictly increasing continuous function with t ≤ ξ(t) for all t ≥ 0 and
ξ(0) = 0. Then ν̂λ is a modular p-metric with Ω(t) = ξ(st).
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Proof. For each x, y, z ∈ X and λ, µ ≥ 0, we have

ν̂λ+µ(x, y) = ξ(νλ+µ(x, y))
≤ ξ(sνλ(x, z) + sνµ(z, y))
≤ ξ(sξ(νλ(x, z)) + sξ(νµ(z, y)))
= Ω(̂νλ(x, z) + ν̂µ(z, y)).

�

Example 2.4. If ξ(t) = et − 1, we get ν̂λ(x, y) = eνλ(x,y) − 1 and Ω(t) = est − 1. Note that

Ω−1(u) =
1
s

ln(1 + u).

Now, we present the definition of ν̂-Cauchy and ν̂-convergent sequences and ν̂-complete spaces.

Definition 2.5. Let (X, ν̂λ) be a modular p-metric space. Then a sequence {xn} in X is called:
(a) ν̂-Cauchy if and only if for all ε > 0 there exists n(ε) ∈ N such that for each n,m ≥ n(ε) and

λ > 0 we have ν̂λ(xn, xm) < ε.
(b) ν̂-convergent to x ∈ X if ν̂λ(xn, x)→ 0, as n→ ∞ for all λ > 0.
(c) ν̂-complete if each ν̂-Cauchy sequence in X is ν̂-convergent and its limit is in X.

Now, we define the notion of α-̂ν-Meir-Keeler contractive mapping as follows:

Definition 2.6. Let Xν̂ be a modular p-metric space and T a self-mapping on Xν̂. Also suppose that
α : Xν̂ × Xν̂ → [0,+∞). We say that T is α-̂ν-Meir-Keeler contractive if for each ε > 0 there exists
δ(ε) > 0 such that

ε ≤ Ω−1(̂νλ(x, y)) < Ω(ε) + Ω(δ(ε)) implies α(x, y)̂νλ(T x,Ty) < Ω(ε), (2.1)

for any x, y ∈ Xν̂ and all λ > 0.

Remark 2.7. Let Xν̂ be a ν̂-regular modular p-metric space and T an α-̂ν-Meir-Keeler contractive
mapping. Then

ν̂λ(T x,Ty) < ν̂λ(x, y),

for all x, y ∈ X and λ > 0 with x , y, α(x, y) ≥ 1 and Ω−1(̂νλ(x, y)) < ∞. Also, if x = y, then
Ω−1(̂νλ(T x,Ty)) = 0. That is

ν̂λ(T x,Ty) ≤ ν̂λ(x, y),

for all x, y ∈ X and λ > 0 with α(x, y) ≥ 1.
Since x , y by ν̂-regularity we have, ν̂λ(x, y) > 0 for all λ > 0. Assume, δ > 0 and

Ω(ε) = ν̂λ(x, y).

Then
Ω−1(̂νλ(x, y)) < Ω−1(̂νλ(x, y)) + δ ≤ Ω(ε) + Ω(δ)

and so from (1) we have,

ν̂λ(T x,Ty) ≤ α(x, y)[̂νλ(T x,Ty) < Ω(ε) = ν̂λ(x, y).

Now we are ready to prove our first theorem.
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Theorem 2.8. Let Xν̂ be a ν̂ regular ν̂-complete modular p-metric space and T : Xν̂ → Xν̂ be a self-
mapping. Assume that there exists a function α : Xν̂ × Xν̂ → [0,+∞) such that the following assertions
hold:

(i) T is a triangular α-admissible mapping,
(ii) T is α-̂ν-Meir-Keeler mapping,

(iii) there exists x0 ∈ Xν̂ such that α(x0,T x0) ≥ 1,
(iv) T is ν̂-continuous mapping.

Then T has a fixed point z ∈ X. Further, if α(x, y) ≥ 1 for all x, y ∈ Fix(T ), then T has a unique fixed
point.

Proof. Let x0 ∈ Xν̂ be such that α(x0,T x0) ≥ 1. Let {xn} be a Picard sequence starting at x0, that is,
xn = T nx0 = T xn−1 for all n ∈ N. Since T is a triangular α-admissible mapping, applying Lemma 1.5,

α(xm, xn) ≥ 1 for all m, n ∈ N with m < n.

If xn0 = xn0+1 for some n0 ∈ N ∪ {0}, then evidently T has a fixed point. Hence, we suppose that
xn , xn+1, for all n ∈ N ∪ {0}. So, by ν̂−regularity we have,

ν̂λ(xn, xn+1) > 0, for all n ∈ N ∪ {0}.

Therefore, using Remark 2.7 and the condition (iii), we have

ν̂λ(xn, xn+1) < ν̂λ(xn−1, xn) < . . . < ν̂λ(x0, x1) < ∞.

This implies that the sequence {cn := ν̂λ(xn, xn+1)} is non-increasing and cn < ∞ for all n ∈ N ∪ {0}. So
the sequence {cn} is convergent to some c ∈ R+. We will show that c = 0. Suppose, to the contrary,
implies that c > 0. Hence, we have

0 < c < ν̂λ(xn, xn+1), for all n ∈ N ∪ {0}. (2.2)

Let ε = Ω−1(c) > 0. Then by hypothesis, there exists a δ(ε) > 0 such that (1) holds. On the other hand,
by the definition of ε, there exists n0 ∈ N such that

ε = Ω−1(c) < Ω−1(cn0) < cn0 = ν̂λ(xn0 , xn0+1) < Ω(ε) + Ω−1(δ) < Ω(ε) + δ.

Now by (1), we have
cn0+1 = ν̂λ(xn0+1, xn0+2)

≤ α(xn0 , xn0+1)[̂νλ(xn0+1, xn0+2)]
= α(xn0 , xn0+1)[̂νλ(T xn0 ,T xn0+1)]
< Ω(ε).

That is,
cn0+1 < Ω(ε) = c,

which is a contradiction. Hence, c = 0. That is,

lim
n→∞

ν̂λ(xn, xn+1) = 0.
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For given ε > 0, by the hypothesis, there exists δ = δ(ε) > 0 such that (1) holds. Without loss of
generality, we assume δ < ε. Since c = 0 then there exists N0 ∈ N such that

cn = ν̂λ(xn, xn+1) < Ω(δ), for all n ≥ N0. (2.3)

We will prove that for any fixed k ≥ N0,

Ω−1(̂νλ(xk, xk+l)) ≤ ε, for all l ∈ N, (2.4)

holds. Note that by (2.3), (2.4) holds for l = 1. Suppose the condition (2.4) is satisfied for some m ∈ N.
That is,

Ω−1(̂νλ(xk, xk+m)) < ε, for some m ∈ N. (2.5)

For l = m + 1, by (2.3) and (2.5), we get

Ω−1(̂νλ(xk−1, xk+m)
≤ (̂ν λ

2
(xk−1, xk) + ν̂ λ

2
(xk, xk+m))

≤ (Ω(ε) + Ω(δ)).
(2.6)

Now, if
Ω−1(̂νλ(xk−1, xk+m)) ≥ ε,

then by (1) and (2.6), we get

ν̂λ(xk, xk+m+1)
≤ α(xk−1, xk+m)̂νλ(xk, xk+m+1)
= α(xk−1, xk+m)̂νλ(T xk−1,T xk+m)
< Ω(ε),

and hence (2.4) holds.
If Ω−1(̂νλ(xk−1, xk+m)) < ε, then applying Remark 2.7, we have

ν̂λ(xk, xk+m+1) = ν̂λ(T xk−1,T xk+m) ≤ ν̂λ(xk−1, xk+m) < Ω(ε).

Consequently (2.4) holds for l = m + 1. Hence

ν̂λ(xk, xk+l) < Ω(ε), for all l ∈ N.

Thus we have proved that {xn} is a ν̂-Cauchy sequence. The hypothesis of ν̂-completeness of Xν̂ ensures
that there exists x∗ ∈ Xν̂ such that ν̂1(xn, x∗)→ 0 as n→ +∞. Now, since T is a ν̂-continuous mapping,
ν̂1(xn+1,T x∗) = ν̂1(T xn,T x∗)→ 0 as n→ +∞. From

ν̂2(x∗,T x∗) ≤ Ω(̂ν1(x∗, xn+1) + ν̂1(xn+1,T x∗)),

taking limit as n → +∞, we get ν̂2(x∗,T x∗) = 0 and hence x∗ = T x∗, because ν̂ is regular. Thus T has
a fixed point.

Let α(x, y) ≥ 1 for x, y ∈ Fix(T ). Now if x , y, then from Remark 2.7, we have

ν̂λ(x, y) = ν̂λ(T x,Ty) < ν̂λ(x, y)

which is a contradiction. So x = y. That is, T has a unique fixed point when α(x, y) ≥ 1 for all
x, y ∈ Fix(T ). �
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The notion of α-νs-Meir-Keeler contractive is defined as follows:

Definition 2.9. Let Xνs be a modular b-metric space and T a self-mapping on Xνs . Also, suppose that
α : Xνs × Xνs → [0,+∞). We say that T is α-νs-Meir-Keeler contractive if for each ε > 0 there exists
δ(ε) > 0 such that

ε ≤
(νs

λ(x, y))
s

< sε + sδ(ε) implies α(x, y)νs
λ(T x,Ty) < sε, (2.7)

for any x, y ∈ Xν̂ and all λ > 0.

Using the above definition, we state new fixed point theorems as follows:

Theorem 2.10. Let Xνs be a νs regular νs-complete modular b-metric space and T : Xνs → Xνs a
self-mapping. Assume that there exists a function α : Xνs × Xνs → [0,+∞) such that the following
assertions hold:

(i) T is a triangular α-admissible mapping,
(ii) T is α-νs-Meir-Keeler mapping,

(iii) there exists x0 ∈ Xνs such that α(x0,T x0) ≥ 1,
(iv) T is νs-continuous mapping.

Then T has a fixed point z ∈ X. Further, if α(x, y) ≥ 1 for all x, y ∈ Fix(T ), T has a unique fixed point.

Proof. It is sufficient to take Ω(t) = st where s ≥ 1 is a real number and t ≥ 0. �

For a self-mapping which is not ν̂-continuous, we have the following result.

Theorem 2.11. Let Xν̂ be a ν̂ regular ν̂-complete modular p-metric space and T : Xν̂ → Xν̂ a self-
mapping. Assume that there exists a function α : Xν̂ × Xν̂ → [0,+∞) such that the following assertions
hold:

(i) T is a triangular α-admissible mapping,
(ii) T is α-̂ν-Meir-Keeler contractive,

(iii) there exists x0 ∈ Xν̂ such that α(x0,T x0) ≥ 1,
(iv) if {xn} be a sequence in Xν̂ such that α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0} with xn → x as n → +∞,

then α(xn, x) ≥ 1.

Then T has a fixed point z ∈ X.

Proof. As in the proof of Theorem 2.10, we deduce that there exists a Picard sequence {xn} starting at
x0 which is ν̂−Cauchy and so ν̂−converges to a point x∗ ∈ Xν̂.

By Remark 2.7, we have

ν̂λ(xn+1,T x∗) = ν̂λ(T xn,T x∗) ≤ ν̂λ(xn, x∗),

for all n ≥ 0. Then limn→+∞[̂νλ(xn+1,T x∗)] = 0, for all λ > 0, and hence

ν̂2(x∗,T x∗) ≤ lim
n→+∞

Ω[̂ν1(x∗, xn+1) + ν̂1(xn+1,T x∗)] = 0.

Thus, we get x∗ = T x∗, since ν̂ is regular. �
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We now give an example to support Theorem 2.11.

Example 2.12. Let X = R be endowed with the modular p-metric

ν̂λ(x, y) =


sinh( |x|+|y|

λ
), if x , y,

0, if x = y.

for all x, y ∈ X. Define T : X → X and α : X × X → [0,+∞) by

T x =



2x2 + 1, if x ∈ (−∞, 0)

1
16 x2, if x ∈ [0, 1]

3x − 1, if x ∈ (1, 2)

6x10 if x ∈ [2,+∞),

α(x, y) =


1, if x, y ∈ [0, 1]

0, otherwise.

We know that Ω(t) = sinh(t). It is obvious that T is a triangular α-admissible mapping. If {xn} is a
sequence in Xν̂ such that α(xn, xn+1) ≥ 1 with xn → x as n → +∞, then xn ∈ [0, 1] for all n ∈ N and so
x ∈ [0, 1]. This ensures that α(xn, x) ≥ 1 for all n ∈ N. Clearly, α(0,T0) ≥ 1.

Let α(x, y) ≥ 1, ε ≤ Ω−1(̂νλ(x, y)) < Ω(ε) + Ω(δ) where ε > 0 is arbitrary and

δ < sinh−1(16ε − sinh(ε)).

Then x, y ∈ [0, 1]. Now let |x|+|y|
λ

< Ω(ε) + Ω(δ). Hence we have

ν̂λ(T x,Ty) = sinh(
|T x| + |Ty|

λ
)

= sinh(
1
λ

(|T x| + |Ty|))

= sinh(
1

16λ
(|x|2 + |y|2))

≤ sinh(
1

16λ
(|x| + |y|))

≤ sinh(
1

16
(Ω(ε) + Ω(δ))) < sinh(ε).

Otherwise, α(x, y) = 0 and evidently

α(x, y)̂νλ(T x,Ty) < Ω(ε).

That is, T is an α-̂ν-Meir-Keeler contractive mapping. Thus all the conditions of Theorem 2.11 hold
and T has a fixed point.
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If we take α(x, y) = 1 for all x, y ∈ X in Theorem 2.11, then we have the following result.

Corollary 2.13. Let Xν̂ be a ν̂-complete modular p-metric space which is ν̂ regular and T : Xν̂ → Xν̂

a self-mapping. Assume that for each ε > 0 there exists δ(ε) > 0 such that

ε ≤ Ω−1(̂νλ(x, y)) < Ω(ε) + Ω(δ(ε)) implies ν̂λ(T x,Ty) < Ω(ε),

for any x, y ∈ Xν̂ and all λ > 0. Then T has a unique fixed point z ∈ X.

According to Theorem 2.11, we have the following corollary.

Corollary 2.14. Let Xν̃ be a ν̃-complete modular p-metric space which is ν̃ regular where

ν̃λ(x, y) = νλ(x, y)eνλ(x,y)

and T : Xν̃ → Xν̃ a self-mapping. Assume that for each ε > 0, there exists δ(ε) > 0 such that

ε ≤ Ω−1(̃νλ(x, y)) < εeε + δ(ε)eδ(ε) implies ν̃λ(T x,Ty) < εeε ,

for any x, y ∈ Xν̃ and all λ > 0. Then T has a unique fixed point z ∈ X.

Note that in Corollary 2.14, Ω is the Lambert W-function [11].

3. Some Meir-Keeler type fixed point results in EMbM spaces endowed with a graph

As in [21], let (Xν̂, ν̂) be a modular metric space and ∆ denotes the diagonal of the Cartesian product
of X × X. Consider a directed graph G such that the set V(G) of its vertices coincides with X, and the
set E(G) of its edges contains all loops, that is, E(G) ⊇ ∆. We assume that G has no parallel edges, so
we can identify G with the pair (V(G), E(G)).

Definition 3.1. [21] Let (Xν̂, ν̂) be a metric space endowed with a graph G. We say that a self-mapping
T : X → X is a Banach G-contraction or simply a G-contraction if T preserves the edges of G, that is,

for all x, y ∈ X, (x, y) ∈ E(G) implies (T x,Ty) ∈ E(G)

and T decreases the weights of the edges of G in the following way:
There exists α ∈ (0, 1) such that

for all x, y ∈ X, (x, y) ∈ E(G) implies d(T x,Ty) ≤ αd(x, y).

Definition 3.2. [21] A mapping T : X → X is called G-continuous if given x ∈ X and sequence {xn}

xn → x as n→ ∞ and (xn, xn+1) ∈ E(G) for all n ∈ N imply T xn → T x.

In this section, we will show that many Meir-Keeler type fixed point results in modular metric
spaces endowed with a graph G can be deduced easily from our presented theorems.

Definition 3.3. Let Xν̂ be a modular p-metric space endowed with a graph G and T a self-mapping on
Xν̂. We say that T is an G-̂ν-Meir-Keeler contractive if for each ε > 0 there exists δ(ε) > 0 such that

Ω−1(ε) ≤ ν̂λ(x, y) < Ω−1(ε) + Ω−1(δ(ε)) and (x, y) ∈ E(G)

imply ν̂λ(T (x),T (y)) < Ω−1(ε) for any x, y ∈ Xw and all λ > 0.
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Theorem 3.4. Let Xν̂ be a ν̂-complete modular p-metric space endowed with a graph G with ν̂ regular
and T : Xν̂ → Xν̂ a self-mapping. Assume that the following assertions hold:

(i) there exists x0 ∈ Xν̂ such that, (x0,T x0) ∈ E(G),
(ii) T is G-continuous,

(iii) for all x, y ∈ Xν̂[(x, y) ∈ E(G)⇒ (T (x),T (y)) ∈ E(G)],
(iv) for all x, y, z ∈ Xν̂[(x, y) ∈ E(G) and (y, z) ∈ E(G)⇒ (x, z) ∈ E(G)],
(v) T is G-̂ν-Meir-Keeler contractive.

Then T has a fixed point z ∈ X such that λ(z) = 0. Further, if (x, y) ∈ E(G) for all x, y ∈ Fix(T ), then T
has a unique fixed point.

Proof. Let

α(x, y) =

1, (x, y) ∈ E(G),
0, otherwise.

If we apply Theorem 2.8, then we have the required result. �

Theorem 3.5. Let Xν̂ be a ν̂-complete modular p-metric space endowed with a graph G with ν̂ regular
and T : Xν̂ → Xν̂ a self-mapping. Assume that the following assertions hold:

(i) there exists x0 ∈ Xν̂ such that (x0,T x0) ∈ E(G),
(ii) for all x, y ∈ Xν̂[(x, y) ∈ E(G)⇒ (T (x),T (y)) ∈ E(G)],

(iii) for all x, y, z ∈ Xν̂[(x, y) ∈ E(G) and (y, z) ∈ E(G)⇒ (x, z) ∈ E(G)],
(iv) T is G-̂ν-Meir-Keeler contractive mapping,
(v) if {xn} is a sequence in Xν̂ such that, (xn, xn+1) ∈ E(G) for all n ∈ N ∪ {0} and xn → x as n → ∞,

then we have (xn, x) ∈ E(G) for all n ∈ N ∪ {0}.

Then T has a fixed point z ∈ X. Further, if (x, y) ∈ E(G) for all x, y ∈ Fix(T ), then T has a unique fixed
point.

Proof. Consider the following:

α(x, y) =

1, (x, y) ∈ E(G),
0, otherwise.

If we apply Theorem 2.11, the proof is completed. �

4. Some Meir-Keeler type fixed point results in EMbM spaces endowed with a partial order

The existence of fixed points in partially ordered sets has been considered in [1]. Let Xν̂ be a
nonempty set. If Xν̂ be a modular p-metric space and (Xν̂,�) be a partially ordered set, then Xν̂ be
called a partially ordered modular p-metric space. Two elements x, y ∈ Xν̂ are called comparable if
x � y or y � x holds. A mapping T : Xν̂ → Xν̂ is said to be non-decreasing if x � y implies T x � Ty
for all x, y ∈ Xν̂.

In this section, we will show that many Meir-Keeler type fixed point results in modular metric
spaces endowed with a partial order � can be deduced easily from our presented theorems.
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Definition 4.1. Let (Xν̂,�) be a partially ordered modular p-metric space and T a self-mapping on Xν̂.
We say that T is a ν̂-Meir-Keeler contraction if for each ε > 0 there exists δ(ε) > 0 such that

Ω−1(ε) ≤ ν̂λ(x, y) < Ω−1(ε) + Ω−1(δ(ε)) and x � y

imply ν̂λ(T (x),T (y)) < Ω−1(ε) for any x, y ∈ Xν̂ and all λ > 0. Then by Remark 2.7, if partially ordered
modular p-metric space is ν̂-regular, we have ν̂λ(Fx, Fy) ≤ ν̂λ(x, y).

Theorem 4.2. Let (Xν̂,�) be a ν̂-complete partially ordered modular p-metric space which is ν̂-regular
and T : Xν̂ → Xν̂ a self-mapping. Assume that the following assertions hold:

(i) there exists x0 ∈ Xω such that x0 � T x0,
(ii) T is ν̂-continuous,

(iii) T is an increasing mapping,
(iv) T is a partially ν̂-Meir-Keeler contractive mapping.

Then T has a fixed point z ∈ X. Moreover, if x � y for all x, y ∈ Fix(T ), then T has a unique fixed point.

Proof. Let

α(x, y) =

1, x � y,

0, otherwise,

and apply Theorem 2.8. �

Theorem 4.3. Let (Xν̂,�) be a ν̂-complete partially ordered modular p-metric space which is ν̂-regular
and T : Xν̂ → Xν̂ a self-mapping. Assume that the following assertions hold:

(i) there exists x0 ∈ Xν̂ such that x0 � T x0,
(ii) T is ν̂-continuous,

(iii) T is an increasing mapping,
(iv) T is a partially ν̂-Meir-Keeler contractive mapping.
(v) if {xn} be an increasing sequence in Xν̂ with xn → x as n → ∞, then we have xn � x for all

n ∈ N ∪ {0}.

Then T has a fixed point z ∈ X. Also, if x � y for all x, y ∈ Fix(T ), then T has a unique fixed point.

Proof. If we consider

α(x, y) =

1, x � y,

0, otherwise,

then the proof is completed by Theorem 2.11. �

5. Relation between extended modular b-metric spaces and extended fuzzy b-metric spaces

Fuzzy metric space was introduced by Kramosil and Michalek [24]. Subsequently, George and
Veeramani gave a modified definition of fuzzy metric spaces [15].
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Definition 5.1. [15] A binary operation ∗ : [0, 1] × [0, 1]→ [0, 1] is a continuous t-norm if it satisfies
the following conditions:

(1) ∗ is associative and commutative,
(2) ∗ is continuous,
(3) a ∗ 1 = a for all a ∈ [0, 1],
(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of continuous t-norm are a ∗ b = ab and a ∗ b = min(a, b).

Definition 5.2. [15] A 3-tuple (X,M, ∗) is called a fuzzy metric space (in the sense of George and
Veeramani) if X is an arbitrary (non-empty) set, ∗ is a continuous t-norm, and M is a fuzzy set on
X × X × (0,∞), satisfying the following conditions for each x, y, z ∈ X and t, s > 0:

(1) M(x, y, t) > 0,
(2) M(x, y, t) = 1 if and only if x = y,
(3) M(x, y, t) = M(y, x, t),
(4) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s),
(5) M(x, y, ·) : (0,∞)→ [0, 1] is continuous.

In [19], Hussain and Salimi presented the relationship between modular metrics and fuzzy metrics
and deduced certain fixed point results in triangular partially ordered fuzzy metric spaces.

Definition 5.3. [18] A fuzzy b-metric space is an ordered triple
(
X, B, ?

)
such that X is a nonempty

set, ? is a continuous t-norm and B is a fuzzy set on X ×X ×
(
0,∞

)
satisfying the following conditions,

for all x, y, z ∈ X and for all t, s > 0:(
F1

)
B
(
x, y, t

)
> 0,(

F2
)

B
(
x, y, t

)
= 1 if and only if x = y,(

F3
)

B
(
x, y, t

)
= B

(
y, x, t

)
,(

F4
)

B
(
x, y, t

)
? B

(
y, z, s

)
≤ B

(
x, z, b

(
t + s

))
where b ≥ 1,(

F5
)

B
(
x, y, ·

)
:
(
0,∞

)
→

(
0, 1

]
is left-continuous.

Definition 5.4. [19] An extended fuzzy b-metric space is an ordered quadruple
(
X, B, ?,Ω

)
such that

X is a nonempty set, ? is a continuous t-norm and B is a fuzzy set on X × X ×
(
0,+∞

)
satisfying the

following conditions, for all x, y, z ∈ X and for all t, s > 0:(
F1

)
B
(
x, y, t

)
> 0,(

F2
)

B
(
x, y, t

)
= 1 if and only if x = y,(

F3
)

B
(
x, y, t

)
= B

(
y, x, t

)
,(

F4
)

B
(
x, y, t

)
? B

(
y, z, s

)
≤ B

(
x, z,Ω

(
t + s

))
,(

F5
)

B
(
x, y, ·

)
:
(
0,+∞

)
→

(
0, 1

]
is left continuous.

Definition 5.5. [19] The extended fuzzy b-metric space
(
X, B, ∗,Ω

)
is called triangular whenever

1
B
(
x, y, t

) − 1 ≤ Ω
[ 1
B
(
x, z, t

) − 1 +
1

B
(
z, y, t

) − 1
]

for all x, y, z ∈ X and for all t > 0.
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Definition 5.6. [36] Let X be a nonempty set and b ≥ 1. A mapping υ : (0,∞) × X × X → [0,∞) is
called a modular b-metric, if for all x, y, z ∈ X and λ, µ > 0, we have the following assertions:

(1) υλ(x, y) = 0 i f f x = y,
(2) υλ(x, y) = υλ(y, x),
(3) υλ+µ(x, y) ≤ b[υλ(x, z) + υµ(z, y)].

Remark 5.7. [36] Let (X, B, ∗) be a triangular fuzzy b-metric space. Define υ : X×X× (0,∞)→ [0,∞)
by υ(x, y, t) = b

[
1

B(x,y,t) − 1
]
. Then υ is a modular b-metric.

Remark 5.8. [17] Let
(
X, B, ∗,Ω

)
be a triangular extended fuzzy b-metric space. Define the mapping

ν : X × X ×
(
0,∞

)
→ [0,∞

)
by ν

(
x, y, t

)
= Ω

[
1

B
(

x,y,t
) − 1

]
. Then ν is an extended modular b-metric.

Motivated by Remark 2 of [36], we present the following Lemma.

Lemma 5.9. Let X be a nonempty set and υ : (0,∞) × X × X → [0,∞) a modular b-metric for all
x, y ∈ X and t > 0. Let a ∗ c = ac for all a, c ∈ [0, 1] and B the fuzzy set on X × X × (0,+∞) defined by

B(x, y, t) = exp−
υt (x,y)

t

where υ is modular b-metric on set X. Then (X, B, ∗) is a fuzzy b-metric space.

Proof. It is clear from the definition that B(x, y, t) is well defined for each x, y ∈ X and t > 0.
(i) B(x, y, t) > 0 for all x, y ∈ X and t > 0 is trivial.
(ii) B(x, y, t) = 1⇔ υt(x, y) = 0 for all t > 0⇔ x = y.
(iii) B(x, y, t) = exp−

υt (x,y)
t = exp−

υt (y,x)
t = B(y, x, t).

(iv) Since the function λ→ υλ(x, y) is nonincreasing on (0,∞), we have

B(x, y, b(t + s)) = exp−
υb(t+s)(x,y)

b(t+s)

≥ exp−
b[υbt (x,z)+υbs(z,y)]

b(t+s) = exp−
υbt (x,z)+υbs(z,y)

t+s

≥ exp−
υt (x,z)+υs(z,y)

t+s

= exp−
υt (x,z)

t+s .exp−
υs(z,y)

t+s

≥ exp−
υt (x,z)

t .exp−
υs(z,y)

s

= B(x, z, t) ∗ B(z, y, s)

This proves that B is a fuzzy b-metric on X. �

Now we define the notion of a B̂-Meir-Keeler contractive mapping as follows.

Definition 5.10. Let
(
XB̂, B, ∗,Ω

)
be a triangular extended fuzzy b-metric space and T a self-mapping

on XB̂. We say that T is B̂-Meir-Keeler contractive if for each ε > 0 there exists δ(ε) > 0 such that

ε ≤
1

B
(
x, y, t

) − 1 < Ω(ε) + Ω(δ(ε)) implies
1

B
(
T x,Ty, t

) − 1 < ε (5.1)

for any x, y ∈ XB̂ and all t > 0.
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A fuzzy metric B̂ on X is called regular if

x = y if and only if B̂(x, y, t) = 1 for some t > 0.

Now it is easy to prove the following theorems for B̂-Meir-Keeler contractive.

Theorem 5.11. Let
(
XB̂, B, ∗,Ω

)
be a B̂-regular B̂-complete fuzzy p-metric space and T : XB̂ → XB̂ a

self-mapping. Assume that the following assertions hold:

(i) T is a B̂-Meir-Keeler contraction,
(ii) T is a B̂-continuous mapping.

Then T has a unique fixed point z ∈ XB̂.

Proof. We define ν̂t
(
x, y

)
= Ω

[
1

B
(

x,y,t
) − 1

]
for every x, y ∈ XB̂ where t > 0. Then by Remark 5.8, ν is an

extended modular b-metric and Xν̂ is a ν̂ regular ν̂-complete modular p-metric space. Hence all of the
conditions of Theorem 2.8 hold and T has a unique fixed point z ∈ XB̂. �

In the next, we define the concept of B̂s-Meir-Keeler contractive map as follows:

Definition 5.12. Let XB̂s be a fuzzy b-metric space and T a self-mapping on XB̂s . We say that T is
B̂s-Meir-Keeler contractive if for each ε > 0 there exists δ(ε) > 0 such that

ε ≤
1

B
(
x, y, t

) − 1 < sε + sδ(ε) implies
1

B
(
T x,Ty, t

) − 1 < ε, (5.2)

for any x, y ∈ XB̂ and all t > 0.

If we set Ω(t) = t in Theorem 5.11, we have the following Theorem.

Theorem 5.13. Let XB̂s be a B̂s-regular B̂s-complete fuzzy b-metric space and T : XB̂s → XB̂s a self-
mapping. Assume that the following assertions hold:

(i) T is B̂s-Meir-Keeler contractive,
(iv) T is a B̂s-continuous mapping.

Then T has a unique fixed point z ∈ XB̂.

6. Existence theorem for solutions of Volterra-type integral equations

Consider the integral equation

x(t) =

∫ b

a
f (t, r, x(r)) dr, t ∈ I = [a, b], (6.1)

where f : I × I × R → R is a given function. The purpose of this section is to provide an existence
theorem for solutions of the Eq (6.1) that belongs to X = C(I,R) (the set of continuous real functions
defined on I), via the result obtained in Theorem 4.2. With this application, we develop a new and
effective approach instead of the classical fixed point viewpoint to the solution of Volterra equations.
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We endow X with the partial order � given by

x � y⇐⇒ x(t) ≤ y(t), for all t ∈ I.

For x ∈ X define
‖x‖∞ = max

t∈I
|x(t)|.

Note that (X, ‖ · ‖∞) is a Banach space. The modular metric induced by this norm is given by

νλ(x, y) =
‖x − y‖∞

λ
= max

t∈I

|x(t) − y(t)|
λ

,

for all x, y ∈ X.
Define F : X → X by

F(x(t)) =

∫ b

a
f (t, r, x(r)) dr, x ∈ X, t ∈ I.

Clearly, a function u ∈ X is a solution of (1.3) if and only if it is a fixed point of F.
We will consider the Eq (1.3) under the following assumptions:

(i) if x � y, then
f (t, r, x(r)) ≤ f (t, r, y(r)), for all t, r ∈ I.

(ii) For all x, y ∈ X with x � y, and for all t ∈ I,∫ b

a

∣∣∣∣ f (t, r, x(r)) − f (t, r, y(r))
∣∣∣∣ dr) ≤

||x − y||∞
2

.

(iii) There exists a continuous function x0 : I → R such that

x0(t) ≤
∫ b

a
f (t, r, x0(r)) dr, t ∈ I.

Theorem 6.1. Under assumptions (i)–(iii), the Eq (1.3) has a solution in X, where X = C(I,R).

Proof. It follows from (ii) that the mapping F is non-decreasing. Now, let ε > 0 be arbitrary and
choose δ < ε

2 . In this case, if ν̂λ(x, y) < ε + δ, then for all t ∈ I,∣∣∣Fx(t) − Fy(t)
∣∣∣

λ
≤

1
λ

∫ b

a

∣∣∣ f (t, r, x(r)) − f (t, r, y(r))
∣∣∣ dr ≤

‖x − y‖∞
2λ

≤
ν̂λ(x, y)

2
< ε.

Hence, we get that

ν̂λ(Fx, Fy) ≤ ε.

Let x0 be the function appearing in assumption (iii). Then we get x0 � F(x0). Thus, all the assumptions
of Theorem 4.2 are fulfilled and we deduce the existence of u ∈ X such that u = F(u). �
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7. Conclusions and future works

In this paper, we introduced the concept of extended modular b-metric spaces which induced the
notion of extended fuzzy b-metric space. The authors encourage the readers to work on cone versions
of these new structures. There are many contractive conditions which can be investigated in these new
spaces. The properties of the set Fix(T ) also can be considered.
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