Research article

µ-extended fuzzy b-metric spaces and related fixed point results

  • Received: 01 February 2020 Accepted: 01 June 2020 Published: 15 June 2020
  • MSC : 47H10, 54H25

  • This paper introduces the notion of μ-extended fuzzy b-metric space for extending the concept of fuzzy b-metric space and obtains an analogue of Banach fixed point result. Using functions α(x,y) and μ(x,y), the corresponding triangle inequality in μ-extended fuzzy b-metric space is given as follows M(υ,ω,α(υ,ω)s+μ(υ,ω)t)M(υ,ν,s)M(ν,ω,t)  υ,ν,ωX. An analogue of Banach fixed point result is established. Besides, an example is given to confirm validity of this theorem.

    Citation: Badshah-e-Rome, Muhammad Sarwar, Thabet Abdeljawad. µ-extended fuzzy b-metric spaces and related fixed point results[J]. AIMS Mathematics, 2020, 5(5): 5184-5192. doi: 10.3934/math.2020333

    Related Papers:

    [1] Abdullah Shoaib, Tahair Rasham, Giuseppe Marino, Jung Rye Lee, Choonkil Park . Fixed point results for dominated mappings in rectangular b-metric spaces with applications. AIMS Mathematics, 2020, 5(5): 5221-5229. doi: 10.3934/math.2020335
    [2] Naeem Saleem, Salman Furqan, Mujahid Abbas, Fahd Jarad . Extended rectangular fuzzy $ b $-metric space with application. AIMS Mathematics, 2022, 7(9): 16208-16230. doi: 10.3934/math.2022885
    [3] Abdolsattar Gholidahneh, Shaban Sedghi, Ozgur Ege, Zoran D. Mitrovic, Manuel de la Sen . The Meir-Keeler type contractions in extended modular $ b $-metric spaces with an application. AIMS Mathematics, 2021, 6(2): 1781-1799. doi: 10.3934/math.2021107
    [4] Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended $ b $-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977
    [5] Qing Yang, Chuanzhi Bai . Fixed point theorem for orthogonal contraction of Hardy-Rogers-type mapping on $O$-complete metric spaces. AIMS Mathematics, 2020, 5(6): 5734-5742. doi: 10.3934/math.2020368
    [6] Siamak Khalehoghli, Hamidreza Rahimi, Madjid Eshaghi Gordji . Fixed point theorems in R-metric spaces with applications. AIMS Mathematics, 2020, 5(4): 3125-3137. doi: 10.3934/math.2020201
    [7] Siniša N. Ješić, Nataša A. Ćirović, Rale M. Nikolić, Branislav M. Ranƌelović . A fixed point theorem in strictly convex $ b $-fuzzy metric spaces. AIMS Mathematics, 2023, 8(9): 20989-21000. doi: 10.3934/math.20231068
    [8] Arslan Hojat Ansari, Sumit Chandok, Liliana Guran, Shahrokh Farhadabadi, Dong Yun Shin, Choonkil Park . (F, h)-upper class type functions for cyclic admissible contractions in metric spaces. AIMS Mathematics, 2020, 5(5): 4853-4873. doi: 10.3934/math.2020310
    [9] Rashid Ali, Faisar Mehmood, Aqib Saghir, Hassen Aydi, Saber Mansour, Wajdi Kallel . Solution of integral equations for multivalued maps in fuzzy $ b $-metric spaces using Geraghty type contractions. AIMS Mathematics, 2023, 8(7): 16633-16654. doi: 10.3934/math.2023851
    [10] Samina Batul, Faisar Mehmood, Azhar Hussain, Reny George, Muhammad Sohail Ashraf . Some results for multivalued mappings in extended fuzzy $ b $-metric spaces. AIMS Mathematics, 2023, 8(3): 5338-5351. doi: 10.3934/math.2023268
  • This paper introduces the notion of μ-extended fuzzy b-metric space for extending the concept of fuzzy b-metric space and obtains an analogue of Banach fixed point result. Using functions α(x,y) and μ(x,y), the corresponding triangle inequality in μ-extended fuzzy b-metric space is given as follows M(υ,ω,α(υ,ω)s+μ(υ,ω)t)M(υ,ν,s)M(ν,ω,t)  υ,ν,ωX. An analogue of Banach fixed point result is established. Besides, an example is given to confirm validity of this theorem.


    Fixed point theory is an extensively used mathematical tool in various fields of science and engeneering [1,2,3] Many researchers have generalized Banach contraction principle in various directions. Some have generalized the underlying space while some others have modified the contractive conditions [4,5,6,7].

    Zadeh [8] initiated the notion of fuzzy set which lead to the evolution of fuzzy mathematics. Kramosil and Michalek [9] generalized probabilistic metric space via concept of fuzzy metric. George and Veeramani [10] defined Hausdorff topology on fuzzy metric space after slight modification in the definition of fuzzy metric presented in [9]. Heilpern [11] defined fuzzy mapping and establish fixed point result for it. Subsequently many concepts and results from general topology were generalized to fuzzy topological space.

    Nˇadˇaban [12] generalized b-metric space by introducing fuzzy b-metric space in the setting of fuzzy metric space initiated by Michalek and Kramosil. Faisar Mehmood et al.[13] generalized fuzzy b-metric by introducing the concept of extended fuzzy b-metric. In this article we present the idea of μ-extended fuzzy b-metric space which extends the concepts of fuzzy b-metric and extended fuzzy b-metric spaces. We also establish a Banach-type fixed point result in the context of μ-extended fuzzy b-metric space.

    First we recollect basic definitions and results which will be used in the sequel.

    Definition 1.1. [14] A binary operation :[0,1]2[0,1] is said to be continuous t-norm if ([0,1],,) is an ordered abelian topological monoid with unit 1.

    Some frequently used examples of continuous t-norm are xLy=max{x+y1,0}, xPy=xy and xMy=min{x,y}. These are respectively called Lukasievicz t-norm, product t-norm and minimum t-norm

    Definition 1.2. [9] A fuzzy metric space is 3-tuple (S,ς,), where S is a nonempty set, is continuous t-norm and ς is a fuzzy set on S×S×[0,) which satisfies the following conditions, for all p,q,rS,

    (KM1)ς(p,q,0)=0;

    (KM2)ς(p,q,)=1, for all >0 if and only if p=q;

    (KM3)ς(p,q,)=ς(q,p,);

    (KM4)ς(p,r,+t)ς(p,q,)ς(q,r,t), for all ,t>0;

    (KM5)ς(p,q,.):[0,)[0,1] is non-decreasing continuous;

    (KM6)limς(r,y,)=1.

    Note that ς(p,q,) indicates the degree of closeness between p and q with respect to 0.

    Remark 1.1. For pqand>0, it is always true that 0<ς(p,q,)<1.

    Lemma 1.1. [15] Let S be a nonempty set. Then ς(p,q,.) is nondecreasing for all p,qS.

    Example 1.1. [16] Let S be a nonempty set and ς:S×S×(0,)[0,1] be fuzzy set defined on a metric space (S,d) such that

    ς(x,y,)=pqpq+rd(x,y),x,ySand>0,

    where p,q and r are positive real numbers, and is product t-norm. This is a fuzzy metric induced by the metric d. The above fuzzy metric is also defined if minimum t-norm is used instead of product t-norm.

    If we take p=q=r=1, then the above fuzzy metric becomes standard fuzzy metric.

    Definition 1.3. [12] Let S be a non-empty set and b1 be a given real number. A fuzzy set ς:S×S[0,) is said to be fuzzy b-metric if for all p,q,rS, the following conditions hold:

    (FbM1)ς(p,q,0)=0;

    (FbM2)ς(p,q,)=1, for all >0 if and only if q=p;

    (FbM3)ς(p,q,)=ς(q,p,);

    (FbM4)ς(p,r,b(+t)ς(p,q,)ς(q,r,t), for all ,t>0;

    (FbM5)ς(p,q,.):(0,)[0,1] is continuous and limς(p,q,)=1.

    Faisar Mehmood et al. [13] defined extended fuzzy b-metric as.

    Definition 1.4. [13] The ordered triple (S,ς,) is called extended fuzzy b-metric space by function α:S×S[1,), where S is non-empty set, is continuous t-norm and ς:S×S[0,) is fuzzy set such that for all x,y,zS the following conditions hold:

    (FbM1)ςα(p,q,0)=0;

    (FbM2)ςα(p,q,)=1, for all >0 if and only if q=p;

    (FbM3)ςα(p,q,)=ςα(q,p,);

    (FbM4)ςα(p,r,α(p,r)(+t)ςα(p,q,)ςα(q,r,t), for all ,t>0;

    (FbM5)ςα(p,q,.):(0,)[0,1] is continuous and limςα(p,q,)=1.

    The authors in [13] established the following Banach type fixed point result in the setting of extended fuzzy b-metric space.

    Theorem 1.1. Let (S,ςα,) be an extended fuzzy-b metric space by mapping α:X×S[1,) which is G-complete such that ςα satisfies

    limtςα(p,q,t)=1, p,qSandt>0. (1.1)

    Let f:SS be function such that

    ςα(fp,fq,kt)ςα(p,q,t), p,qSandt>0, (1.2)

    where k(0,1). Moreover, if for b0S and n,pN with α(bn,bn+p)<1k, where bn=fnbo. Then f will have a unique fixed point.

    Motivated by the concept presented in [13], we present μ-extended fuzzy b-metric space and generalize Banach contraction principle to it using the approach of Grabiec [17].

    Definition 2.1. Let α,μ:X×X[1,) defined on a non-empty set X. A fuzzy set ςμ:X×X×[0,)[0,1] is said to be μ-extended fuzzy b-metric if for all p,q,rX, the following conditions hold:

    (μE1)ςμ(p,q,0)=0;

    (μE2)ςμ(p,q,)=1, for all >0 if and only if q=p;

    (μE3)ςμ(p,q,)=ςμ(q,p,);

    (μE4)ςμ(p,r,α(p,r)+μ(p,r)ȷ)ςμ(p,q,)ςμ(q,r,ȷ), for all ,t>0;

    (μE5)ςμ(p,q,.):(0,)[0,1] is continuous and limςμ(p,q,)=1.

    And (X,ςμ,,α,μ) is called μ-extended fuzzy b-metric space.

    Remark 2.1. It is worth mentioning that fuzzy b-metric and extended fuzzy b-metric are special types of μ-extended fuzzy b-metric when α(x,y)=μ(x,y)=b, for some b1 and α(x,y)=μ(x,y), respectively.

    In the following we exemplify Definition 2.1.

    Example 2.1. Let S={1,2,3} and α,μ:S×S[1,) be two functions defined by α(m,n)=1+m+n and μ(m,n)=m+n1. If ςμ:S×S×[0,)[0,1] is a fuzzy set defined by

    ςμ(m,n,)=min{m,n}+max{m,n}+,

    where contiuous t-norm is defined as t1t2=t1×t2, for all t1,t2[0,1] We show that (S,ςμ,,α,μ) is μ-extended fuzzy b-metric space. Clearly α(1,1)=3,  α(2,2)=5,  α(3,3)=7,α(1,2)=α(2,1)=4,  α(2,3)=α(3,2)=6,  α(1,3)=α(3,1)=5, and μ(1,1)=1,  μ(2,2)=3,  μ(3,3)=5, μ(1,2)=μ(2,1)=2,  μ(2,3)=μ(3,2)=4,  μ(1,3)=μ(3,1)=3. One can easily verify that the conditions (μE1),(μE2),(μE3) and (μE5) hold. In order to show that (S,ςμ,×,α,μ) is μ-extended fuzzy b-metric space, it only remains to prove that (μE4) is satisfied for all m,n,pS. For for all ,ȷ>0, it is clear that

    ςμ(1,2,α(1,2)+μ(1,2)ȷ)=1+4+2ȷ2+4+2ȷ2+ȷ+2+ȷ9+3ȷ+3+ȷ=ςμ(1,3,)ςμ(3,2,ȷ),
    ςμ(1,3,α(1,3)+μ(1,3)ȷ)=1+5+3ȷ3+5+3ȷ2+ȷ+2+ȷ6+ȷ+2+ȷ=ςμ(1,2,)ςμ(2,3,ȷ),

    and

    ςμ(2,3,α(2,3)+μ(2,3)ȷ)=2+6+4ȷ3+6+4ȷ1+ȷ++ȷ6+2ȷ+3+ȷ=ςμ(2,1,)ςμ(1,3,ȷ).

    Hence ςμ is μ-extended fuzzy b-metric.

    Example 2.2. Let S={1,2,3} and α,μ:S×S[1,) be two functions defined by α(m,n)=max{m,n} and μ(m,n)=min{m,n}. If ςμ:S×S×[0,)[0,1] is a fuzzy set defined by

    ςμ(m,n,)={1,  m=n,0,  =0,2,  ,0<<2,max{m,n}+1,  2<<3,max{m,n},  3<,1+1,  S,

    where continuous t-norm is defined to be the minimum, that is t1t2=min(t1,t2). Obviously conditions (μE1),(μE2),(μE3) and (μE5) trivially hold. For p,q,rS notice the following:

    Case 1: When 0<+ȷ2<1. Then

    ςμ(1,2,α(1,2)+μ(1,2)ȷ)=+ȷ2min{2,ȷ2}=ςμ(1,3,)ςμ(3,2,ȷ).

    Case 2: When 1<2+ȷ<32. Then

    ςμ(1,2,α(1,2)+μ(1,2)ȷ)=22+ȷ+1min{2,ȷ2}=ςμ(1,3,)ςμ(3,2,ȷ).

    Case 3: When 2+ȷ>3 such that =0 and ȷ>3. Then

    ςμ(1,2,α(1,2)+μ(1,2)ȷ)=2ȷ>0=min{0,3ȷ}=ςμ(1,3,)ςμ(3,2,ȷ).

    Case 4: When 2+ȷ>3 such that >3 and ȷ=0. Then

    ςμ(1,2,α(1,2)+μ(1,2)ȷ)=1>0=min{3,0}=ςμ(1,3,)ςμ(3,2,ȷ).

    Similarly it can be easily verified that condition (μE4) is satisfied for all the remaining cases. Hence (S,ςμ,,α,μ) is μ-extended fuzzy b-metric space.

    Before establishing an analog of Banach contraction principle in setting of μ-extended fuzzy b-metric space, we present the following concepts in the setting of μ-extended fuzzy b-metric space.

    Definition 2.2. Let (S,ςμ,,α,μ) be a μ-extended fuzzy b-metric space and {an} be a sequence in S.

    (1) {an} is a G-convergent sequence if there exists a0S such that

    limnςμ(an,a0,)=1, >0.

    (2) {an} in X is called G-Cauchy if

    limnςμ(an,an+p,)=1,foreachpNand>0.

    (3) S is G-complete, if every Cauchy sequence in S converges.

    Next, we prove Banach fixed point Theorem in μ-extended fuzzy b-metric space.

    Theorem 2.1. Let (S,ςμ,,α,μ) be a G-complete μ-extended fuzzy b-metric space with mappings α,μ:S×S[1,) such that

    limtςμ(u,v,t)=1, u,vSandt>0. (2.1)

    Let f:SS be a mapping satisfying that there exists k(0,1) such that

    ςμ(fu,fv,kt)ςμ(u,v,t), u,vSandt>0. (2.2)

    If for any b0S and n,pN,

    max{supp1limiα(bi,bi+p),supp1limiμ(bi,bi+p)}<1k,

    where bn=fnbo, then f has a unique fixed point.

    Proof. Without loss of generality, assume that bn+1bn n0. From (2.2), it follows that, for any n,qN,

    ςμ(bn,bn+1,kt)=ςμ(fbn1,fbn,kt)ςμ(bn1,bn,t)ςμ(bn2,bn1,tk)ςμ(bn3,bn2,tk2)ςμ(b0,b1,tkn1).

    That is

    ςμ(bn,bn+1,kt)ςμ(b0,b1,tkn1). (2.3)

    For any pN, applying (μE4) yields that

    ςμ(bn,bn+p,t)=ςμ(bn,bn+p,ptp)=ςμ(bn,bn+p,tp+pttp)ςμ(bn,bn+1,tpα(bn,bn+p))ςμ(bn+1,bn+p,pttpμ(bn,bn+p))ςμ(bn,bn+1,tpα(bn,bn+p))ςμ(bn+1,bn+2,tpμ(bn,bn+p)α(bn+1,bn+p))ςμ(bn+2,bn+p,pt2tpμ(bn,bn+p)μ(bn+1,bn+p)).

    From (2.3) and (μE4), it follows that

    ςμ(bn,bn+p,t)ςμ(b0,b1,tpα(bn,bn+p)kn)ςμ(b0,b1,tpμ(bn,bn+p)α(bn+1,bn+p)kn+1)ςμ(b0,b1,tpμ(bn,bn+p)μ(bn+1,bn+p)α(bn+2,bn+p)kn+2)ςμ(b0,b1,tpμ(bn,bn+p)μ(bn+1,bn+p)μ(bn+(p3),bn+p)α(bn+(p2),bn+p)kn+(p1)).

    Noting that for k(0,1), α(bn,bn+p)k<1 and μ(bn,bn+p)k<1 hold for all n,pN and letting n, applying Eq 3, it follows that

    limnςμ(bn,bn+p,t)=111=1,

    that is {bn} is Cauchy sequence. Due to the completeness of (S,ςμ,,α,μ) there exists some bS such that bnbasn. We claim that b is unique fixed point of f. Applying Eq (1.1) and condition (μE4), we have

    ςμ(fb,b,t)ςμ(fb,bn+1,t2α(fb,b))ςμ(bn+1,b,t2μ(fb,b))ςμ(b,bn,t2α(fb,b)k)ςμ(bn+1,b,t2μ(fb,b)).

    Thus ςμ(fb,b,t)=1 and hence b is a fixed point of f. To show the uniqueness, let c be another fixed point of f. Applying inequality (2.3) yields that

    ςμ(b,c,t)=ςμ(fb,fc,t)ςμ(b,c,tk)=ςμ(fb,fc,tk)ςμ(b,c,tk2)ςμ(b,c,tkn),

    which implies that ςμ(b,c,t)1, as n, and hence b=c.

    Remark 2.2. If α(u,v)=μ(u,v) for all u,vS, then Theorem 2.1 reduces to Theorem 1.1.

    The following example illustrates Theorem 2.1.

    Example 2.3. Let S=[0,1] and ςμ(u,v,t)=e|uv|t,  u,vS. It can be easily verified that (S,ςμ,,α,μ) is a G-complete μ-extended fuzzy b-metric space with mappings α,μ:S×S[1,) defined by α(u,v)=1+uv and μ(u,v)=1+u+v, respectively and continuous t-norm as usual product.

    Let f:SS be such that f(x,y)=113x. For all t>0 we have

    ςμ(fu,fv,12t)=e23|uv|t>e|uv|t=ςμ(u,v,t).

    That is all the conditions of Theorem 2.1 are satisfied. Therefore, f has unique fixed point 34[0,1]=S.

    We introduce the concept of μ-extended fuzzy b-metric space and established fixed point result which generalizes Banach contraction principle to this newly introduced space. The concept we presented may lead to further investigation and applications. As the class of of μ-extended fuzzy b-metric spaces is wider than those of the fuzzy b-metric spaces and extended fuzzy b-metric spaces, therefore results established in this framework will generalize many results in the existing literature.

    The authors are grateful to the editorial board and anonymous reviewers for their comments and remarks which helped to improve this manuscript.

    The third author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017- 01-17.

    The authors declare that they have no competing interest.



    [1] T. Abdeljawad, F. Jarad, D. Baleanu, On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives, Sci. China, Math., 51 (2008), 1775-1786. doi: 10.1007/s11425-008-0068-1
    [2] T. Abdeljawad, F. Jarad, D. Baleanu, Existence and uniqueness theorem for a class of delay fractional differential equations with left and right Caputo fractional derivatives, J. Math. Phys., 49 (2008), 083507.
    [3] A. A. Kilbas, M. H. Srivastava, J. J. Tujillo, Theory and application of fractional differential equations, North Holand Mathematics Studies; Elsvier: Amsterdam, The Netherland, 2006.
    [4] G. bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379-1393. doi: 10.1016/j.na.2005.10.017
    [5] B. S. Chaudury, N. Metiya, M. Postolache, A generalized weak contraction principle with applications coupled coincidence point problems, Fixed Point Theory Appl., 2013 (2013), 152.
    [6] L. B. Ciric, A generalization Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267-273.
    [7] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 5 (2008), 1861-1869.
    [8] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X
    [9] I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 5 (1975), 336-344.
    [10] R. Vasuki, P. Veeramani, Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy Sets Syst., 3 (2003), 415-417.
    [11] S. Heilpern, Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl., 83 (1981), 566-569. doi: 10.1016/0022-247X(81)90141-4
    [12] S. Nǎdǎban, Fuzzy b-Metric spaces, Int. J. Comput. Commun. Control., 2 (2016), 273-281.
    [13] F. Mehmood, R. A. Ali, C. Ionescu, et al. Extended fuzzy b-Metric spaces, J. Math. Anal., 8 (2017), 124-131.
    [14] B. Schweizer, A. Sklar, Statistical metric spaces, Pac. J. Math., 10 (1960), 313-334. doi: 10.2140/pjm.1960.10.313
    [15] V. Gregori, A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets Syst., 125 (2002), 245-252. doi: 10.1016/S0165-0114(00)00088-9
    [16] R. George, S. Radenović, K. P. Reshma, et al. Rectangular b-metric space and contraction principles, Nonlinear Sci. Appl., 6 (2015), 1005-1013.
    [17] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385-389. doi: 10.1016/0165-0114(88)90064-4
  • This article has been cited by:

    1. Muhammad Sarwar, Kamal Shah, Bahaaeldin Abdalla, Thabet Abdeljawad, Some generalized fixed point results of Banach and ˊCiriˊC type in extended fuzzy b-metric spaces with applications, 2022, 7, 2473-6988, 14029, 10.3934/math.2022774
    2. Badshah-E. Rome, Muhammad Sarwar, Fahd Jarad, Muhammad Gulzar, n -Tupled Common Fixed Point Result in Fuzzy b -Metric Spaces, 2022, 2022, 2314-8888, 1, 10.1155/2022/4097444
    3. Siniša N. Ješić, Nataša A. Ćirović, Rale M. Nikolić, Branislav M. Ranƌelović, A fixed point theorem in strictly convex b-fuzzy metric spaces, 2023, 8, 2473-6988, 20989, 10.3934/math.20231068
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3771) PDF downloads(365) Cited by(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog