Citation: Qing Yang, Chuanzhi Bai. Fixed point theorem for orthogonal contraction of Hardy-Rogers-type mapping on $O$-complete metric spaces[J]. AIMS Mathematics, 2020, 5(6): 5734-5742. doi: 10.3934/math.2020368
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math., 3 (1922), 133-181. doi: 10.4064/fm-3-1-133-181 |
[2] | V. Berinde, Iterative approximation of Fixed Points, Berlin, Heidelberg: Springer, 2007. |
[3] | Y. J. Cho, Survey on metric fixed point theory and applications, In M. Ruzhansky, et al. Eds., Advances in Real and Complex Analysis with Applications, Trends in Math, Singapore: Springer, 2017. |
[4] | V. Cosentino, P. Vetro, Fixed point result for F-contractive mappings of Hardy-Rogers-type, Filomat, 28 (2014), 715-722. doi: 10.2298/FIL1404715C |
[5] | M. E. Gordji, M. Rameani, M. De La Sen, et al. On orthogonal sets and Banach fixed point theorem, Fixed Point Theory, 18 (2017), 569-578. doi: 10.24193/fpt-ro.2017.2.45 |
[6] | J. J. Nieto, R. Rodr${\rm \acute{i}}$guez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223-239. doi: 10.1007/s11083-005-9018-5 |
[7] | A. C. M. Ran, M. C. B. Reuring, A fixed point theorem in partially ordered sets and some appllications to matrix equations, Proc. Am. Math. Soc., 132 (2004), 1435-1443. doi: 10.1090/S0002-9939-03-07220-4 |
[8] | S. Reich, Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121-124. doi: 10.4153/CMB-1971-024-9 |
[9] | L. Salazar, S. Aguirre Reich, A remark on weakly contractive mappings, J. Nonlinear Convex. Anal., 16 (2015), 767-773. |
[10] | K. Sawangsup, W. Sintunavarat, Y. J. Cho, Fixed point theorems for orthogonal F-contraction mappings on O-complete metric spaces, J. Fixed Point Theory Appl., 22 (2020), 10. |
[11] | T. Senapati, L. K. Dey, B. Damjanovic, et al. New fixed point results in orthogonal metric spaces with an application, Kragujevac J. Math., 42 (2018), 505-516. doi: 10.5937/KgJMath1804505S |
[12] | T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Am. Math. Soc., 136 (2008), 1861-1869. |
[13] | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric space, Fixed Point Theory Appl., 2012 (2012), 94. |
[14] | F. Yan, Y. Su, Q. Feng, A new contraction mapping principle in partially ordered metric spaces and applications to ordinary differential equations, Fixed Point Theory Appl., 2012 (2012), 152. |
[15] | Q. Zhang, Y. Song, Fixed point theory for generalized ψ-weak contractions, Appl. Math. Lett., 22 (2009), 75-78. doi: 10.1016/j.aml.2008.02.007 |