Citation: Jing Yang. Existence of infinitely many solutions for a nonlocal problem[J]. AIMS Mathematics, 2020, 5(6): 5743-5767. doi: 10.3934/math.2020369
[1] | D. Cao, S. Peng, The asymptotic behavior of the ground state solutions for Hénon equation, J. Math. Anal. Appl., 278 (2003), 1-17. doi: 10.1016/S0022-247X(02)00292-5 |
[2] | D. Cao, S. Peng, S. Yan, Asymptotic behavior of ground state solutions for Hénon equation, IMA J. Appl. Math., 74 (2009), 468-480. doi: 10.1093/imamat/hxn035 |
[3] | W. Chen, C. Li, B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116 |
[4] | W. Choi, S. Kim, K.-A. Lee, Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian, J. Funct. Anal., 266 (2014), 6531-6598. doi: 10.1016/j.jfa.2014.02.029 |
[5] | J. DÁvia, M. Del Pino, Y. Sire, Non degeneracy of the bubble in the critical case for nonlocal equations, Proc. Amer. Math. Soc., 141 (2013), 3865-3870. doi: 10.1090/S0002-9939-2013-12177-5 |
[6] | M. del Pino, P. Felmer, M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem, Calc. Var. Partial Dif., 16 (2003), 113-145. doi: 10.1007/s005260100142 |
[7] | S. Dipierro, G. Palatucci, E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche, 68 (2013), 201-216. |
[8] | R.-L. Frank, E.-H. Lieb, Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Dif., 39 (2010), 85-99. doi: 10.1007/s00526-009-0302-x |
[9] | R.-L. Frank, E.-H. Lieb, A new rearrangement-free proof of the sharp Hardy-Littlewood- Sobolev inequality, Spectral Theory, Function Spaces and Inequalities, 219 (2012), 55-67. |
[10] | E.-H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349-374. doi: 10.2307/2007032 |
[11] | N. Hirano, Existence of positive solutions for the Hénon equation involving critical Sobolev exponent, J. Differ. Equations 247 (2009), 1311-1333. |
[12] | W. Long, J. Yang, Positive or sign-changing solutions for a critical semilinear non-local equation, Z. Angew. Math. Phys., 67 (2016), 45. |
[13] | W.-M. Ni, A nonlionear Dirichlet problem on the unit ball and its application, Indiana Univ. Math. J., 6 (1982), 801-807. |
[14] | S. Peng, Multiple boundary concentrating solutions to Dirichlet problem of Hénon equation, Acta Math. Appl. Sin., 22 (2006), 137-162. doi: 10.1007/s10255-005-0293-0 |
[15] | A. Pistoia, E. Serra, Multi-peak solutions for the Hénon equation with slightly subcritical growth, Math. Z., 256 (2007), 75-97. doi: 10.1007/s00209-006-0060-9 |
[16] | X. Ros-Oton, J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal., 213 (2014), 587-628. doi: 10.1007/s00205-014-0740-2 |
[17] | E. Serra, Non-radial positive solutions for the Hénon equation with critical growth, Calc. Var. Partial Dif., 23 (2005), 301-326. doi: 10.1007/s00526-004-0302-9 |
[18] | D. Smets, J. Su, M. Willem, Non-radial ground states for the Hénon equation, Comm. Contemp. Math., 4 (2002), 467-480. doi: 10.1142/S0219199702000725 |
[19] | R. Servadei, E. Valdinoci, A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12 (2013), 2445-2464. doi: 10.3934/cpaa.2013.12.2445 |
[20] | J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Dif., 42 (2012), 21-41. |
[21] | J. Tan, Positive solutions for nonlocal ellipitc problems, Discrete Contin. Dyn. Syst., 33 (2013), 837-859. doi: 10.3934/dcds.2013.33.837 |
[22] | J. Wei, S. Yan, Infinitely many positive solutions for the prescribed scalar curvature problem on $\mathbb{S}^N$, J. Funct. Anal., 258 (2010), 3048-3081. |
[23] | J. Wei, S. Yan, Infinitely many nonradial solutions for the Hénon equation with critical growth, Rev. Mat. Iberoam., 29 (2013), 997-1020. doi: 10.4171/RMI/747 |