Citation: Rukhshanda Anjum, Saad Ullah, Yu-Ming Chu, Mohammad Munir, Nasreen Kausar, Seifedine Kadry. Characterizations of ordered $h$-regular semirings by ordered $h$-ideals[J]. AIMS Mathematics, 2020, 5(6): 5768-5790. doi: 10.3934/math.2020370
[1] | J. Von Neumann, On regular rings, Proc. Natl. Acad. Sci. U.S.A., 22 (1935), 707. |
[2] | S. Bourne, The Jacobson radical of a semiring, Proc. Natl. Acad. Sci. U.S.A., 37 (1951), 63. |
[3] | J. S. Golan, Semirings and affine equations over them: Theory and applications, Springer Science Business Media, 556 (2013). |
[4] | X. Ma, J. Zhan, Soft intersection h-ideals of hemirings and its applications, Ital. J. Pur. Appl. Math., 32 (2014), 301-308. |
[5] | J. Zhan, N. Çaǧman, A. Sezgin Sezer, Applications of soft union sets to hemirings via SU-h-ideals, J. Intell. Fuzzy Syst., 26 (2014), 1363-1370. doi: 10.3233/IFS-130822 |
[6] | M. M. Arslanov, N. Kehayopulu, A note on minimal and maximal ideals of ordered semigroups, Lobachevskii J. Math., 11 (2002), 3-6. |
[7] | Y. Cao, X. Xu, On minimal and maximal left ideals in ordered semigroups, Semigr. Forum, 60 (2000), 202-207. doi: 10.1007/s002339910014 |
[8] | V. N. Dixit, S. Dewan, A note on quasi and bi-ideals in ternary semigroups, Int. J. Math. Math. Sci., 18 (1995), 501-508. doi: 10.1155/S0161171295000640 |
[9] | G. A. N. Ai Ping, Y. L. Jiang, On ordered ideals in ordered semirings, J. Math. Res. Exposition, 31 (2011), 989-996. |
[10] | J. S. Han, H. S. Kim, J. Neggers, Semiring orders in a semiring, Appl. Math. Inf. Sci., 6 (2012), 99-102. |
[11] | K. Iizuka, On the Jacobson radical of a semiring, Tohoku Math. J., Second Ser., 11 (1959), 409-421. doi: 10.2748/tmj/1178244538 |
[12] | Y. B. Jun, M. A. Öztürk, S. Z. Song, On fuzzy h-ideals in hemirings, Inf. Sci., 162 (2004), 211-226. doi: 10.1016/j.ins.2003.09.007 |
[13] | J. Zhan, On properties of fuzzy left h-ideals in hemirings with t-norms, Int. J. Math. Math. Sci., 19 (2005), 3127-3144. |
[14] | J. Zhan, Fuzzy h-ideals of hemirings, Inf. Sci., 177 (2007), 876-886. doi: 10.1016/j.ins.2006.04.005 |
[15] | S. Patchakhieo, B. Pibaljommee, Characterizations of ordered k-regular semirings by ordered k-ideals, Asian-Eur. J. Math., 10 (2017), 1750020. |
[16] | T. Shah, N. Kausar, I. Rehman, Intuitionistic fuzzy normal subrings over a non-associative ring, An. St. Univ. Ovidius Constanta, 20 (2012), 369-386. |
[17] | N. Kausar, B. Islam, M. Javaid, et al. Characterizations of non-associative rings by the properties of their fuzzy ideals, J. Taibah Univ. Sci., 13 (2019), 820-833. doi: 10.1080/16583655.2019.1644817 |
[18] | N. Kausar, M. Alesemi, S. Salahuddin, et al. Characterizations of non-associative ordered semigroups by their intuitionistic fuzzy bi-ideals, Discontinuity, Nonlinearity, Complex., 9 (2020), 257-275. doi: 10.5890/DNC.2020.06.007 |
[19] | M. Munir, A. Shafiq, A generalization of bi ideals in semirings, Bull. Int. Math. Virt. Inst., 8 (2018), 123-133. |
[20] | N. Kausar, M. Waqar, Characterizations of non-associative rings by their intuitionistic fuzzy bi-ideals, Eur. J. Pure Appl. Math., 12 (2019), 226-250. doi: 10.29020/nybg.ejpam.v12i1.3344 |
[21] | N. Kausar, Direct product of finite intuitionistic anti fuzzy normal subrings over non-associative rings, Eur. J. Pure Appl. Math., 12 (2019), 622-648. doi: 10.29020/nybg.ejpam.v12i2.3427 |
[22] | N. Kausar, B. Islam, S. Amjad, et al. Intuitionistics fuzzy ideals with thresholds (α,β] in LA-rings, Eur. J. Pure Appl. Math., 9 (2019), 906-943. |