Research article

Characterizations of ordered $h$-regular semirings by ordered $h$-ideals

  • Received: 24 March 2020 Accepted: 06 July 2020 Published: 10 July 2020
  • MSC : 16Y99, 16Y60

  • The objective of this paper is to study the ordered $h$-regular semirings by the properties of their ordered $h$-ideals. It is proved that each $h$-regular ordered semiring is an ordered $h$-regular semiring but the converse does not follow. Important theorems relating to basic properties of the operator clousre and $h$-regular semirings are given. It is also proved that each regular ordered semiring is an ordered $h$-regular semiring but the converse does not hold. The classifications of the left and the right ordered $h$-regular semirings and the left and the right ordered $h$-weakly regular semirings are also presented.

    Citation: Rukhshanda Anjum, Saad Ullah, Yu-Ming Chu, Mohammad Munir, Nasreen Kausar, Seifedine Kadry. Characterizations of ordered $h$-regular semirings by ordered $h$-ideals[J]. AIMS Mathematics, 2020, 5(6): 5768-5790. doi: 10.3934/math.2020370

    Related Papers:

  • The objective of this paper is to study the ordered $h$-regular semirings by the properties of their ordered $h$-ideals. It is proved that each $h$-regular ordered semiring is an ordered $h$-regular semiring but the converse does not follow. Important theorems relating to basic properties of the operator clousre and $h$-regular semirings are given. It is also proved that each regular ordered semiring is an ordered $h$-regular semiring but the converse does not hold. The classifications of the left and the right ordered $h$-regular semirings and the left and the right ordered $h$-weakly regular semirings are also presented.


    加载中


    [1] J. Von Neumann, On regular rings, Proc. Natl. Acad. Sci. U.S.A., 22 (1935), 707.
    [2] S. Bourne, The Jacobson radical of a semiring, Proc. Natl. Acad. Sci. U.S.A., 37 (1951), 63.
    [3] J. S. Golan, Semirings and affine equations over them: Theory and applications, Springer Science Business Media, 556 (2013).
    [4] X. Ma, J. Zhan, Soft intersection h-ideals of hemirings and its applications, Ital. J. Pur. Appl. Math., 32 (2014), 301-308.
    [5] J. Zhan, N. Çaǧman, A. Sezgin Sezer, Applications of soft union sets to hemirings via SU-h-ideals, J. Intell. Fuzzy Syst., 26 (2014), 1363-1370. doi: 10.3233/IFS-130822
    [6] M. M. Arslanov, N. Kehayopulu, A note on minimal and maximal ideals of ordered semigroups, Lobachevskii J. Math., 11 (2002), 3-6.
    [7] Y. Cao, X. Xu, On minimal and maximal left ideals in ordered semigroups, Semigr. Forum, 60 (2000), 202-207. doi: 10.1007/s002339910014
    [8] V. N. Dixit, S. Dewan, A note on quasi and bi-ideals in ternary semigroups, Int. J. Math. Math. Sci., 18 (1995), 501-508. doi: 10.1155/S0161171295000640
    [9] G. A. N. Ai Ping, Y. L. Jiang, On ordered ideals in ordered semirings, J. Math. Res. Exposition, 31 (2011), 989-996.
    [10] J. S. Han, H. S. Kim, J. Neggers, Semiring orders in a semiring, Appl. Math. Inf. Sci., 6 (2012), 99-102.
    [11] K. Iizuka, On the Jacobson radical of a semiring, Tohoku Math. J., Second Ser., 11 (1959), 409-421. doi: 10.2748/tmj/1178244538
    [12] Y. B. Jun, M. A. Öztürk, S. Z. Song, On fuzzy h-ideals in hemirings, Inf. Sci., 162 (2004), 211-226. doi: 10.1016/j.ins.2003.09.007
    [13] J. Zhan, On properties of fuzzy left h-ideals in hemirings with t-norms, Int. J. Math. Math. Sci., 19 (2005), 3127-3144.
    [14] J. Zhan, Fuzzy h-ideals of hemirings, Inf. Sci., 177 (2007), 876-886. doi: 10.1016/j.ins.2006.04.005
    [15] S. Patchakhieo, B. Pibaljommee, Characterizations of ordered k-regular semirings by ordered k-ideals, Asian-Eur. J. Math., 10 (2017), 1750020.
    [16] T. Shah, N. Kausar, I. Rehman, Intuitionistic fuzzy normal subrings over a non-associative ring, An. St. Univ. Ovidius Constanta, 20 (2012), 369-386.
    [17] N. Kausar, B. Islam, M. Javaid, et al. Characterizations of non-associative rings by the properties of their fuzzy ideals, J. Taibah Univ. Sci., 13 (2019), 820-833. doi: 10.1080/16583655.2019.1644817
    [18] N. Kausar, M. Alesemi, S. Salahuddin, et al. Characterizations of non-associative ordered semigroups by their intuitionistic fuzzy bi-ideals, Discontinuity, Nonlinearity, Complex., 9 (2020), 257-275. doi: 10.5890/DNC.2020.06.007
    [19] M. Munir, A. Shafiq, A generalization of bi ideals in semirings, Bull. Int. Math. Virt. Inst., 8 (2018), 123-133.
    [20] N. Kausar, M. Waqar, Characterizations of non-associative rings by their intuitionistic fuzzy bi-ideals, Eur. J. Pure Appl. Math., 12 (2019), 226-250. doi: 10.29020/nybg.ejpam.v12i1.3344
    [21] N. Kausar, Direct product of finite intuitionistic anti fuzzy normal subrings over non-associative rings, Eur. J. Pure Appl. Math., 12 (2019), 622-648. doi: 10.29020/nybg.ejpam.v12i2.3427
    [22] N. Kausar, B. Islam, S. Amjad, et al. Intuitionistics fuzzy ideals with thresholds (α,β] in LA-rings, Eur. J. Pure Appl. Math., 9 (2019), 906-943.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3459) PDF downloads(181) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog