Research article

Fekete-Szegö problem for Bi-Bazilevič functions related to Shell-like curves

  • Correction on: AIMS Mathematics 6: 2722–2723
  • Received: 07 March 2020 Accepted: 06 May 2020 Published: 12 May 2020
  • MSC : 30C45, 30C50

  • In the present investigation, we define a subclass of bi-univalent functions related to shell-like curves connected with Fibonacci numbers to find the estimates of second, third Taylor-Maclaurin coefficients and Fekete-Szegö inequalities. Further, certain special cases are also discussed.

    Citation: Halit Orhan, Nanjundan Magesh, Chinnasamy Abirami. Fekete-Szegö problem for Bi-Bazilevič functions related to Shell-like curves[J]. AIMS Mathematics, 2020, 5(5): 4412-4423. doi: 10.3934/math.2020281

    Related Papers:

  • In the present investigation, we define a subclass of bi-univalent functions related to shell-like curves connected with Fibonacci numbers to find the estimates of second, third Taylor-Maclaurin coefficients and Fekete-Szegö inequalities. Further, certain special cases are also discussed.


    加载中


    [1] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften Series, 259, Springer Verlag, New York, 1983.
    [2] J. Sokół, On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis, 175 (1999), 111-116.
    [3] J. Dziok, R. K. Raina, J. Sokół, Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers, Comp. Math. Appl., 61 (2011), 2605-2613.
    [4] J. Dziok, R. K. Raina, J. Sokół, On α-convex functions related to a shell-like curve connected with Fibonacci numbers, Appl. Math. Comput., 218 (2011), 996-1002.
    [5] R. K. Raina, J. Sokół, Fekete-Szegö problem for some starlike functions related to shell-like curves, Math. Slovaca, 66 (2016), 135-140.
    [6] R. M. Ali, S. K. Lee, V. Ravichandran, et al. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25 (2012), 344-351.
    [7] M. Çağlar, H. Orhan, N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27 (2013), 1165-1171.
    [8] J. M. Jahangiri, S. G. Hamidi, S. Abd. Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Sci. Soc., 37 (2014), 633-640.
    [9] H. Orhan, N. Magesh, V. K. Balaji, Fekete-Szegö problem for certain classes of Ma-Minda biunivalent functions, Afr. Mat., 27 (2016), 889-897.
    [10] C. Pommerenke, Univalent functions, Vandenhoeck Ruprecht, Göttingen, 1975.
    [11] H. M. Srivastava, S. Bulut, M. Çağlar, et al. Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), 831-842.
    [12] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192.
    [13] F. Yousef, S. Alroud, M. Illafe, New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems, 2018. Available from: https: //arXiv.org/abs/1808.06514.
    [14] H. Ö. Göney, G. Murugusundaramoorthy, J. Sokół, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univ. Sapientiae, Math., 10 (2018), 70-84.
    [15] N. Magesh, V. K. Balaji, C. Abirami, Certain classes of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, 2018. Available from: https://arXiv.org/abs/1810.06216.
    [16] G. Singh, G. Singh, G. Singh, A subclass of bi-univalent functions defined by generalized Sãlãgean operator related to shell-like curves connected with Fibonacci numbers, Int. J. Math. Math. Sci., 2019 (2019), 1-7.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3087) PDF downloads(308) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog