Citation: Halit Orhan, Nanjundan Magesh, Chinnasamy Abirami. Fekete-Szegö problem for Bi-Bazilevič functions related to Shell-like curves[J]. AIMS Mathematics, 2020, 5(5): 4412-4423. doi: 10.3934/math.2020281
[1] | P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften Series, 259, Springer Verlag, New York, 1983. |
[2] | J. Sokół, On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis, 175 (1999), 111-116. |
[3] | J. Dziok, R. K. Raina, J. Sokół, Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers, Comp. Math. Appl., 61 (2011), 2605-2613. |
[4] | J. Dziok, R. K. Raina, J. Sokół, On α-convex functions related to a shell-like curve connected with Fibonacci numbers, Appl. Math. Comput., 218 (2011), 996-1002. |
[5] | R. K. Raina, J. Sokół, Fekete-Szegö problem for some starlike functions related to shell-like curves, Math. Slovaca, 66 (2016), 135-140. |
[6] | R. M. Ali, S. K. Lee, V. Ravichandran, et al. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25 (2012), 344-351. |
[7] | M. Çağlar, H. Orhan, N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27 (2013), 1165-1171. |
[8] | J. M. Jahangiri, S. G. Hamidi, S. Abd. Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Sci. Soc., 37 (2014), 633-640. |
[9] | H. Orhan, N. Magesh, V. K. Balaji, Fekete-Szegö problem for certain classes of Ma-Minda biunivalent functions, Afr. Mat., 27 (2016), 889-897. |
[10] | C. Pommerenke, Univalent functions, Vandenhoeck Ruprecht, Göttingen, 1975. |
[11] | H. M. Srivastava, S. Bulut, M. Çağlar, et al. Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), 831-842. |
[12] | H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192. |
[13] | F. Yousef, S. Alroud, M. Illafe, New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems, 2018. Available from: https: //arXiv.org/abs/1808.06514. |
[14] | H. Ö. Göney, G. Murugusundaramoorthy, J. Sokół, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univ. Sapientiae, Math., 10 (2018), 70-84. |
[15] | N. Magesh, V. K. Balaji, C. Abirami, Certain classes of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, 2018. Available from: https://arXiv.org/abs/1810.06216. |
[16] | G. Singh, G. Singh, G. Singh, A subclass of bi-univalent functions defined by generalized Sãlãgean operator related to shell-like curves connected with Fibonacci numbers, Int. J. Math. Math. Sci., 2019 (2019), 1-7. |