Citation: Guoqing Wang. Lower bound for the Erdős-Burgess constant of finite commutative rings[J]. AIMS Mathematics, 2020, 5(5): 4424-4431. doi: 10.3934/math.2020282
[1] | D. A. Burgess, A problem on semi-groups, Studia Sci. Math. Hungar., 4 (1969), 9-11. |
[2] | C. Deng, Davenport constant for commutative rings, J. Number Theory, 172 (2017), 321-342. |
[3] | W. Gao, A. Geroldinger, Zero-sum problems in finite abelian groups: A survey, Expo. Math., 24 (2006), 337-369. |
[4] | W. Gao, Y. Li, J. Peng, An upper bound for the Davenport constant of finite groups, J. Pure Appl. Algebra, 218 (2014), 1838-1844. |
[5] | A. Geroldinger, D. J. Grynkiewicz, The large Davenport constant Ⅰ: Groups with a cyclic, index 2 subgroup, J. Pure Appl. Algebra, 217 (2013), 863-885. |
[6] | A. Geroldinger, M. Liebmann, A. Philipp, On the Davenport constant and on the structure of extremal zero-sum free sequences, Period. Math. Hungar., 64 (2012), 213-225. |
[7] | D. W. H. Gillam, T. E. Hall, N. H. Williams, On finite semigroups and idempotents, Bull. London Math. Soc., 4 (1972), 143-144. |
[8] | P. A. Grillet, Commutative Semigroups, Kluwer Academic Publishers, 2001. |
[9] | J. Hao, H. Wang, L. Zhang, On the modular Erdős-Burgess constant, Open J. Discrete Math., 9 (2019), 11-16. |
[10] | N. Kravitz, A. Sah, A stronger connection between the Erdős-Burgess and Davenport constants, J. Number Theory, 210 (2020), 373-388. |
[11] | J. E. Olson, A combinatorial problem on finite Abelian groups, I, J. Number Theory, 1 (1969), 8-10. |
[12] | G. Wang, Davenport constant for semigroups II, J. Number Theory, 153 (2015), 124-134. |
[13] | G. Wang, Additively irreducible sequences in commutative semigroups, J. Combin. Theory Ser. A, 152 (2017), 380-397. |
[14] | G. Wang, Structure of the largest idempotent-product free sequences in semigroups, J. Number Theory, 195 (2019), 84-95. |
[15] | G. Wang, Erdős-Burgess constant of commutative semigroups, arXiv: 1802.08791. |
[16] | H. Wang, J. Hao, L. Zhang, On the Erdős-Burgess constant of the multiplicative semigroup of a factor ring of $\mathbb{F}_q[x]$, Int. J. Number Theory, 15 (2019), 131-136. |
[17] | H. Wang, L. Zhang, Q. Wang, et al. Davenport constant of the multiplicative semigroup of the quotient ring $\frac{\mathbb{F}_p[x]}{\langle f(x)\rangle}$, Int. J. Number Theory, 12 (2016), 663-669. |
[18] | L. Zhang, H. Wang, Y. Qu, A problem of Wang on Davenport constant for the multiplicative semigroup of the quotient ring of $\mathbb{F}_2[x]$, Colloq. Math., 148 (2017), 123-130. |