Citation: Shahid Ahmad Wani, Kottakkaran Sooppy Nisar. Quasi-monomiality and convergence theorem for the Boas-Buck-Sheffer polynomials[J]. AIMS Mathematics, 2020, 5(5): 4432-4443. doi: 10.3934/math.2020283
[1] | I. Sheffer, Some properties of polynomial sets of type zero, Duke Math. J., 5 (1939), 590-622. doi: 10.1215/S0012-7094-39-00549-1 |
[2] | A. Di Bucchianico, D. Loeb, A selected survey of umbral calculus, Electron. J. Combin, 2 (1995) 28. |
[3] | T. X. He, L. C. Hsu, P. J. S. Shiue, The Sheffer group and the Riordan group, Discrete Appl. Math., 155 (2007), 1895-1909. doi: 10.1016/j.dam.2007.04.006 |
[4] | W. Wang, A determinantal approach to Sheffer sequences, Linear Algebra Appl., 463 (2014), 228-254. doi: 10.1016/j.laa.2014.09.009 |
[5] | S. Khan, M. W. Al-Saad, G. Yasmin, Some properties of Hermite-based Sheffer polynomials, Appl. Math. Comput., 217 (2010), 2169-2183. |
[6] | S. Khan, N. Raza, Monomiality principle, operational methods and family of Laguerre-Sheffer polynomials, J. Math. Anal. Appl., 387 (2012), 90-102. |
[7] | S. Khan, N. Raza, Families of Legendre-Sheffer polynomials, J. Math. Comput. Modell., 55 (2012), 969-982. doi: 10.1016/j.mcm.2011.09.023 |
[8] | S. Khan, M. Riyasat, Determinantal approach to certain mixed special polynomials related to Gould-Hopper polynomials, Appl. Math. Comput., 251 (2015), 599-614. |
[9] | S. Khan, G. Yasmin, N. Ahmad, On a new family related to truncated exponential and Sheffer polynomials, J. Math. Anal. Appl., 418 (2014), 921-937. doi: 10.1016/j.jmaa.2014.04.028 |
[10] | S. Roman, The umbral calculus, Academic Press, New York, 1984. |
[11] | R. P. Boas, R. C. Buck, Polynomials defined by generating relations, Am. Math. Mon., 63 (1956), 626-632. doi: 10.1080/00029890.1956.11988880 |
[12] | W. C. Brenke, On generating functions of polynomial systems, Am. Math. Mon., 52 (1945), 297-301. doi: 10.1080/00029890.1945.11991572 |
[13] | E. D. Rainville, Special functions, Springer Tracts in Modern Physics, New York, 1971. |
[14] | P. Appell, Sur une classe de polynômes, Annales Scientifiques de l'École Normale Supérieure, 1880. |
[15] | J. Steffensen, The poweroid, an extension of the mathematical notion of power, Acta Math., 73 (1941), 333-366. doi: 10.1007/BF02392231 |
[16] | G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle, Adv. Spec. Funct. Appl., (1999), 147-164. |
[17] | Y. B. Cheikh, Some results on quasi-monomiality, Appl. Math. Comput., 141 (2003), 63-76. |
[18] | O. Szasz, Generalization of S. Bernstein's polynomials to the infinite interval, J. Res. Nat. Bur. Standards., 45 (1950), 239-245. doi: 10.6028/jres.045.024 |
[19] | A. Jakimovski, D. Leviatan, Generalized Szász operators for the approximation in the infinite interval, Mathematica (Cluj), 34 (1969), 97-103. |
[20] | M. Ismail, On a generalization of Szász operators, Mathematica (Cluj), 39 (1974), 259-267. |
[21] | S. Sucu, G. İçöz, S. Varma, On some extensions of Szász operators including Boas-Buck-type polynomials, Abstr. Appl. Anal., 2012 (2012), 1-15. |
[22] | S. Khan, M. Riyasat, 2-iterated Sheffer polynomials, arXiv: Classical Anal. ODEs, 2015. |
[23] | P. Korovkin, On convergence of linear positive operators in the space of continuous functions, Dokl Akad Nauk SSSR, 90 (1996), 961-964. |
[24] | I. Gavrea, I. Raşa, Remarks on some quantitative Korovkin-type results, Rev. Anal. Numér. Théor. Approx., 28 (1993) 173-176. |
[25] | V. Zhuk, Functions of the Lip1 class and SN Bernstein's polynomials, Vestnik Leningrad Univ. Mat. Mekh. Astronom., 1 (1989), 25-30. |