Research article

Additive $ \rho $-functional inequalities in non-Archimedean 2-normed spaces

  • Received: 22 October 2020 Accepted: 01 December 2020 Published: 03 December 2020
  • MSC : 39B72, 39B62, 12J25

  • In this paper, we solve the additive $ \rho $-functional inequalities: $ \begin{align*} \|f(x+y)-f(x)-f(y)\| \leq \|\rho(2f(\frac{x+y}{2})-f(x)-f(y))\|, \\ \|2f(\frac{x+y}{2})-f(x)-f(y)\| \leq \|\rho(f(x+y)-f(x)-f(y))\|, \end{align*} $ where $ \rho $ is a fixed non-Archimedean number with $ |\rho| < 1 $. More precisely, we investigate the solutions of these inequalities in non-Archimedean $ 2 $-normed spaces, and prove the Hyers-Ulam stability of these inequalities in non-Archimedean $ 2 $-normed spaces. Furthermore, we also prove the Hyers-Ulam stability of additive $ \rho $-functional equations associated with these inequalities in non-Archimedean $ 2 $-normed spaces.

    Citation: Zhihua Wang, Choonkil Park, Dong Yun Shin. Additive $ \rho $-functional inequalities in non-Archimedean 2-normed spaces[J]. AIMS Mathematics, 2021, 6(2): 1905-1919. doi: 10.3934/math.2021116

    Related Papers:

  • In this paper, we solve the additive $ \rho $-functional inequalities: $ \begin{align*} \|f(x+y)-f(x)-f(y)\| \leq \|\rho(2f(\frac{x+y}{2})-f(x)-f(y))\|, \\ \|2f(\frac{x+y}{2})-f(x)-f(y)\| \leq \|\rho(f(x+y)-f(x)-f(y))\|, \end{align*} $ where $ \rho $ is a fixed non-Archimedean number with $ |\rho| < 1 $. More precisely, we investigate the solutions of these inequalities in non-Archimedean $ 2 $-normed spaces, and prove the Hyers-Ulam stability of these inequalities in non-Archimedean $ 2 $-normed spaces. Furthermore, we also prove the Hyers-Ulam stability of additive $ \rho $-functional equations associated with these inequalities in non-Archimedean $ 2 $-normed spaces.


    加载中


    [1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. doi: 10.2969/jmsj/00210064
    [2] W. Fechner, Stability of a functional inequality associated with the Jordan-von Neumann functional equation, Aequationes Math., 71 (2006), 149-161. doi: 10.1007/s00010-005-2775-9
    [3] P. Găvruţă, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
    [4] S. Gähler, $2$-Metrische Räume und ihere topologische struktur, Math. Nachr., 26 (1963), 115-148. doi: 10.1002/mana.19630260109
    [5] S. Gähler, Lineare $2$-normierte Räume, Math. Nachr., 28 (1964), 1-43. doi: 10.1002/mana.19640280102
    [6] S. Gähler, Über $2$-Banach Räume, Math. Nachr., 42 (1969), 335-347. doi: 10.1002/mana.19690420414
    [7] A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math., 62 (2001), 303-309. doi: 10.1007/PL00000156
    [8] A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl., 5 (2002), 707-710.
    [9] M. Eshaghi Gordji, M. B. Savadkouhi, Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces, Appl. Math. Lett., 23 (2010), 1198-1202. doi: 10.1016/j.aml.2010.05.011
    [10] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222
    [11] M. Kim, M. Kim, Y. Kim, S. Lee, C. Park, 3-Variable additive $\rho$-functional inequalities and equations, Res. Math., 66 (2014), 159-179. doi: 10.1007/s00025-014-0370-x
    [12] C. Kim, S. Park, The generalized Hyers-Ulam stability of additive functional inequalities in non-Archimedean $2$-normed space, Korean J. Math., 22 (2014), 339-348.
    [13] M. S. Moslehian, Th. M. Rassias, Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discrete Math., 1 (2007), 325-334. doi: 10.2298/AADM0702325M
    [14] C. Park, Additive $\rho$-functional inequalities, J. Nonlinear Sci. Appl., 7 (2014), 296-310. doi: 10.22436/jnsa.007.05.02
    [15] C. Park, $C^*$-Ternary biderivations and $C^*$-ternary bihomomorphisms, Math., 6 (2018), Article No. 30.
    [16] C. Park, Bi-additive s-functional inequalities and quasi-$*$-multipliers on Banach algebars, Math., 6 (2018), Article No. 31.
    [17] C. Park, Y. Cho, M. Han, Functional inequalities associated with Jordan-von Neumann-type additive functional equations, J. Inequal. Appl., 2007 (2007), Article ID 41820.
    [18] C. Park, M. Eshaghi Gordji, M. B. Ghaemi, H. Majani, Fixed points and approximately octic mappings in non-Archimedean $2$-normed spaces, J. Inequal. Appl., 2012 (2012), Paper No. 289.
    [19] W. Prager, J. Schwaiger, A system of two inhomogeneous linear functional equations, Acta Math. Hungar., 140 (2013), 377-406. doi: 10.1007/s10474-013-0315-y
    [20] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1
    [21] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math., 66 (2003), 191-200. doi: 10.1007/s00010-003-2684-8
    [22] K. Tamilvanan, J. Lee, C. Park, Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces, AIMS Math., 5 (2020), 5993-6005. doi: 10.3934/math.2020383
    [23] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.
    [24] A. White, $2$-Banach spaces, Doctorial Diss., St. Louis Univ., 1968.
    [25] A. White, $2$-Banach spaces, Math. Nachr., 42 (1969), 43-60.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2484) PDF downloads(340) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog