Loading [Contrib]/a11y/accessibility-menu.js
Research article

Additive $ \rho $-functional inequalities in non-Archimedean 2-normed spaces

  • Received: 22 October 2020 Accepted: 01 December 2020 Published: 03 December 2020
  • MSC : 39B72, 39B62, 12J25

  • In this paper, we solve the additive $ \rho $-functional inequalities: $ \begin{align*} \|f(x+y)-f(x)-f(y)\| \leq \|\rho(2f(\frac{x+y}{2})-f(x)-f(y))\|, \\ \|2f(\frac{x+y}{2})-f(x)-f(y)\| \leq \|\rho(f(x+y)-f(x)-f(y))\|, \end{align*} $ where $ \rho $ is a fixed non-Archimedean number with $ |\rho| < 1 $. More precisely, we investigate the solutions of these inequalities in non-Archimedean $ 2 $-normed spaces, and prove the Hyers-Ulam stability of these inequalities in non-Archimedean $ 2 $-normed spaces. Furthermore, we also prove the Hyers-Ulam stability of additive $ \rho $-functional equations associated with these inequalities in non-Archimedean $ 2 $-normed spaces.

    Citation: Zhihua Wang, Choonkil Park, Dong Yun Shin. Additive $ \rho $-functional inequalities in non-Archimedean 2-normed spaces[J]. AIMS Mathematics, 2021, 6(2): 1905-1919. doi: 10.3934/math.2021116

    Related Papers:

    [1] Zhihua Wang . Approximate mixed type quadratic-cubic functional equation. AIMS Mathematics, 2021, 6(4): 3546-3561. doi: 10.3934/math.2021211
    [2] Kandhasamy Tamilvanan, Jung Rye Lee, Choonkil Park . Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces. AIMS Mathematics, 2021, 6(1): 908-924. doi: 10.3934/math.2021054
    [3] Abasalt Bodaghi, Choonkil Park, Sungsik Yun . Almost multi-quadratic mappings in non-Archimedean spaces. AIMS Mathematics, 2020, 5(5): 5230-5239. doi: 10.3934/math.2020336
    [4] Zhihua Wang . Stability of a mixed type additive-quadratic functional equation with a parameter in matrix intuitionistic fuzzy normed spaces. AIMS Mathematics, 2023, 8(11): 25422-25442. doi: 10.3934/math.20231297
    [5] Lingxiao Lu, Jianrong Wu . Hyers-Ulam-Rassias stability of cubic functional equations in fuzzy normed spaces. AIMS Mathematics, 2022, 7(5): 8574-8587. doi: 10.3934/math.2022478
    [6] K. Tamilvanan, Jung Rye Lee, Choonkil Park . Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces. AIMS Mathematics, 2020, 5(6): 5993-6005. doi: 10.3934/math.2020383
    [7] Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen . Refined stability of the additive, quartic and sextic functional equations with counter-examples. AIMS Mathematics, 2023, 8(6): 14399-14425. doi: 10.3934/math.2023736
    [8] Cure Arenas Jaffeth, Ferrer Sotelo Kandy, Ferrer Villar Osmin . Functions of bounded $ {\bf (2, k)} $-variation in 2-normed spaces. AIMS Mathematics, 2024, 9(9): 24166-24183. doi: 10.3934/math.20241175
    [9] Nazek Alessa, K. Tamilvanan, G. Balasubramanian, K. Loganathan . Stability results of the functional equation deriving from quadratic function in random normed spaces. AIMS Mathematics, 2021, 6(3): 2385-2397. doi: 10.3934/math.2021145
    [10] XuRan Hai, ShuHong Wang . Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals. AIMS Mathematics, 2021, 6(10): 11494-11507. doi: 10.3934/math.2021666
  • In this paper, we solve the additive $ \rho $-functional inequalities: $ \begin{align*} \|f(x+y)-f(x)-f(y)\| \leq \|\rho(2f(\frac{x+y}{2})-f(x)-f(y))\|, \\ \|2f(\frac{x+y}{2})-f(x)-f(y)\| \leq \|\rho(f(x+y)-f(x)-f(y))\|, \end{align*} $ where $ \rho $ is a fixed non-Archimedean number with $ |\rho| < 1 $. More precisely, we investigate the solutions of these inequalities in non-Archimedean $ 2 $-normed spaces, and prove the Hyers-Ulam stability of these inequalities in non-Archimedean $ 2 $-normed spaces. Furthermore, we also prove the Hyers-Ulam stability of additive $ \rho $-functional equations associated with these inequalities in non-Archimedean $ 2 $-normed spaces.


    The study of stability problems for functional equations is related to a question of Ulam [23] in 1940 concerning the stability of group homomorphisms.

    The functional equation

    $ \begin{eqnarray} f(x+y) = f(x)+f(y) \end{eqnarray} $ (1.1)

    is called Cauchy functional equation. Every solution of the Cauchy functional equation is said to be an additive mapping. In $ 1941 $, Hyers [10] gave the first affirmative answer to the question of Ulam for Banach spaces. Hyers' result was generalized by Aoki [1] for additive mappings and by Rassias [20] for linear mappings by considering an unbounded Cauchy difference. In $ 1994 $, Găvruţă [3] provided a further generalization of the Rassias' theorem in which he replaced the unbounded Cauchy difference by a general control function.

    The following functional equation

    $ \begin{eqnarray} 2f(\frac{x+y}{2}) = f(x)+f(y) \end{eqnarray} $ (1.2)

    is called Jensen functional equation. See [15,16,19,22] for more information on functional equations.

    Gilányi [7] and Rätz [21] showed that if $ f $ satisfies the functional inequality

    $ \begin{align} \|2f(x)+2f(y)-f(xy^{-1})\|\leq \|f(xy)\|, \end{align} $ (1.3)

    then $ f $ satisfies the Jordan-Von Neumann functional equation

    $ \begin{align*} 2f(x)+2f(y) = f(xy)+f(xy^{-1}). \end{align*} $

    Fechner [2] and Gilányi [8] proved the generalized Hyers-Ulam stability of the functional inequality (1.1). Park et al. [17] investigated the generalized Hyers-Ulam stability of functional inequalities associated with Jordon-Von Neumann type additive functional equations. Kim et al. [11] solved the additive $ \rho $-functional inequalities in complex normed spaces and proved the Hyers-Ulam stability of the additive $ \rho $-functional inequalities in complex Banach spaces. In $ 2014 $, Park [14] considered the following two additive $ \rho $-functional inequalities

    $ \begin{align} \|f(x+y)-f(x)-f(y)\| \leq \|\rho(2f(\frac{x+y}{2})-f(x)-f(y))\|, \end{align} $ (1.4)
    $ \begin{align} \|2f(\frac{x+y}{2})-f(x)-f(y)\| \leq \|\rho(f(x+y)-f(x)-f(y))\| \end{align} $ (1.5)

    in non-Archimedean Banach spaces and in complex Banach spaces, where $ \rho $ is a fixed non-Archimedean number with $ |\rho| < 1 $ or $ \rho $ is a fixed complex number with $ |\rho| < 1 $.

    In this paper, we establish the solution of the additive $ \rho $-functional inequalities (1.4) and (1.5), and prove the Hyers-Ulam stability of the additive $ \rho $-functional inequalities (1.4) and (1.5) in non-Archimedean $ 2 $-Banach spaces. Moreover, we prove the Hyers-Ulam stability of additve $ \rho $-functional equations associated with the additive $ \rho $-functional inequalities (1.4) and (1.5) in non-Archimedean $ 2 $-Banach spaces.

    Gähler [4,5] has introduced the concept of linear $ 2 $-normed spaces in the middle of the 1960s. Then Gähler [6] and White [24,25] introduced the concept of $ 2 $-Banach spaces. Following [9,12,13,18], we recall some basic facts concerning non-Archimedean normed space and non-Archimedean $ 2 $-normed space and some preliminary results.

    By a non-Archimedean field we mean a field $ {\mathbb{K}} $ equipped with a function (valuation) $ |\cdot| $ from $ {\mathbb{K}} $ into $ [0, \infty) $ such that $ |r| = 0 $ if and only if $ r = 0 $, $ |rs| = |r||s| $, and $ |r+s|\leq \max\{|r|, |s|\} $ for $ r, s \in {\mathbb{K}} $. Clearly $ |1| = |-1| = 1 $ and $ |n|\leq 1 $ for all $ n\in {\mathbb{N}} $. By the trivial valuation we mean the function $ |\cdot| $ taking everything but $ 0 $ into $ 1 $ and $ |0| = 0 $.

    Definition 1.1. (cf. [9,13]) Let $ X $ be a linear space over a scalar field $ {\mathbb{K}} $ with a non-Archimedean non-trivial valuation $ |\cdot| $. A function $ \|\cdot\|:X\to {\mathbb{R}} $ is called a non-Archimedean norm (valuation) if it satisfies the following conditions:

    (i) $ \|x\| = 0 $ if and only if $ x = 0 $;

    (ii) $ \|rx\| = |r|\|x\| $ for all $ r\in {\mathbb{K}} $, $ x\in X $;

    (iii) the strong triangle inequality; namely,

    $ \begin{align*} \|x+y\|\leq \max \{\|x\|, \|y\|\} \end{align*} $

    for all $ x, y\in X $. Then $ (X, \|\cdot\|) $ is called a non-Archimedean normed space.

    Definition 1.2. (cf. [12,18]) Let $ X $ be a linear space over a scalar field $ {\mathbb{K}} $ with a non-Archimedean non-trivial valuation $ |\cdot| $ with $ \dim X > 1 $. A function $ \|\cdot, \cdot\|:X\to {\mathbb{R}} $ is called a non-Archimedean $ 2 $-norm (valuation) if it satisfies the following conditions:

    (NA1) $ \|x, y\| = 0 $ if and only if $ x, y $ are linearly dependent;

    (NA2) $ \|x, y\| = \|y, x\| $;

    (NA3) $ \|rx, y\| = |r|\|x, y\| $;

    (NA4) $ \|x, y+z\|\leq\max\{\|x, y\|, \|x, z\|\} $;

    for all $ r\in {\mathbb{K}} $ and all $ x, y, z\in X $. Then $ (X, \|\cdot, \cdot\|) $ is called a non-Archimedean $ 2 $-normed space.

    According to the conditions in Definition 1.2, we have the following lemma.

    Lemma 1.3. Let $ (X, \|\cdot, \cdot\|) $ be a non-Archimedean $ 2 $-normed space. If $ x\in X $ and $ \|x, y\| = 0 $ for all $ y\in X $, then $ x = 0 $.

    Definition 1.4. A sequence $ \{x_{n}\} $ in a non-Archimedean $ 2 $-normed space $ (X, \|\cdot, \cdot\|) $ is called a Cauchy sequence if there are two linearly independent points $ y, z\in X $ such that

    $ \begin{eqnarray*} \begin{array}{l} \lim\limits_{m, n\to\infty}\|x_{n}-x_{m}, y\| = 0 \end{array} & {\rm \mbox{and}}\; \begin{array}{l} \lim\limits_{m, n\to\infty}\|x_{n}-x_{m}, z\| = 0. \end{array} \end{eqnarray*} $

    Definition 1.5. A sequence $ \{x_{n}\} $ in a non-Archimedean $ 2 $-normed space $ (X, \|\cdot, \cdot\|) $ is called a convergent sequence if there exists an $ x\in X $ such that

    $ \begin{eqnarray*} \lim\limits_{n\to\infty}\|x_{n}-x, y\| = 0 \end{eqnarray*} $

    for all $ y\in X $. In this case, we call that $ \{x_{n}\} $ converges to $ x $ or that $ x $ is the limit of $ \{x_{n}\} $, write $ \{x_{n}\}\to x $ as $ n\to\infty $ or $ \lim\limits_{n\to\infty}x_{n} = x $.

    By $ {\rm{(NA4)}} $, we have

    $ \begin{eqnarray*} \|x_{n}-x_{m}, y\|\leq \max\{\|x_{j+1}-x_{j}, y\|: m\leq j\leq n-1\}, \;\; (n \gt m), \end{eqnarray*} $

    for all $ y\in X $. Hence, a sequence $ \{x_{n}\} $ is Cauchy in $ (X, \|\cdot, \cdot\|) $ if and only if $ \{x_{n+1}-x_{n}\} $ converges to zero in a non-Archimedean $ 2 $-normed space $ (X, \|\cdot, \cdot\|) $.

    Remark 1.6. Let $ (X, \|\cdot, \cdot\|) $ be a non-Archimedean $ 2 $-normed space. One can show that conditions (NA2) and (NA4) in Definition 1.2 imply that

    $ \begin{eqnarray*} \begin{array}{l} \|x+y, z\|\leq \|x, z\|+\|y, z\| \end{array} & {\rm \mbox{and}}\; \begin{array}{l} |\|x-z\|-\|y, z\||\leq \|x-y, z\| \end{array} \end{eqnarray*} $

    for all $ x, y, z\in X $.

    We can easily get the following lemma by Remark 1.6.

    Lemma 1.7. For a convergent sequence $ \{x_{n}\} $ in a non-Archimedean $ 2 $-normed space $ (X, \|\cdot, \cdot\|) $,

    $ \begin{align*} \lim\limits_{n\to \infty}\|x_{n}, y\| = \|\lim\limits_{n\to \infty}x_{n}, y\| \end{align*} $

    for all $ y\in X $.

    Definition 1.8. A non-Archimedean $ 2 $-normed space, in which every Cauchy sequence is a convergent sequence, is called a non-Archimedean $ 2 $-Banach space.

    Throughout this paper, let $ X $ be a non-Archimedean $ 2 $-normed space with $ \dim X > 1 $ and $ Y $ be a non-Archimedean $ 2 $-Banach space with $ \dim Y > 1 $. Let $ {\mathbb{N}} = \{0, 1, 2, \ldots, \} $, and $ \rho $ be a fixed non-Archimedean number with $ |\rho| < 1 $.

    In this section, we solve and investigate the additive $ \rho $-functional inequality (1.4) in non-Archimedean $ 2 $-normed spaces.

    Lemma 2.1. A mapping $ f:X\to Y $ satisfies

    $ \begin{align} \|f(x+y)-f(x)-f(y), \omega\| \leq \|\rho(2f(\frac{x+y}{2})-f(x)-f(y)), \omega\| \end{align} $ (2.1)

    for all $ x, y\in X $ and all $ \omega\in Y $ if and only if $ f:X\to Y $ is additive.

    Proof. Suppose that $ f $ satisfies (2.1). Setting $ x = y = 0 $ in (2.1), we have $ \|f(0), \omega\|\leq \|0, \omega\| $ = 0 for all $ \omega\in Y $ and so $ \|f(0), \omega\| = 0 $ for all $ \omega\in Y $. Hence we get

    $ \begin{align*} f(0) = 0. \end{align*} $

    Putting $ y = x $ in (2.1), we get

    $ \begin{align} \|f(2x)-2f(x), \omega\| \leq \|0, \omega\| \end{align} $ (2.2)

    for all $ x\in X $ and all $ \omega\in Y $. Thus we have

    $ \begin{align} f(\frac{x}{2}) = \frac{1}{2}f(x) \end{align} $ (2.3)

    for all $ x\in X $. It follows from (2.1) and (2.3) that

    $ \begin{align} \|f(x+y)-f(x)-f(y), \omega\| &\leq \|\rho(2f(\frac{x+y}{2})-f(x)-f(y)), \omega\|\\ & = |\rho|\|f(x+y)-f(x)-f(y), \omega\| \end{align} $ (2.4)

    for all $ x, y\in X $ and all $ \omega\in Y $. Hence, we obtain

    $ \begin{align*} f(x+y) = f(x)+f(y) \end{align*} $

    for all $ x, y\in X $.

    The converse is obviously true. This completes the proof of the lemma.

    The following corollary can be found in [14,Corollary 2.2].

    Corollary 2.2. A mapping $ f:X\to Y $ satisfies

    $ \begin{align} f(x+y)-f(x)-f(y) = \rho(2f(\frac{x+y}{2})-f(x)-f(y)) \end{align} $ (2.5)

    for all $ x, y\in X $ if and only if $ f:X\to Y $ is additive.

    Theorem 2.3. Let $ \varphi:X^{2}\to [0, \infty) $ be a function such that

    $ \begin{align} \lim\limits_{j\to \infty}\frac{1}{|2|^{j}}\varphi(2^{j}x, 2^{j}y) = 0 \end{align} $ (2.6)

    for all $ x, y\in X $. Suppose that $ f:X\to Y $ be a mapping satisfying

    $ \begin{align} \|f(x+y)-f(x)-f(y), \omega\| \leq \|\rho(2f(\frac{x+y}{2})-f(x)-f(y)), \omega\|+\varphi(x, y) \end{align} $ (2.7)

    for all $ x, y\in X $ and all $ \omega\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ such that

    $ \begin{align} \|f(x)-A(x), \omega\|\leq \sup\limits_{j\in {\mathbb{N}}}\{\frac{1}{|2|^{j+1}}\varphi(2^{j}x, 2^{j}x)\} \end{align} $ (2.8)

    for all $ x\in X $ and all $ \omega\in Y $.

    Proof. Letting $ y = x $ in (2.6), we get

    $ \begin{align} \|f(2x)-2f(x), \omega\| \leq \varphi(x, x) \end{align} $ (2.9)

    for all $ x\in X $ and all $ \omega\in Y $. So

    $ \begin{align} \|f(x)-\frac{1}{2}f(2x), \omega\| \leq \frac{1}{|2|}\varphi(x, x) \end{align} $ (2.10)

    for all $ x\in X $ and all $ \omega\in Y $. Hence

    $ \begin{align} & \|\frac{1}{2^{l}}f(2^{l}x)-\frac{1}{2^{m}}f(2^{m}x), \omega\| \\ & \leq \max\{\|\frac{1}{2^{l}}f(2^{l}x)-\frac{1}{2^{l+1}}f(2^{l+1}x), \omega\|, \cdots, \|\frac{1}{2^{m-1}}f(2^{m-1}x)-\frac{1}{2^{m}}f(2^{m}x), \omega\| \}\nonumber\\ &\leq\max\{\frac{1}{|2|^{l}}\|f(2^{l}x)-\frac{1}{2}f(2^{l+1}x), \omega\|, \cdots, \frac{1}{|2|^{m-1}}\|f(2^{m-1}x)-\frac{1}{2}f(2^{m}x), \omega\| \}\nonumber\\ &\leq\sup\limits_{j\in\{l, l+1, \ldots\}}\{\frac{1}{|2|^{j+1}}\varphi(2^{j}x, 2^{j}x)\} \end{align} $ (2.11)

    for all nonnegative integers $ m, l $ with $ m > l $ and for all $ x\in X $ and all $ \omega\in Y $. It follows from (2.11) that

    $ \begin{align*} \lim\limits_{l, m\to \infty}\|\frac{1}{2^{l}}f(2^{l}x)-\frac{1}{2^{m}}f(2^{m}x), \omega\| = 0 \end{align*} $

    for all $ x\in X $ and all $ \omega\in Y $. Thus the sequence $ \{\frac{f(2^{n}x)}{2^{n}}\} $ is a Cauchy sequence in $ Y $. Since $ Y $ is a non-Archimedean $ 2 $-Banach space, the sequence $ \{\frac{f(2^{n}x)}{2^{n}}\} $ converges for all $ x\in X $. So one can define the mapping $ A:X\to Y $ by

    $ \begin{align*} A(x): = \lim\limits_{n\to \infty}\frac{f(2^{n}x)}{2^{n}} \end{align*} $

    for all $ x\in X $. That is,

    $ \begin{align*} \lim\limits_{n\to \infty}\|\frac{f(2^{n}x)}{2^{n}}-A(x), \omega\| = 0 \end{align*} $

    for all $ x\in X $ and all $ \omega\in Y $.

    By Lemma 1.7, (2.6) and (2.7), we get

    $ \begin{align} \|&A(x+y)-A(x)-A(y), \omega\|\\ & = \lim\limits_{n\to\infty}\frac{1}{|2|^{n}}\|f(2^{n}(x+y))-f(2^{n}x) -f(2^{n}y), \omega\|\\ &\leq \lim\limits_{n\to\infty}\frac{1}{|2|^{n}}\|\rho(2f(\frac{2^{n}(x+y)}{2})-f(2^{n}x) -f(2^{n}y)), \omega\| +\lim\limits_{n\to\infty}\frac{1}{|2|^{n }}\varphi(2^{n}x, 2^{n}y)\\ & = \|\rho(2A(\frac{x+y}{2})-A(x)-A(y)), \omega\| \end{align} $ (2.12)

    for all $ x, y\in X $ and all $ \omega\in Y $. Thus, the mapping $ A:X\to Y $ is additive by Lemma 2.1.

    By Lemma 1.7 and (2.11), we have

    $ \begin{align*} \|f(x)-A(x), \omega\| = \lim\limits_{m\to \infty}\|f(x)-\frac{f(2^{m}x)}{2^{m}}, \omega\|\leq \sup\limits_{j\in {\mathbb{N}}}\{\frac{1}{|2|^{j+1}}\varphi(2^{j}x, 2^{j}x)\} \end{align*} $

    for all $ x\in X $ and all $ \omega\in Y $. Hence, we obtain (2.8), as desired.

    To prove the uniqueness property of $ A $, Let $ A^{\prime}: X\to Y $ be an another additive mapping satisfying (2.8). Then we have

    $ \begin{align*} \|A(x)-A^{\prime}(x), \omega\|& = \|\frac{1}{2^{n}}A(2^{n}x)-\frac{1}{2^{n}}A^{\prime}(2^{n}x), \omega\|\nonumber\\ &\leq \max\{\|\frac{1}{2^{n}}A(2^{n}x)-\frac{1}{2^{n}}f(2^{n}x), \omega\|, \|\frac{1}{2^{n}}f(2^{n}x)-\frac{1}{2^{n}}A^{\prime}(2^{n}x), \omega\|\}\nonumber\\ &\leq\sup\limits_{j\in {\mathbb{N}}}\{\frac{1}{|2|^{n+j+1}}\varphi(2^{n+j}x, 2^{n+j}x)\}, \end{align*} $

    which tends to zero as $ n\to \infty $ for all $ x\in X $ and all $ \omega\in Y $. By Lemma 1.3, we can conclude that $ A(x) = A^{\prime}(x) $ for all $ x\in X $. This proves the uniqueness of $ A $.

    Corollary 2.4. Let $ r, \theta $ be positive real numbers with $ r > 1 $, and let $ f:X\to Y $ be a mapping such that

    $ \begin{align} \|f(x+y)&-f(x)-f(y), \omega\|\leq \|\rho(2f(\frac{x+y}{2})-f(x)-f(y)), \omega\|+\theta(\|x\|^{r}+\|y\|^{r})\|\omega\| \end{align} $ (2.13)

    for all $ x, y\in X $ and all $ \omega\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ such that

    $ \begin{align} \|f(x)-A(x), \omega\|\leq \frac{2}{|2|}\theta\|x\|^{r}\|\omega\| \end{align} $ (2.14)

    for all $ x\in X $ and all $ \omega\in Y $.

    Proof. The proof follows from Theorem 2.3 by taking $ \varphi(x, y) = \theta(\|x\|^{r}+\|y\|^{r})\|\omega\| $ for all $ x, y\in X $ and all $ \omega\in Y $, as desired.

    Theorem 2.5. Let $ \varphi:X^{2}\to [0, \infty) $ be a function such that

    $ \begin{align} \lim\limits_{j\to \infty}|2|^{j}\varphi(\frac{x}{2^{j}}, \frac{y}{2^{j}}) = 0 \end{align} $ (2.15)

    for all $ x, y\in X $. Suppose that $ f:X\to Y $ be a mapping satisfying

    $ \begin{align} \|f(x+y)-f(x)-f(y), \omega\| \leq \|\rho(2f(\frac{x+y}{2})-f(x)-f(y)), \omega\|+\varphi(x, y) \end{align} $ (2.16)

    for all $ x, y\in X $ and all $ \omega\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ such that

    $ \begin{align} \|f(x)-A(x), \omega\|\leq \sup\limits_{j\in {\mathbb{N}}}\{|2|^{j}\varphi(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}})\} \end{align} $ (2.17)

    for all $ x\in X $ and all $ \omega\in Y $.

    Proof. It follows from (2.9) that

    $ \begin{align} \|f(x)-2f(\frac{x}{2}), \omega\| \leq \varphi(\frac{x}{2}, \frac{x}{2}) \end{align} $ (2.18)

    for all $ x\in X $ and all $ \omega\in Y $. Hence

    $ \begin{align} & \|2^{l}f(\frac{x}{2^{l}})-2^{m}f(\frac{x}{2^{m}}), \omega\| \\ & \leq \max\{\|2^{l}f(\frac{x}{2^{l}})-2^{l+1}f(\frac{x}{2^{l+1}}), \omega\| , \cdots, \|2^{m-1}f(\frac{x}{2^{m-1}})-2^{m}f(\frac{x}{2^{m}}), \omega\| \}\nonumber\\ &\leq\max\{|2|^{l}\|f(\frac{x}{2^{l}})-2f(\frac{x}{2^{l+1}}), \omega\| , \cdots, |2|^{m-1}\|f(\frac{x}{2^{m-1}})-2f(\frac{x}{2^{m}}), \omega\| \}\nonumber\\ &\leq\sup\limits_{j\in\{l, l+1, \ldots\}}\{|2|^{j}\varphi(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}})\} \end{align} $ (2.19)

    for all nonnegative integers $ m, l $ with $ m > l $ and for all $ x\in X $ and all $ \omega\in Y $. It follows from (2.19) that

    $ \begin{align*} \lim\limits_{l, m\to \infty}\|2^{l}f(\frac{x}{2^{l}})-2^{m}f(\frac{x}{2^{m}}), \omega\| = 0 \end{align*} $

    for all $ x\in X $ and all $ \omega\in Y $. Thus the sequence $ \{2^{n}f(\frac{x}{2^{n}})\} $ is a Cauchy sequence in $ Y $. Since $ Y $ is a non-Archimedean $ 2 $-Banach space, the sequence $ \{2^{n}f(\frac{x}{2^{n}})\} $ converges for all $ x\in X $. So one can define the mapping $ A:X\to Y $ by

    $ \begin{align*} A(x): = \lim\limits_{n\to \infty}2^{n}f(\frac{x}{2^{n}}) \end{align*} $

    for all $ x\in X $. That is,

    $ \begin{align*} \lim\limits_{n\to \infty}\|2^{n}f(\frac{x}{2^{n}})-A(x), \omega\| = 0 \end{align*} $

    for all $ x\in X $ and all $ \omega\in Y $. By Lemma 1.7 and (2.19), we have

    $ \begin{align*} \|f(x)-A(x), \omega\| = \lim\limits_{m\to \infty}\|f(x)-2^{m}f(\frac{x}{2^{m}}), \omega\|\leq \sup\limits_{j\in {\mathbb{N}}}\{|2|^{j}\varphi(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}})\} \end{align*} $

    for all $ x\in X $ and all $ \omega\in Y $. Hence, we obtain (2.17), as desired. The rest of the proof is similar to that of Theorem 2.3 and thus it is omitted.

    Corollary 2.6. Let $ r, \theta $ be positive real numbers with $ r < 1 $, and let $ f:X\to Y $ be a mapping satisfying (2.13) for all $ x, y\in X $ and all $ \omega\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ such that

    $ \begin{align} \|f(x)-A(x), \omega\|\leq \frac{2}{|2|^{r}}\theta\|x\|^{r}\|\omega\| \end{align} $ (2.20)

    for all $ x\in X $ and all $ \omega\in Y $.

    Let $ A(x, y): = f(x+y)-f(x)-f(y) $ and $ B(x, y): = \rho(2f(\frac{x+y}{2})-f(x)-f(y)) $ for all $ x, y\in X $. For $ x, y\in X $ and $ \omega\in Y $ with $ \|A(x, y), \omega\|\leq \|B(x, y), \omega\| $, we have

    $ \begin{align*} \|A(x, y), \omega\|-\|B(x, y), \omega\|\leq \|A(x, y)-B(x, y), \omega\|. \end{align*} $

    For $ x, y\in X $ and $ \omega\in Y $ with $ \|A(x, y), \omega\| > \|B(x, y), \omega\| $, we have

    $ \begin{align*} \|A(x, y), \omega\|& = \|A(x, y)-B(x, y)+B(x, y), \omega\|\nonumber\\ & \leq \max\{\|A(x, y)-B(x, y), \omega\|, \|B(x, y), \omega\|\}\nonumber\\ & = \|A(x, y)-B(x, y), \omega\|\nonumber\\ & \leq \|A(x, y)-B(x, y), \omega\|+\|B(x, y), \omega\|. \end{align*} $

    So we can obtain

    $ \begin{align*} \|f(x+y)&-f(x)-f(y), \omega\|-\|\rho(2f(\frac{x+y}{2})-f(x)-f(y)), \omega\|\nonumber\\ & \leq \|f(x+y)-f(x)-f(y)-\rho(2f(\frac{x+y}{2})-f(x)-f(y)), \omega\|. \end{align*} $

    As corollaries of Theorems 2.3 and 2.5, we obtain the Hyers-Ulam stability results for the additive $ \rho $-functional equation associated with the additive $ \rho $-functional inequality (1.4) in non-Archimedean $ 2 $-Banach spaces.

    Corollary 2.7. Let $ \varphi:X^{2}\to [0, \infty) $ be a function and let $ f:X\to Y $ be a mapping satisfying (2.6) and

    $ \begin{align} \|f(x+y)-f(x)-f(y)-\rho(2f(\frac{x+y}{2})-f(x)-f(y)), \omega\|\leq \varphi(x, y) \end{align} $ (2.21)

    for all $ x, y\in X $ and all $ \omega\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ satisfying (2.8) for all $ x\in X $ and all $ \omega\in Y $.

    Corollary 2.8. Let $ r, \theta $ be positive real numbers with $ r > 1 $, and let $ f:X\to Y $ be a mapping such that

    $ \begin{align} \|f(x+y)-f(x)-f(y)-\rho(2f(\frac{x+y}{2})-f(x)-f(y)), \omega\| \leq\theta(\|x\|^{r}+\|y\|^{r})\|\omega\| \end{align} $ (2.22)

    for all $ x, y\in X $ and all $ \omega\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ satisfying (2.14) for all $ x\in X $ and all $ \omega\in Y $.

    Corollary 2.9. Let $ \varphi:X^{2}\to [0, \infty) $ be a function and let $ f:X\to Y $ be a mapping satisfying (2.15) and (2.21) for all $ x, y\in X $ and all $ \omega\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ satisfying (2.17) for all $ x\in X $ and all $ \omega\in Y $.

    Corollary 2.10. Let $ r, \theta $ be positive real numbers with $ r < 1 $, and let $ f:X\to Y $ be a mapping satisfying (2.22) for all $ x, y\in X $ and all $ \omega\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ satisfying (2.20) for all $ x\in X $ and all $ \omega\in Y $.

    In this section, we solve and investigate the additive $ \rho $-functional inequality (1.5) in non-Archimedean $ 2 $-normed spaces.

    Lemma 3.1. A mapping $ f:X\to Y $ satisfies $ f(0) = 0 $ and

    $ \begin{align} \|2f(\frac{x+y}{2})-f(x)-f(y), \upsilon\| \leq \|\rho(f(x+y)-f(x)-f(y)), \upsilon\| \end{align} $ (3.1)

    for all $ x, y\in X $ and all $ \upsilon \in Y $ if and only if $ f:X\to Y $ is additive.

    Proof. Suppose that $ f $ satisfies (3.1). Letting $ y = 0 $ in (3.1), we have

    $ \begin{align} \|2f(\frac{x}{2})-f(x), \upsilon\| \leq \|0, \upsilon\| = 0 \end{align} $ (3.2)

    for all $ x\in X $ and all $ \upsilon\in Y $. Thus we have

    $ \begin{align} f(\frac{x}{2}) = \frac{1}{2}f(x) \end{align} $ (3.3)

    for all $ x\in X $. It follows from (3.1) and (3.3) that

    $ \begin{align} \|f(x+y)-f(x)-f(y), \upsilon\| & = \|2f(\frac{x+y}{2})-f(x)-f(y), \upsilon\|\\ &\leq|\rho|\|f(x+y)-f(x)-f(y), \upsilon\| \end{align} $ (3.4)

    for all $ x, y\in X $ and all $ \upsilon\in Y $. Hence, we obtain

    $ \begin{align*} f(x+y) = f(x)+f(y) \end{align*} $

    for all $ x, y\in X $.

    The converse is obviously true. This completes the proof of the lemma.

    The following corollary can be found in [14,Corollary 3.2].

    Corollary 3.2. A mapping $ f:X\to Y $ satisfies $ f(0) = 0 $ and

    $ \begin{align} 2f(\frac{x+y}{2})-f(x)-f(y) = \rho(f(x+y)-f(x)-f(y)) \end{align} $ (3.5)

    for all $ x, y\in X $ if and only if $ f:X\to Y $ is additive.

    Theorem 3.3. Let $ \phi:X^{2}\to [0, \infty) $ be a function such that

    $ \begin{align} \lim\limits_{j\to \infty}\frac{1}{|2|^{j}}\phi(2^{j}x, 2^{j}y) = 0 \end{align} $ (3.6)

    for all $ x, y\in X $. Suppose that $ f:X\to Y $ be a mapping satisfying $ f(0) = 0 $ and

    $ \begin{align} \|2f(\frac{x+y}{2})-f(x)-f(y), \upsilon\| \leq \|\rho(f(x+y)-f(x)-f(y)), \upsilon\|+\phi(x, y) \end{align} $ (3.7)

    for all $ x, y\in X $ and all $ \upsilon\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ such that

    $ \begin{align} \|f(x)-A(x), \upsilon\|\leq \sup\limits_{j\in {\mathbb{N}}}\{\frac{1}{|2|^{j+1}}\phi(2^{j+1}x, 0)\} \end{align} $ (3.8)

    for all $ x\in X $ and all $ \upsilon\in Y $.

    Proof. Letting $ y = 0 $ in (3.6), we get

    $ \begin{align} \|2f(\frac{x}{2})-f(x), \upsilon\| \leq \phi(x, 0) \end{align} $ (3.9)

    for all $ x\in X $ and all $ \upsilon\in Y $. So

    $ \begin{align} \|f(x)-\frac{1}{2}f(2x), \upsilon\| \leq \frac{1}{|2|}\phi(2x, 0) \end{align} $ (3.10)

    for all $ x\in X $ and all $ \upsilon\in Y $. Hence

    $ \begin{align} & \|\frac{1}{2^{l}}f(2^{l}x)-\frac{1}{2^{m}}f(2^{m}x), \upsilon\| \\ & \leq \max\{\|\frac{1}{2^{l}}f(2^{l}x)-\frac{1}{2^{l+1}}f(2^{l+1}x), \upsilon\| , \cdots, \|\frac{1}{2^{m-1}}f(2^{m-1}x)-\frac{1}{2^{m}}f(2^{m}x), \upsilon\| \}\nonumber\\ &\leq\max\{\frac{1}{|2|^{l}}\|f(2^{l}x)-\frac{1}{2}f(2^{l+1}x), \upsilon\| , \cdots, \frac{1}{|2|^{m-1}}\|f(2^{m-1}x)-\frac{1}{2}f(2^{m}x), \upsilon\| \}\nonumber\\ &\leq\sup\limits_{j\in\{l, l+1, \ldots\}}\{\frac{1}{|2|^{j+1}}\phi(2^{j+1}x, 0)\} \end{align} $ (3.11)

    for all nonnegative integers $ m, l $ with $ m > l $ and for all $ x\in X $ and all $ \upsilon\in Y $. It follows from (3.11) that

    $ \begin{align*} \lim\limits_{l, m\to \infty}\|\frac{1}{2^{l}}f(2^{l}x)-\frac{1}{2^{m}}f(2^{m}x), \upsilon\| = 0 \end{align*} $

    for all $ x\in X $ and all $ \upsilon\in Y $. Thus the sequence $ \{\frac{f(2^{n}x)}{2^{n}}\} $ is a Cauchy sequence in $ Y $. Since $ Y $ is a non-Archimedean $ 2 $-Banach space, the sequence $ \{\frac{f(2^{n}x)}{2^{n}}\} $ converges for all $ x\in X $. So one can define the mapping $ A:X\to Y $ by

    $ \begin{align*} A(x): = \lim\limits_{n\to \infty}\frac{f(2^{n}x)}{2^{n}} \end{align*} $

    for all $ x\in X $. That is,

    $ \begin{align*} \lim\limits_{n\to \infty}\|\frac{f(2^{n}x)}{2^{n}}-A(x), \upsilon\| = 0 \end{align*} $

    for all $ x\in X $ and all $ \upsilon\in Y $.

    By Lemma 1.7, (3.6) and (3.7), we get

    $ \begin{align} \|&2A(\frac{x+y}{2})-A(x)-A(y), \upsilon\|\\ & = \lim\limits_{n\to\infty}\frac{1}{|2|^{n}}\|2f(\frac{2^{n}(x+y)}{2})-f(2^{n}x) -f(2^{n}y), \upsilon\| \\ &\leq\lim\limits_{n\to\infty}\frac{1}{|2|^{n}}\|\rho(f(2^{n}(x+y))-f(2^{n}x) -f(2^{n}y)), \upsilon\|+\lim\limits_{n\to\infty}\frac{1}{|2|^{n }}\phi(2^{n}x, 2^{n}y) \\ & = \|\rho(A(x+y)-A(x)-A(y)), \upsilon\| \end{align} $ (3.12)

    for all $ x, y\in X $ and all $ \upsilon\in Y $. Thus, the mapping $ A:X\to Y $ is additive by Lemma 3.1.

    By Lemma 1.7 and (3.11), we have

    $ \begin{align*} \|f(x)-A(x), \upsilon\| = \lim\limits_{m\to \infty}\|f(x)-\frac{f(2^{m}x)}{2^{m}}, \upsilon\|\leq \sup\limits_{j\in {\mathbb{N}}}\{\frac{1}{|2|^{j+1}}\phi(2^{j+1}x, 0)\} \end{align*} $

    for all $ x\in X $ and all $ \upsilon\in Y $. Hence, we obtain (3.8), as desired.

    To prove the uniqueness property of $ A $, Let $ A^{\prime}: X\to Y $ be an another additive mapping satisfying (3.8). Then we have

    $ \begin{align*} \|A(x)&-A^{\prime}(x), \upsilon\| = \|\frac{1}{2^{n}}A(2^{n}x)-\frac{1}{2^{n}}A^{\prime}(2^{n}x), \upsilon\|\nonumber\\ &\leq \max\{\|\frac{1}{2^{n}}A(2^{n}x)-\frac{1}{2^{n}}f(2^{n}x), \upsilon\|, \|\frac{1}{2^{n}}f(2^{n}x)-\frac{1}{2^{n}}A^{\prime}(2^{n}x), \upsilon\|\}\nonumber\\ &\leq\sup\limits_{j\in {\mathbb{N}}}\{\frac{1}{|2|^{n+j+1}}\phi(2^{n+j+1}x, 0)\}, \end{align*} $

    which tends to zero as $ n\to \infty $ for all $ x\in X $ and all $ \upsilon\in Y $. By Lemma 1.3, we can conclude that $ A(x) = A^{\prime}(x) $ for all $ x\in X $. This proves the uniqueness of $ A $.

    Corollary 3.4. Let $ s, \delta $ be positive real numbers with $ s > 1 $, and let $ f:X\to Y $ be a mapping satisfying $ f(0) = 0 $ and

    $ \begin{align} \|2f(\frac{x+y}{2})-f(x)-f(y), \upsilon\|\leq \|\rho(f(x+y)-f(x)-(y)), \upsilon\|+\delta(\|x\|^{s}+\|y\|^{s})\|\upsilon\| \end{align} $ (3.13)

    for all $ x, y\in X $ and all $ \upsilon\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ such that

    $ \begin{align} \|f(x)-A(x), \upsilon\|\leq \frac{|2|^{s}}{|2|}\delta\|x\|^{s}\|\upsilon\| \end{align} $ (3.14)

    for all $ x\in X $ and all $ \upsilon\in Y $.

    Proof. The proof follows from Theorem 3.3 by taking $ \phi(x, y) = \delta(\|x\|^{s}+\|y\|^{s})\|\upsilon\| $ for all $ x, y\in X $ and all $ \upsilon\in Y $, as desired.

    Theorem 3.5. Let $ \phi:X^{2}\to [0, \infty) $ be a function such that

    $ \begin{align} \lim\limits_{j\to \infty}|2|^{j}\phi(\frac{x}{2^{j}}, \frac{y}{2^{j}}) = 0 \end{align} $ (3.15)

    for all $ x, y\in X $. Suppose that $ f:X\to Y $ be a mapping satisfying $ f(0) = 0 $ and

    $ \begin{align} \|2f(\frac{x+y}{2})-f(x)-f(y), \upsilon\| \leq \|\rho(f(x+y)-f(x)-f(y)), \upsilon\|+\phi(x, y) \end{align} $ (3.16)

    for all $ x, y\in X $ and all $ \upsilon\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ such that

    $ \begin{align} \|f(x)-A(x), \upsilon\|\leq \sup\limits_{j\in {\mathbb{N}}}\{|2|^{j}\phi(\frac{x}{2^{j}}, 0)\} \end{align} $ (3.17)

    for all $ x\in X $ and all $ \upsilon\in Y $.

    Proof. It follows from (3.9) that

    $ \begin{align} \|f(x)-2f(\frac{x}{2}), \upsilon\| \leq \phi(x, 0) \end{align} $ (3.18)

    for all $ x\in X $ and all $ \upsilon\in Y $. Hence

    $ \begin{align} & \|2^{l}f(\frac{x}{2^{l}})-2^{m}f(\frac{x}{2^{m}}), \upsilon\| \\ & \leq \max\{\|2^{l}f(\frac{x}{2^{l}})-2^{l+1}f(\frac{x}{2^{l+1}}), \upsilon\| , \cdots, \|2^{m-1}f(\frac{x}{2^{m-1}})-2^{m}f(\frac{x}{2^{m}}), \upsilon\| \}\nonumber\\ &\leq\max\{|2|^{l}\|f(\frac{x}{2^{l}})-2f(\frac{x}{2^{l+1}}), \upsilon\| , \cdots, |2|^{m-1}\|f(\frac{x}{2^{m-1}})-2f(\frac{x}{2^{m}}), \upsilon\| \}\nonumber\\ &\leq\sup\limits_{j\in\{l, l+1, \ldots\}}\{|2|^{j}\phi(\frac{x}{2^{j}}, 0)\} \end{align} $ (3.19)

    for all nonnegative integers $ m, l $ with $ m > l $ and for all $ x\in X $ and all $ \upsilon\in Y $. It follows from (3.19) that

    $ \begin{align*} \lim\limits_{l, m\to \infty}\|2^{l}f(\frac{x}{2^{l}})-2^{m}f(\frac{x}{2^{m}}), \upsilon\| = 0 \end{align*} $

    for all $ x\in X $ and all $ \upsilon\in Y $. Thus the sequence $ \{2^{n}f(\frac{x}{2^{n}})\} $ is a Cauchy sequence in $ Y $. Since $ Y $ is a non-Archimedean $ 2 $-Banach space, the sequence $ \{2^{n}f(\frac{x}{2^{n}})\} $ converges for all $ x\in X $. So one can define the mapping $ A:X\to Y $ by

    $ \begin{align*} A(x): = \lim\limits_{n\to \infty}2^{n}f(\frac{x}{2^{n}}) \end{align*} $

    for all $ x\in X $. That is,

    $ \begin{align*} \lim\limits_{n\to \infty}\|2^{n}f(\frac{x}{2^{n}})-A(x), \upsilon\| = 0 \end{align*} $

    for all $ x\in X $ and all $ \upsilon\in Y $. By Lemma 1.7 and (3.19), we have

    $ \begin{align*} \|f(x)-A(x), \upsilon\| = \lim\limits_{m\to \infty}\|f(x)-2^{m}f(\frac{x}{2^{m}}), \upsilon\|\leq \sup\limits_{j\in {\mathbb{N}}}\{|2|^{j}\phi(\frac{x}{2^{j}}, 0)\} \end{align*} $

    for all $ x\in X $ and all $ \upsilon\in Y $. Hence, we obtain (3.17), as desired. The rest of the proof is similar to that of Theorem 3.3 and thus it is omitted.

    Corollary 3.6. Let $ s, \delta $ be positive real numbers with $ s < 1 $, and let $ f:X\to Y $ be a mapping satisfying $ f(0) = 0 $ and (3.13) for all $ x, y\in X $ and all $ \upsilon\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ such that

    $ \begin{align} \|f(x)-A(x), \upsilon\|\leq \delta\|x\|^{s}\|\upsilon\| \end{align} $ (3.20)

    for all $ x\in X $ and all $ \upsilon\in Y $.

    Let $ \tilde{A}(x, y): = 2f(\frac{x+y}{2})-f(x)-f(y) $ and $ \tilde{B}(x, y): = \rho(f(x+y)-f(x)-f(y)) $ for all $ x, y\in X $. For $ x, y\in X $ and $ \upsilon\in Y $ with $ \|\tilde{A}(x, y), \upsilon\|\leq \|\tilde{B}(x, y), \upsilon\| $, we have

    $ \begin{align*} \|\tilde{A}(x, y), \upsilon\|-\|\tilde{B}(x, y), \upsilon\|\leq \|\tilde{A}(x, y)-\tilde{B}(x, y), \upsilon\|. \end{align*} $

    For $ x, y\in X $ and $ \upsilon\in Y $ with $ \|\tilde{A}(x, y), \upsilon\| > \|\tilde{B}(x, y), \upsilon\| $, we have

    $ \begin{align*} \|\tilde{A}(x, y), \upsilon\|& = \|\tilde{A}(x, y)-\tilde{B}(x, y)+\tilde{B}(x, y), \upsilon\|\nonumber\\ & \leq \max\{\|\tilde{A}(x, y)-\tilde{B}(x, y), \upsilon\|, \|\tilde{B}(x, y), \upsilon\|\}\nonumber\\ & = \|\tilde{A}(x, y)-\tilde{B}(x, y), \upsilon\|\nonumber\\ & \leq \|\tilde{A}(x, y)-\tilde{B}(x, y), \upsilon\|+\|\tilde{B}(x, y), \upsilon\|. \end{align*} $

    So we can obtain

    $ \begin{align*} \|2f(\frac{x+y}{2})&-f(x)-f(y), \upsilon\|-\|\rho(f(x+y)-f(x)-f(y)), \upsilon\|\nonumber\\ & \leq \|2f(\frac{x+y}{2})-f(x)-f(y)-\rho(f(x+y)-f(x)-f(y)), \upsilon\|. \end{align*} $

    As corollaries of Theorems 3.3 and 3.5, we obtain the Hyers-Ulam stability results for the additive $ \rho $-functional equation associated with the additive $ \rho $-functional inequality (1.5) in non-Archimedean $ 2 $-Banach spaces.

    Corollary 3.7. Let $ \phi:X^{2}\to [0, \infty) $ be a function and let $ f:X\to Y $ be a mapping satisfying $ f(0) = 0 $, (3.6) and

    $ \begin{align} \|2f(\frac{x+y}{2})-f(x)-f(y)-\rho(f(x+y)-f(x)-f(y)), \upsilon\|\leq \phi(x, y) \end{align} $ (3.21)

    for all $ x, y\in X $ and all $ \upsilon\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ satisfying (3.8) for all $ x\in X $ and all $ \upsilon\in Y $.

    Corollary 3.8. Let $ s, \delta $ be positive real numbers with $ s > 1 $, and let $ f:X\to Y $ be a mapping satisfying $ f(0) = 0 $ and

    $ \begin{align} \|2f(\frac{x+y}{2})-f(x)-f(y)-\rho(f(x+y)-f(x)-(y)), \upsilon\| \leq\delta(\|x\|^{s}+\|y\|^{s})\|\upsilon\| \end{align} $ (3.22)

    for all $ x, y\in X $ and all $ \upsilon\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ satisfying (3.14) for all $ x\in X $ and all $ \upsilon\in Y $.

    Corollary 3.9. Let $ \phi:X^{2}\to [0, \infty) $ be a function and let $ f:X\to Y $ be a mapping satisfying $ f(0) = 0 $, (3.15) and (3.21) for all $ x, y\in X $ and all $ \upsilon\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ satisfying (3.17) for all $ x\in X $ and all $ \upsilon\in Y $.

    Corollary 3.10. Let $ s, \delta $ be positive real numbers with $ s < 1 $, and let $ f:X\to Y $ be a mapping satisfying $ f(0) = 0 $ and (3.22) for all $ x, y\in X $ and all $ \upsilon\in Y $. Then there exists a unique additive mapping $ A:X\to Y $ satisfying (3.20) for all $ x\in X $ and all $ \upsilon\in Y $.

    In this paper, we have solved the additive $ \rho $-functional inequalities:

    $ \begin{align*} \|f(x+y)-f(x)-f(y)\| \leq \|\rho(2f(\frac{x+y}{2})-f(x)-f(y))\|, \\ \|2f(\frac{x+y}{2})-f(x)-f(y)\| \leq \|\rho(f(x+y)-f(x)-f(y))\|, \end{align*} $

    where $ \rho $ is a fixed non-Archimedean number with $ |\rho| < 1 $. More precisely, we have investigated the solutions of these inequalities in non-Archimedean $ 2 $-normed spaces, and have proved the Hyers-Ulam stability of these inequalities in non-Archimedean $ 2 $-normed spaces. Furthermore, we have also proved the Hyers-Ulam stability of additive $ \rho $-functional equations associated with these inequalities in non-Archimedean $ 2 $-normed spaces.

    We would like to express our sincere gratitude to the anonymous referees for their helpful comments that will help to improve the quality of the manuscript.

    The authors equally conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

    The authors declare that they have no competing interests.



    [1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. doi: 10.2969/jmsj/00210064
    [2] W. Fechner, Stability of a functional inequality associated with the Jordan-von Neumann functional equation, Aequationes Math., 71 (2006), 149-161. doi: 10.1007/s00010-005-2775-9
    [3] P. Găvruţă, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
    [4] S. Gähler, $2$-Metrische Räume und ihere topologische struktur, Math. Nachr., 26 (1963), 115-148. doi: 10.1002/mana.19630260109
    [5] S. Gähler, Lineare $2$-normierte Räume, Math. Nachr., 28 (1964), 1-43. doi: 10.1002/mana.19640280102
    [6] S. Gähler, Über $2$-Banach Räume, Math. Nachr., 42 (1969), 335-347. doi: 10.1002/mana.19690420414
    [7] A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math., 62 (2001), 303-309. doi: 10.1007/PL00000156
    [8] A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl., 5 (2002), 707-710.
    [9] M. Eshaghi Gordji, M. B. Savadkouhi, Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces, Appl. Math. Lett., 23 (2010), 1198-1202. doi: 10.1016/j.aml.2010.05.011
    [10] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222
    [11] M. Kim, M. Kim, Y. Kim, S. Lee, C. Park, 3-Variable additive $\rho$-functional inequalities and equations, Res. Math., 66 (2014), 159-179. doi: 10.1007/s00025-014-0370-x
    [12] C. Kim, S. Park, The generalized Hyers-Ulam stability of additive functional inequalities in non-Archimedean $2$-normed space, Korean J. Math., 22 (2014), 339-348.
    [13] M. S. Moslehian, Th. M. Rassias, Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discrete Math., 1 (2007), 325-334. doi: 10.2298/AADM0702325M
    [14] C. Park, Additive $\rho$-functional inequalities, J. Nonlinear Sci. Appl., 7 (2014), 296-310. doi: 10.22436/jnsa.007.05.02
    [15] C. Park, $C^*$-Ternary biderivations and $C^*$-ternary bihomomorphisms, Math., 6 (2018), Article No. 30.
    [16] C. Park, Bi-additive s-functional inequalities and quasi-$*$-multipliers on Banach algebars, Math., 6 (2018), Article No. 31.
    [17] C. Park, Y. Cho, M. Han, Functional inequalities associated with Jordan-von Neumann-type additive functional equations, J. Inequal. Appl., 2007 (2007), Article ID 41820.
    [18] C. Park, M. Eshaghi Gordji, M. B. Ghaemi, H. Majani, Fixed points and approximately octic mappings in non-Archimedean $2$-normed spaces, J. Inequal. Appl., 2012 (2012), Paper No. 289.
    [19] W. Prager, J. Schwaiger, A system of two inhomogeneous linear functional equations, Acta Math. Hungar., 140 (2013), 377-406. doi: 10.1007/s10474-013-0315-y
    [20] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1
    [21] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math., 66 (2003), 191-200. doi: 10.1007/s00010-003-2684-8
    [22] K. Tamilvanan, J. Lee, C. Park, Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces, AIMS Math., 5 (2020), 5993-6005. doi: 10.3934/math.2020383
    [23] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.
    [24] A. White, $2$-Banach spaces, Doctorial Diss., St. Louis Univ., 1968.
    [25] A. White, $2$-Banach spaces, Math. Nachr., 42 (1969), 43-60.
  • This article has been cited by:

    1. El-sayed El-hady, Janusz Brzdęk, On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey II, 2022, 14, 2073-8994, 1365, 10.3390/sym14071365
    2. Hemen Dutta, B. V. Senthil Kumar, S. Suresh, Non-Archimedean stabilities of multiplicative inverse µ-functional inequalities, 2024, 32, 1844-0835, 141, 10.2478/auom-2024-0008
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2737) PDF downloads(348) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog