Citation: Zhihua Wang, Choonkil Park, Dong Yun Shin. Additive $ \rho $-functional inequalities in non-Archimedean 2-normed spaces[J]. AIMS Mathematics, 2021, 6(2): 1905-1919. doi: 10.3934/math.2021116
[1] | T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. doi: 10.2969/jmsj/00210064 |
[2] | W. Fechner, Stability of a functional inequality associated with the Jordan-von Neumann functional equation, Aequationes Math., 71 (2006), 149-161. doi: 10.1007/s00010-005-2775-9 |
[3] | P. Găvruţă, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. |
[4] | S. Gähler, $2$-Metrische Räume und ihere topologische struktur, Math. Nachr., 26 (1963), 115-148. doi: 10.1002/mana.19630260109 |
[5] | S. Gähler, Lineare $2$-normierte Räume, Math. Nachr., 28 (1964), 1-43. doi: 10.1002/mana.19640280102 |
[6] | S. Gähler, Über $2$-Banach Räume, Math. Nachr., 42 (1969), 335-347. doi: 10.1002/mana.19690420414 |
[7] | A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math., 62 (2001), 303-309. doi: 10.1007/PL00000156 |
[8] | A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl., 5 (2002), 707-710. |
[9] | M. Eshaghi Gordji, M. B. Savadkouhi, Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces, Appl. Math. Lett., 23 (2010), 1198-1202. doi: 10.1016/j.aml.2010.05.011 |
[10] | D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222 |
[11] | M. Kim, M. Kim, Y. Kim, S. Lee, C. Park, 3-Variable additive $\rho$-functional inequalities and equations, Res. Math., 66 (2014), 159-179. doi: 10.1007/s00025-014-0370-x |
[12] | C. Kim, S. Park, The generalized Hyers-Ulam stability of additive functional inequalities in non-Archimedean $2$-normed space, Korean J. Math., 22 (2014), 339-348. |
[13] | M. S. Moslehian, Th. M. Rassias, Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discrete Math., 1 (2007), 325-334. doi: 10.2298/AADM0702325M |
[14] | C. Park, Additive $\rho$-functional inequalities, J. Nonlinear Sci. Appl., 7 (2014), 296-310. doi: 10.22436/jnsa.007.05.02 |
[15] | C. Park, $C^*$-Ternary biderivations and $C^*$-ternary bihomomorphisms, Math., 6 (2018), Article No. 30. |
[16] | C. Park, Bi-additive s-functional inequalities and quasi-$*$-multipliers on Banach algebars, Math., 6 (2018), Article No. 31. |
[17] | C. Park, Y. Cho, M. Han, Functional inequalities associated with Jordan-von Neumann-type additive functional equations, J. Inequal. Appl., 2007 (2007), Article ID 41820. |
[18] | C. Park, M. Eshaghi Gordji, M. B. Ghaemi, H. Majani, Fixed points and approximately octic mappings in non-Archimedean $2$-normed spaces, J. Inequal. Appl., 2012 (2012), Paper No. 289. |
[19] | W. Prager, J. Schwaiger, A system of two inhomogeneous linear functional equations, Acta Math. Hungar., 140 (2013), 377-406. doi: 10.1007/s10474-013-0315-y |
[20] | Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1 |
[21] | J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math., 66 (2003), 191-200. doi: 10.1007/s00010-003-2684-8 |
[22] | K. Tamilvanan, J. Lee, C. Park, Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces, AIMS Math., 5 (2020), 5993-6005. doi: 10.3934/math.2020383 |
[23] | S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964. |
[24] | A. White, $2$-Banach spaces, Doctorial Diss., St. Louis Univ., 1968. |
[25] | A. White, $2$-Banach spaces, Math. Nachr., 42 (1969), 43-60. |