In this paper we study the existence of multiple nontrivial solutions of the coupled Schrödinger system with external sources terms as perturbations. This type of the system arises from Bose-Einstein condensate. As these external sources terms are nonlinear functions and small in some sense, we use fibre map to divide the Nehari manifold into threes parts, and then prove the existence of a nontrivial ground state solution and a bound state solution.
Citation: Xiaoyong Qian, Jun Wang, Maochun Zhu. Existence of solutions for a coupled Schrödinger equations with critical exponent[J]. Electronic Research Archive, 2022, 30(7): 2730-2747. doi: 10.3934/era.2022140
In this paper we study the existence of multiple nontrivial solutions of the coupled Schrödinger system with external sources terms as perturbations. This type of the system arises from Bose-Einstein condensate. As these external sources terms are nonlinear functions and small in some sense, we use fibre map to divide the Nehari manifold into threes parts, and then prove the existence of a nontrivial ground state solution and a bound state solution.
[1] | N. Akhmediev, A. Ankiewicz, Partially coherent solitons on a finite background, Phys. Rev. Lett., 82 (1999), 2661–2664. https://doi.org/10.1103/PhysRevLett.82.2661 doi: 10.1103/PhysRevLett.82.2661 |
[2] | B. Esry, C. Greene, J. Burke, J. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78 (1997), 3594–3597. https://doi.org/10.1103/PhysRevLett.78.3594 doi: 10.1103/PhysRevLett.78.3594 |
[3] | A. Ambrosetti, E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris, 342 (2006), 453–458. https://doi.org/10.1016/j.crma.2006.01.024 doi: 10.1016/j.crma.2006.01.024 |
[4] | A. Ambrosetti, E. Colorado, Standing waves of some coupled nonlinear Schr${\rm{\ddot d}}$inger equations, J. Lond. Math. Soc., 75 (2007), 67–82. |
[5] | T. Bartsch, Z.-Q. Wang, Note on ground states of nonlinear Schrödinger systems, J. Partial Differ. Equ., 19 (2006), 2000–2007. |
[6] | T. Bartsch, Z.-Q. Wang, J.-C. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2 (2007), 353–367. https://doi.org/10.1007/s11784-007-0033-6 doi: 10.1007/s11784-007-0033-6 |
[7] | Z.-J. Chen, W. Zou, An optimal constant for the existence of least energy solutions of a coupled Schrödinger system, Calc. Var. Partial Differ. Equ., 48 (2013), 695–711. https://doi.org/10.1007/s00526-012-0568-2 doi: 10.1007/s00526-012-0568-2 |
[8] | Z.-J. Chen, C-S. Lin, Asymptotic Behavior of Least Energy Solutions for a Critical Elliptic System, Int. Math. Res. Not., 21 (2015), 11045–11082. https://doi.org/10.1093/imrn/rnv016 doi: 10.1093/imrn/rnv016 |
[9] | T. Lin, J. Wei, Ground state of N coupled nonlinear Schrödinger equations in $\mathbb{R}^n$, $n\leq3$, Commun. Math. Phys., 255 (2005), 629–653. |
[10] | L. Maia, E. Montefusco, B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger systems, J. Differ. Equ., 229 (2006), 743–767. https://doi.org/10.1016/j.jde.2006.07.002 doi: 10.1016/j.jde.2006.07.002 |
[11] | B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbb{R}^n$, Commun. Math. Phys., 271 (2007), 199–221. |
[12] | T. Lin, J. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincar é Anal. Non Linéire, 22 (2005), 403–439. |
[13] | T. Lin, J. Wei, Spikes in two-component systems of nonlinear Schr${\rm{\ddot d}}$inger equations with trapping potentials, J. Differ. Equ., 229 (2006), 538–569. |
[14] | L. Maia, B. Pellacci, M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems, J. Eur. Math. Soc., 10 (2007), 47–71. |
[15] | A. Pomponio, Coupled nonlinear Schrödinger systems with potentials, J. Differ. Equ., 227 (2006), 258–281. https://doi.org/10.1016/j.jde.2005.09.002 doi: 10.1016/j.jde.2005.09.002 |
[16] | J. Wang, J.-P. Shi, Standing waves of a weakly coupled Schr${\rm{\ddot d}}$inger system with distinct potential functions, J. Differ. Equ., 260 (2016), 1830–1864. |
[17] | T. Bartsch, N. Dancer, Z.-Q. Wang, A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. PDE, 37 (2010), 345–361. |
[18] | N. Dancer, J. Wei, T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953–969. |
[19] | Z. Liu, Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Commun. Math. Phys., 282 (2008), 721–731. https://doi.org/10.1007/s00220-008-0546-x doi: 10.1007/s00220-008-0546-x |
[20] | B. Noris, M. Ramos, Existence and bounds of positive solutions for a nonlinear Schrödinger system, Proc. Am. Math. Soc., 138 (2010), 1681–1692. https://doi.org/10.1090/S0002-9939-10-10231-7 doi: 10.1090/S0002-9939-10-10231-7 |
[21] | J. Wei, T. Weth, Nonradial symmetric bound states for a system of two coupled Schrödinger equations, Rend. Lincei Mat. Appl., 18 (2007), 279–293. |
[22] | J. Wei, T. Weth, Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Ration. Mech. Anal., 190 (2008), 83–106. https://doi.org/10.1007/s00205-008-0121-9 doi: 10.1007/s00205-008-0121-9 |
[23] | Z.-J. Chen, W.-M. Zou, Positive Least Energy Solutions and Phase Separation for Coupled Schrödinger Equations with Critical Exponent, Arch. Ration. Mech. Anal., 205 (2012), 515–551. https://doi.org/10.1007/s00205-012-0513-8 doi: 10.1007/s00205-012-0513-8 |
[24] | Z.-J. Chen, W.-M. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case, Calc. Var. Partial Differ. Equ., 52 (2015), 423–467. https://doi.org/10.1007/s00526-014-0717-x doi: 10.1007/s00526-014-0717-x |
[25] | Z.-J. Chen, C-S. Lin, W. Zou, Sign-changing solutions and phase separation for an elliptic system with critical exponent, Commun. Partial Differ. Equ., 39 (2014), 1827–1859. https://doi.org/10.1080/03605302.2014.908391 doi: 10.1080/03605302.2014.908391 |
[26] | Z.-X. Qi, Z.-T. Zhang, Existence of multiple solutions to a class of nonlinear Schrödinger system with external sources terms, J. Math. Anal. Appl., 420 (2014), 972–986. https://doi.org/10.1016/j.jmaa.2014.06.038 doi: 10.1016/j.jmaa.2014.06.038 |
[27] | H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437–477. https://doi.org/10.1002/cpa.3160360405 doi: 10.1002/cpa.3160360405 |
[28] | X.-J. Wang, Existence of positive solutions to nonlinear elliptic equations involving critical Sobolev exponents, Acta Math. Sin., 8 (1992), 273–291. |
[29] | G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 281–304. |
[30] | V. Benci, G. Cerami, Existence of positive solutions of the Equation $-\Delta+a(x)u = u^{\frac{N+2}{N-2}}$ in $\mathbb{R}^{N}$, J. Funct. Anal., 88 (1990), 91–117. |
[31] | M. Cuesta, C. De Coster, Superlinear critical resonant problems with small forcing term, Calc. Var. Partial Differ. Equ., 54 (2015), 349–363. https://doi.org/10.1007/s00526-014-0788-8 doi: 10.1007/s00526-014-0788-8 |
[32] | P. Drabek, Y. Huang, Multiplicity of Positive Solutions for Some Quasilinear Elliptic Equation in RNwith Critical Sobolev Exponent, J. Differ. Equ., 140 (1997), 106–132. https://doi.org/10.1006/jdeq.1997.3306 doi: 10.1006/jdeq.1997.3306 |
[33] | F. Faraci, C. Farkas, A quasilinear elliptic problem involving critical Sobolev exponents, Collect. Math., 66 (2015), 243–259. https://doi.org/10.1007/s13348-014-0125-8 doi: 10.1007/s13348-014-0125-8 |
[34] | O. Rey, Concentration of solutions to elliptic equations with critical nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 201–218. https://doi.org/10.1016/s0294-1449(16)30245-1 doi: 10.1016/s0294-1449(16)30245-1 |
[35] | S. Wang, The existence of a positive solution of semilinear elliptic equations with limiting Sobolev exponent, Proc. of the Royal Soc. Edinburgh, 117A (1991), 75–88. https://doi.org/10.1017/S030821050002761X doi: 10.1017/S030821050002761X |
[36] | A. Ambrosetti, P. Rabinowitz, Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Anal., 11 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7 |
[37] | H. Brezis, L. Nirenberg, A minimization problem with critical exponent and nonzero data, Symmetry in Nature, Scuola Norm. Sup. Pisa, 1 (1989), 129–140. |
[38] | M. Willem. Minimax theorems. Progress in Nonlinear Differential Equations and their Applications, 24. Birkhauser Boston, MA, 1996. |