Research article

Turing-Hopf bifurcation analysis in a diffusive Gierer-Meinhardt model

  • Received: 25 September 2020 Accepted: 28 November 2020 Published: 03 December 2020
  • MSC : 35K57, 35B32, 70K50

  • The reaction-diffusion Gierer-Meinhardt system in one dimensional bounded domain is considered in the present paper. The Hopf bifurcation is investigated, which is found to be degenerate. With the aid of Maple, the normal form associated with the degenerate Hopf bifurcation is obtained to determinate the existence of Bautin bifurcation. We get the universal unfolding for the Bautin bifurcation so that we can identify the stability of periodic solutions. Then, the existence of the codimension-two Turing-Hopf bifurcation is further investigated. To research the spatiotemporal dynamics of the model near the Turing-Hopf bifurcation point, the method of the multiple time scale analysis is adopted to derive the amplitude equations. It is noted that the Gierer-Meinhardt model may show the spatial, temporal or the spatiotemporal patterns, such as the nonconstant steady state, spatially homogeneous periodic solutions and the spatially inhomogeneous periodic solutions. Finally, some numerical simulations are presented to demonstrate the applicability of the theoretical results.

    Citation: Anna Sun, Ranchao Wu, Mengxin Chen. Turing-Hopf bifurcation analysis in a diffusive Gierer-Meinhardt model[J]. AIMS Mathematics, 2021, 6(2): 1920-1942. doi: 10.3934/math.2021117

    Related Papers:

  • The reaction-diffusion Gierer-Meinhardt system in one dimensional bounded domain is considered in the present paper. The Hopf bifurcation is investigated, which is found to be degenerate. With the aid of Maple, the normal form associated with the degenerate Hopf bifurcation is obtained to determinate the existence of Bautin bifurcation. We get the universal unfolding for the Bautin bifurcation so that we can identify the stability of periodic solutions. Then, the existence of the codimension-two Turing-Hopf bifurcation is further investigated. To research the spatiotemporal dynamics of the model near the Turing-Hopf bifurcation point, the method of the multiple time scale analysis is adopted to derive the amplitude equations. It is noted that the Gierer-Meinhardt model may show the spatial, temporal or the spatiotemporal patterns, such as the nonconstant steady state, spatially homogeneous periodic solutions and the spatially inhomogeneous periodic solutions. Finally, some numerical simulations are presented to demonstrate the applicability of the theoretical results.


    加载中


    [1] A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. B, 237 (1952), 37-72. doi: 10.1098/rstb.1952.0012
    [2] A. Gierer, H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39. doi: 10.1007/BF00289234
    [3] A. Gierer, H. Meinhardt, Biological pattern formation involving lateral inhibition, Lect. Math. Life. Sci., 7 (1974), 163-183.
    [4] Y. L. Song, R. Yang, G. Q. Sun, Pattern dynamics in a Gierer-Meinhardt model with a saturating term, Appl. Math. Model., 46 (2017), 476-491. doi: 10.1016/j.apm.2017.01.081
    [5] S. S. Chen, J. P. Shi, J. J. Wei, Bifurcation analysis of the Gierer-Meinhardt system with a saturation in the activator production, Appl. Anal., 93 (2014), 1115-1134. doi: 10.1080/00036811.2013.817559
    [6] R. C. Wu, Y. Zhou, Y. Shao, Bifurcation and Turing patterns of reaction-diffusion activator-inhibitor model, Physica A, 482 (2017), 597-610. doi: 10.1016/j.physa.2017.04.053
    [7] R. Yang, Y. L. Song, Spatial resonance and Turing-Hopf bifurcations in the Gierer-Meinhardt model, Nonlinear Anal.: RWA, 31 (2016), 356-387. doi: 10.1016/j.nonrwa.2016.02.006
    [8] S. G. Ruan, Diffusion-driven instability in the Gierer-Meinhardt model of morphogenesis, Nat. Res. Model., 11 (1998), 131-141. doi: 10.1111/j.1939-7445.1998.tb00304.x
    [9] J. X. Liu, F. Q. Yi, J. J. Wei, Multiple bifurcation analysis and spatiotemporal patterns in a 1-D Gierer-Meinhardt model of morphogenesis, Int. J. Bifurcat. Chaos, 20 (2010), 1005-1025.
    [10] G. Q. Sun, C. H. Wang, Z. Y. Wu, Patterns dynamics of a Gierer-Meinhardt model with spatial effects, Nonlinear Dyn., 88 (2017), 1385-1396. doi: 10.1007/s11071-016-3317-9
    [11] S. S. Chen, J. P. Shi, Global attractivity of equilibrium in Gierer-Meinhardt system with activator production saturation and gene expression time delays, Nonlinear Anal.: RWA, 14 (2013), 1871-1886. doi: 10.1016/j.nonrwa.2012.12.004
    [12] R. Yang, Y. L. Song, Bifurcation analysis of a diffusive activator-inhibitor model in vascular mesenchymal cells, Int. J. Bifurcat. Chaos, 25 (2015), 1530026. doi: 10.1142/S0218127415300268
    [13] J. Wei, M. Winter, On the Gierer-Meinhardt system with saturation, Commun. Contemp. Math., 8 (2004), 259-277.
    [14] S. S. Chen, J. P. Shi, J. J. Wei, Time delay-induced instability and hopf bifurcations in general reaction-diffusion systems, J. Nonlinear Sci., 23 (2013), 1-38. doi: 10.1007/s00332-012-9138-1
    [15] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag New York, 2003.
    [16] Y. J. Liu, Z. S. Li, X. M. Cai, Local stability and Hopf bifurcation analysis of the Arneodos system, Appl. Mech. Mater., 130 (2012), 2550-2557.
    [17] F. Q. Yi, J. Wei, J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differ. Equ., 246 (2009), 1944-1977. doi: 10.1016/j.jde.2008.10.024
    [18] M. X. Chen, R. C. Wu, B. Liu, L. P. Chen, Spatiotemporal dynamics in a ratio-dependent predator-prey model with time delay near the Turing-Hopf bifurcation point, Commun. Nonlinear Sci. Numer. Simul., 77 (2019), 141-167. doi: 10.1016/j.cnsns.2019.04.024
    [19] L. Perko, Differential Equations and Dynamical Systems, Springer, NY, 1996.
    [20] J. C. Huang, Y. J. Gong, Multiple bifurcations in a predator-prey system of holling and leslie type with constant-yield prey harvesting, Int. J. Bifurcat. Chaos, 23 (2013), 1350164. doi: 10.1142/S0218127413501642
    [21] P. Yu, Computation of normal forms via a perturbation technique, J. Sound Vib., 211 (1998), 19-38. doi: 10.1006/jsvi.1997.1347
    [22] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York, 1995.
    [23] H. Zhang, B. Niu, Dynamics in a plankton model with toxic substances and phytoplankton harvesting, Int. J. Bifurcat. Chaos, 30 (2020), 2050035. doi: 10.1142/S0218127420500352
    [24] Y. Guo, B. Niu, Bautin bifurcation in delayed reaction-diffusion systems with application to the Segel-Jackson model, Discrete. Cont. Dyn. Syst. Ser. B, 24 (2018), 6005-6024.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3306) PDF downloads(315) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog