Citation: Anna Sun, Ranchao Wu, Mengxin Chen. Turing-Hopf bifurcation analysis in a diffusive Gierer-Meinhardt model[J]. AIMS Mathematics, 2021, 6(2): 1920-1942. doi: 10.3934/math.2021117
[1] | A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. B, 237 (1952), 37-72. doi: 10.1098/rstb.1952.0012 |
[2] | A. Gierer, H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39. doi: 10.1007/BF00289234 |
[3] | A. Gierer, H. Meinhardt, Biological pattern formation involving lateral inhibition, Lect. Math. Life. Sci., 7 (1974), 163-183. |
[4] | Y. L. Song, R. Yang, G. Q. Sun, Pattern dynamics in a Gierer-Meinhardt model with a saturating term, Appl. Math. Model., 46 (2017), 476-491. doi: 10.1016/j.apm.2017.01.081 |
[5] | S. S. Chen, J. P. Shi, J. J. Wei, Bifurcation analysis of the Gierer-Meinhardt system with a saturation in the activator production, Appl. Anal., 93 (2014), 1115-1134. doi: 10.1080/00036811.2013.817559 |
[6] | R. C. Wu, Y. Zhou, Y. Shao, Bifurcation and Turing patterns of reaction-diffusion activator-inhibitor model, Physica A, 482 (2017), 597-610. doi: 10.1016/j.physa.2017.04.053 |
[7] | R. Yang, Y. L. Song, Spatial resonance and Turing-Hopf bifurcations in the Gierer-Meinhardt model, Nonlinear Anal.: RWA, 31 (2016), 356-387. doi: 10.1016/j.nonrwa.2016.02.006 |
[8] | S. G. Ruan, Diffusion-driven instability in the Gierer-Meinhardt model of morphogenesis, Nat. Res. Model., 11 (1998), 131-141. doi: 10.1111/j.1939-7445.1998.tb00304.x |
[9] | J. X. Liu, F. Q. Yi, J. J. Wei, Multiple bifurcation analysis and spatiotemporal patterns in a 1-D Gierer-Meinhardt model of morphogenesis, Int. J. Bifurcat. Chaos, 20 (2010), 1005-1025. |
[10] | G. Q. Sun, C. H. Wang, Z. Y. Wu, Patterns dynamics of a Gierer-Meinhardt model with spatial effects, Nonlinear Dyn., 88 (2017), 1385-1396. doi: 10.1007/s11071-016-3317-9 |
[11] | S. S. Chen, J. P. Shi, Global attractivity of equilibrium in Gierer-Meinhardt system with activator production saturation and gene expression time delays, Nonlinear Anal.: RWA, 14 (2013), 1871-1886. doi: 10.1016/j.nonrwa.2012.12.004 |
[12] | R. Yang, Y. L. Song, Bifurcation analysis of a diffusive activator-inhibitor model in vascular mesenchymal cells, Int. J. Bifurcat. Chaos, 25 (2015), 1530026. doi: 10.1142/S0218127415300268 |
[13] | J. Wei, M. Winter, On the Gierer-Meinhardt system with saturation, Commun. Contemp. Math., 8 (2004), 259-277. |
[14] | S. S. Chen, J. P. Shi, J. J. Wei, Time delay-induced instability and hopf bifurcations in general reaction-diffusion systems, J. Nonlinear Sci., 23 (2013), 1-38. doi: 10.1007/s00332-012-9138-1 |
[15] | S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag New York, 2003. |
[16] | Y. J. Liu, Z. S. Li, X. M. Cai, Local stability and Hopf bifurcation analysis of the Arneodos system, Appl. Mech. Mater., 130 (2012), 2550-2557. |
[17] | F. Q. Yi, J. Wei, J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differ. Equ., 246 (2009), 1944-1977. doi: 10.1016/j.jde.2008.10.024 |
[18] | M. X. Chen, R. C. Wu, B. Liu, L. P. Chen, Spatiotemporal dynamics in a ratio-dependent predator-prey model with time delay near the Turing-Hopf bifurcation point, Commun. Nonlinear Sci. Numer. Simul., 77 (2019), 141-167. doi: 10.1016/j.cnsns.2019.04.024 |
[19] | L. Perko, Differential Equations and Dynamical Systems, Springer, NY, 1996. |
[20] | J. C. Huang, Y. J. Gong, Multiple bifurcations in a predator-prey system of holling and leslie type with constant-yield prey harvesting, Int. J. Bifurcat. Chaos, 23 (2013), 1350164. doi: 10.1142/S0218127413501642 |
[21] | P. Yu, Computation of normal forms via a perturbation technique, J. Sound Vib., 211 (1998), 19-38. doi: 10.1006/jsvi.1997.1347 |
[22] | Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York, 1995. |
[23] | H. Zhang, B. Niu, Dynamics in a plankton model with toxic substances and phytoplankton harvesting, Int. J. Bifurcat. Chaos, 30 (2020), 2050035. doi: 10.1142/S0218127420500352 |
[24] | Y. Guo, B. Niu, Bautin bifurcation in delayed reaction-diffusion systems with application to the Segel-Jackson model, Discrete. Cont. Dyn. Syst. Ser. B, 24 (2018), 6005-6024. |