Research article

Fixed point theorem combined with variational methods for a class of nonlinear impulsive fractional problems with derivative dependence

  • Received: 14 October 2020 Accepted: 22 September 2020 Published: 04 December 2020
  • MSC : 34A08, 34B37, 34G20

  • In this article, we deal with a class of nonlinear impulsive problems of fractional-order in which nonlinearity is due to the fractional-order derivative term. The investigation involved a fixed point theorem with a combination of variational approach and critical point theory to establish sufficient conditions for the existence of at least one solution. First, a damped problem is discussed by using the critical point theory and variational approach, then the solutions of the damped problem and the main problem are connected with the assistance of a fixed point theorem. Towards the end, to illustrate our outcomes, two examples are given.

    Citation: Adnan Khaliq, Mujeeb ur Rehman. Fixed point theorem combined with variational methods for a class of nonlinear impulsive fractional problems with derivative dependence[J]. AIMS Mathematics, 2021, 6(2): 1943-1953. doi: 10.3934/math.2021118

    Related Papers:

  • In this article, we deal with a class of nonlinear impulsive problems of fractional-order in which nonlinearity is due to the fractional-order derivative term. The investigation involved a fixed point theorem with a combination of variational approach and critical point theory to establish sufficient conditions for the existence of at least one solution. First, a damped problem is discussed by using the critical point theory and variational approach, then the solutions of the damped problem and the main problem are connected with the assistance of a fixed point theorem. Towards the end, to illustrate our outcomes, two examples are given.


    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amesterdam, 2006.
    [2] I. Pudlubny, Fractional Differential Equations, Academic Press, New York, 1999.
    [3] V. E. Tarasov, Fractional Dynamics: Application of Frcational Calculus to Dynamics of Particals, Fields and Media, Higher Education Press, Beijing, 2011.
    [4] D. Baleanu, Z. B. Guvenc, J. A. T. Machado, New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York, 2010.
    [5] J. R. Wang, Y. Zhou, A class of fractional evolution equations and optimal controls, Nonlinear Anal.: Real World Appl., 12 (2011), 262-272. doi: 10.1016/j.nonrwa.2010.06.013
    [6] J. H. He, Y. O. El-Dib, Periodic property of the time-fractional Kundu-Mukherjee-Naskar equation, Results Phys., 19 (2020), 103345. doi: 10.1016/j.rinp.2020.103345
    [7] J. H. He, Q. T. Ain, New promises and future challenges of fractal calculus: From two-scale Thermodynamics to fractal variational principle, Therm. Sci., 24 (2020), 659-681. doi: 10.2298/TSCI200127065H
    [8] D. Bainov, P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Chapman and Hall/CRC Press, Boca Raton, 1993.
    [9] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
    [10] A. M. Samoilenko, N. A. Perestyuk, Impulsive Differential Equations, volume 14 of World Scientific Series on Nonlinear Science, World Scientific Publishing Co. Inc., River Edge, 1995.
    [11] I. Stamova, G. Stamov, Applied Impulsive Mathematical Models, CMS Books in Mathematics, Springer, New York, 2016.
    [12] M. U. Rehman, P. W. Eloe, Existence and uniqueness of solutions for impulsive fractional differential equations, Appl. Math. Comput., 224 (2013), 422-431.
    [13] Y. Zhao, H. Chen, C. Xu, Nontrivial solutions for impulsive fractional differential equations via Morse theory, Appl. Math. Comput., 307 (2017), 170-179.
    [14] J. R. Wang, X. Li, Periodic BVP for integer/fractional order nonlinear differential equations with non instantaneous impulses, J. Appl. Math. Comput., 46 (2014), 321-334. doi: 10.1007/s12190-013-0751-4
    [15] M. Feckan, J. R. Wang, A general class of impulsive evolution equations, Topol. Math. Nonlinear Anal., 46 (2015), 915–934.
    [16] J. R. Wang, A. G. Ibrahim, M. Feckan, Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces, Appl. Math. Comput., 257 (2015), 103-118.
    [17] J. Vanterler da C. Sousa, Kishor D. Kucche, E. Capelas de Oliveira, Stability of $\psi$-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 88 (2019), 73-80.
    [18] F. Jiao, Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Internat. J. Bifur. Chous, 22 (2012), 1250086. doi: 10.1142/S0218127412500861
    [19] J. J. Nieto, D. O'Regan, Variational approach to impulsive differential equations, Nonlinear Anal.: Real World Appl., 10 (2009), 680-690.
    [20] J. J. Nieto, J. M. Uzal, Nonlinear second-order impulsive differential problems with dependence on the derivative via variational structure, J. Fixed Point Theory Appl., 22 (2020), 1-13. doi: 10.1007/s11784-019-0746-3
    [21] N. Nyamoradi, R. Rodriguez-Lopez, On boundary value problems for impulsive fractional differential equations, J. Appl. Math. Comput., 271 (2015), 874-892.
    [22] G. Bonanno, R. Rodriguez-Lopez, S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 717-744.
    [23] P. Li, H. Wang, Z. Li, Solutions for impulsive fractional differential equations via variational methods, J. Funct. Spaces, 2016 (2016), 2941368.
    [24] A. Khaliq, M. U. Rehman, On variational methods to non–instantaneous impulsive fractional differential equation, Appl. Math. Lett., 83 (2018), 95-102. doi: 10.1016/j.aml.2018.03.014
    [25] Y. Zhao, C. Luo, H. Chen, Existence Results for Non-instantaneous Impulsive Nonlinear Fractional Differential Equation Via Variational Methods, Bull. Malays. Math. Sci. Soc., 43 (2020), 1-19. doi: 10.1007/s40840-018-0660-7
    [26] W. Zhang, W. Liu, Variational approach to fractional Dirichlet problem with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 99 (2020), 105993. doi: 10.1016/j.aml.2019.07.024
    [27] J. Zhou, Y. Deng, Y. Wang, Variational approach to p-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 104 (2020), 106251. doi: 10.1016/j.aml.2020.106251
    [28] J. H. He, Generalized Variational Principles for Buckling Analysis of Circular Cylinders, Acta Mech., 231 (2020), 899-906. doi: 10.1007/s00707-019-02569-7
    [29] J. H. He, A fractal variational theory for one-dimensional compressible flow in a microgravity space, Fractals, 28 (2020), 2050024. doi: 10.1142/S0218348X20500243
    [30] J. H. He, On the fractal variational principle for the Telegraph equation, Fractals, 2020. Available from: https://www.worldscientific.com/doi/fpi/10.1142/S0218348X21500225
    [31] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, volume 74 of Applied Mathematical Sciences, Springer, NewYark, 1989.
    [32] D. R. Smart, Fixed point theorems, Cambridge university Press, London, 1974.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2224) PDF downloads(189) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog