Citation: Adnan Khaliq, Mujeeb ur Rehman. Fixed point theorem combined with variational methods for a class of nonlinear impulsive fractional problems with derivative dependence[J]. AIMS Mathematics, 2021, 6(2): 1943-1953. doi: 10.3934/math.2021118
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amesterdam, 2006. |
[2] | I. Pudlubny, Fractional Differential Equations, Academic Press, New York, 1999. |
[3] | V. E. Tarasov, Fractional Dynamics: Application of Frcational Calculus to Dynamics of Particals, Fields and Media, Higher Education Press, Beijing, 2011. |
[4] | D. Baleanu, Z. B. Guvenc, J. A. T. Machado, New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York, 2010. |
[5] | J. R. Wang, Y. Zhou, A class of fractional evolution equations and optimal controls, Nonlinear Anal.: Real World Appl., 12 (2011), 262-272. doi: 10.1016/j.nonrwa.2010.06.013 |
[6] | J. H. He, Y. O. El-Dib, Periodic property of the time-fractional Kundu-Mukherjee-Naskar equation, Results Phys., 19 (2020), 103345. doi: 10.1016/j.rinp.2020.103345 |
[7] | J. H. He, Q. T. Ain, New promises and future challenges of fractal calculus: From two-scale Thermodynamics to fractal variational principle, Therm. Sci., 24 (2020), 659-681. doi: 10.2298/TSCI200127065H |
[8] | D. Bainov, P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Chapman and Hall/CRC Press, Boca Raton, 1993. |
[9] | V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989. |
[10] | A. M. Samoilenko, N. A. Perestyuk, Impulsive Differential Equations, volume 14 of World Scientific Series on Nonlinear Science, World Scientific Publishing Co. Inc., River Edge, 1995. |
[11] | I. Stamova, G. Stamov, Applied Impulsive Mathematical Models, CMS Books in Mathematics, Springer, New York, 2016. |
[12] | M. U. Rehman, P. W. Eloe, Existence and uniqueness of solutions for impulsive fractional differential equations, Appl. Math. Comput., 224 (2013), 422-431. |
[13] | Y. Zhao, H. Chen, C. Xu, Nontrivial solutions for impulsive fractional differential equations via Morse theory, Appl. Math. Comput., 307 (2017), 170-179. |
[14] | J. R. Wang, X. Li, Periodic BVP for integer/fractional order nonlinear differential equations with non instantaneous impulses, J. Appl. Math. Comput., 46 (2014), 321-334. doi: 10.1007/s12190-013-0751-4 |
[15] | M. Feckan, J. R. Wang, A general class of impulsive evolution equations, Topol. Math. Nonlinear Anal., 46 (2015), 915–934. |
[16] | J. R. Wang, A. G. Ibrahim, M. Feckan, Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces, Appl. Math. Comput., 257 (2015), 103-118. |
[17] | J. Vanterler da C. Sousa, Kishor D. Kucche, E. Capelas de Oliveira, Stability of $\psi$-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 88 (2019), 73-80. |
[18] | F. Jiao, Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Internat. J. Bifur. Chous, 22 (2012), 1250086. doi: 10.1142/S0218127412500861 |
[19] | J. J. Nieto, D. O'Regan, Variational approach to impulsive differential equations, Nonlinear Anal.: Real World Appl., 10 (2009), 680-690. |
[20] | J. J. Nieto, J. M. Uzal, Nonlinear second-order impulsive differential problems with dependence on the derivative via variational structure, J. Fixed Point Theory Appl., 22 (2020), 1-13. doi: 10.1007/s11784-019-0746-3 |
[21] | N. Nyamoradi, R. Rodriguez-Lopez, On boundary value problems for impulsive fractional differential equations, J. Appl. Math. Comput., 271 (2015), 874-892. |
[22] | G. Bonanno, R. Rodriguez-Lopez, S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 717-744. |
[23] | P. Li, H. Wang, Z. Li, Solutions for impulsive fractional differential equations via variational methods, J. Funct. Spaces, 2016 (2016), 2941368. |
[24] | A. Khaliq, M. U. Rehman, On variational methods to non–instantaneous impulsive fractional differential equation, Appl. Math. Lett., 83 (2018), 95-102. doi: 10.1016/j.aml.2018.03.014 |
[25] | Y. Zhao, C. Luo, H. Chen, Existence Results for Non-instantaneous Impulsive Nonlinear Fractional Differential Equation Via Variational Methods, Bull. Malays. Math. Sci. Soc., 43 (2020), 1-19. doi: 10.1007/s40840-018-0660-7 |
[26] | W. Zhang, W. Liu, Variational approach to fractional Dirichlet problem with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 99 (2020), 105993. doi: 10.1016/j.aml.2019.07.024 |
[27] | J. Zhou, Y. Deng, Y. Wang, Variational approach to p-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 104 (2020), 106251. doi: 10.1016/j.aml.2020.106251 |
[28] | J. H. He, Generalized Variational Principles for Buckling Analysis of Circular Cylinders, Acta Mech., 231 (2020), 899-906. doi: 10.1007/s00707-019-02569-7 |
[29] | J. H. He, A fractal variational theory for one-dimensional compressible flow in a microgravity space, Fractals, 28 (2020), 2050024. doi: 10.1142/S0218348X20500243 |
[30] | J. H. He, On the fractal variational principle for the Telegraph equation, Fractals, 2020. Available from: https://www.worldscientific.com/doi/fpi/10.1142/S0218348X21500225 |
[31] | J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, volume 74 of Applied Mathematical Sciences, Springer, NewYark, 1989. |
[32] | D. R. Smart, Fixed point theorems, Cambridge university Press, London, 1974. |