Citation: Yanbo Song. The recurrence formula for the number of solutions of a equation in finite field[J]. AIMS Mathematics, 2021, 6(2): 1954-1964. doi: 10.3934/math.2021119
[1] | T. M. Apostol, Introduction to analytic number theory, New York: Springer-Verlag, 1976. |
[2] | J. Ax, Zeros of polynomials over finite fields, Amer. J. Math., 86 (1964), 255–261. doi: 10.2307/2373163 |
[3] | B. C. Berndt, R. J. Evans, The determination of Gauss sums, B. Am. Math. Soc., 5 (1987), 107–130. |
[4] | J. Bourgain, M. C. Chang, A Gauss sum estimate in arbitrary finite fields, C. R. Math., 342 (2006), 643–646. doi: 10.1016/j.crma.2006.01.022 |
[5] | W. Cao, A special degree reduction of polynomial over finite fields with applications, Int. J. Number Theory, 7 (2011), 1093–1102. doi: 10.1142/S1793042111004277 |
[6] | W. Cao, Q. Sun, On a class of equations with special degrees over finite fields, Acta Arith., 130 (2007), 195–202. doi: 10.4064/aa130-2-8 |
[7] | S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. doi: 10.1016/0022-314X(77)90010-5 |
[8] | M. Z. Garaev, On the gauss trigonometric sum, Math. Notes, 68 (2000), 154–158. doi: 10.1007/BF02675340 |
[9] | S. Hu, J. Zhao, The number of rational points of a family of algebraic varieties over finite fields, Algebra Colloq., 24 (2017), 705–720. doi: 10.1142/S1005386717000475 |
[10] | S. Hu, S. Hong, W. Zhao, The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory, 156 (2015), 135–153. doi: 10.1016/j.jnt.2015.04.006 |
[11] | H. Huang, W. Gao, W. Cao, Remarks on the number of rational points on a class of hypersurfaces over finite fields, Algebra Colloq., 25 (2018), 533–540. doi: 10.1142/S1005386718000366 |
[12] | G. Myerson, On the number of zeros of diagonal cubic forms, J. Number Theory, 11 (1979), 95–99. doi: 10.1016/0022-314X(79)90023-4 |
[13] | Kh. M. Saliba, V. N. Chubarikov, A generalizition of the Gauss sum, Moscow Univ. Math. Bull., 64 (2009), 92–94. |
[14] | W. M. Schmidt, Equations over finite fields: an elementary approach, New York: Springer-Verlag, 1976. |
[15] | A. Weil, On some exponential sums, P. Natl. Acad. Sci. USA, 34, (1948), 203–210. |
[16] | W. Zhang, J. Zhang, Some character sums of the polynomials, JP Journal of Algebra, Number Theory and Applications, 48 (2020), 37–48. doi: 10.17654/NT048010037 |
[17] | J. Zhao, S. Hong, C. Zhu, The number of rational points of certain quartic diagonal hypersurfaces over finite fields, AIMS Mathematics, 5 (2020), 2710–2731. doi: 10.3934/math.2020175 |