Citation: Patrick Seeling. Augmented Reality Device Operator Cognitive Strain Determination and Prediction[J]. AIMS Electronics and Electrical Engineering, 2017, 1(1): 100-110. doi: 10.3934/ElectrEng.2017.1.100
[1] | Pierdicca R, Frontoni E, Pollini R, et al. (2017) The Use of Augmented Reality Glasses for the Application in Industry 4.0. In: De Paolis L, Bourdot P, Mongelli A. Editors. Augmented Reality, Virtual Reality, and Computer Graphics, Cham, Switzerland: Springer, 389-401. |
[2] | Gabbard J, Fitch G, Kim H (2014) Behind the Glass: Driver Challenges and Opportunities for AR Automotive Applications. P IEEE 102: 124-136. doi: 10.1109/JPROC.2013.2294642 |
[3] | Rolland J, Fuchs H (2000) Optical Versus Video See-Through Head-Mounted Displays in Medical Visualization Presence. Presence-Teleop Virt 9: 287-309. doi: 10.1162/105474600566808 |
[4] | Traub J, Sielhorst T, Heining S, et al. (2008) Advanced Display and Visualization Concepts for Image Guided Surgery. J Disp Technol 4: 483-490. doi: 10.1109/JDT.2008.2006510 |
[5] | Clini P, Frontoni E, Quattrini R, et al. (2014) Augmented Reality Experience: From High-resolution Acquisition to Real Time Augmented Contents. Adv Multimedia 2014: 9. |
[6] | Lee K (2012) Augmented Reality in Education and Training. Techtrends 56: 13-21. |
[7] | Backs R, Boucsein W (2000) Author, Engineering Psychophysiology: Issues and Applications. Mahwah, NJ, USA: Lawrence Erlbaum. |
[8] | Gevins A, Smith M, McEvoy L, et al. (1997) High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb Cortex 7: 374-385. doi: 10.1093/cercor/7.4.374 |
[9] | Sweller J (1988) Cognitive Load During Problem Solving: Effects on Learning. Cognitive science 12: 257-285. doi: 10.1207/s15516709cog1202_4 |
[10] | Kumar N, Kumar J (2016) Measurement of Cognitive Load in HCI Systems Using EEG Power Spectrum: An Experimental Study. Procedia Computer Science 84: 70-78. doi: 10.1016/j.procs.2016.04.068 |
[11] | Gevins A, Smith M, Leong H, et al. (1998) Monitoring Working Memory Load during Computer-Based Tasks with EEG Pattern Recognition Methods. Human Factors 40: 79-91. doi: 10.1518/001872098779480578 |
[12] | Mazher M, Aziz A, Malik A, et al. (2017) An EEG-Based Cognitive Load Assessment in Multimedia Learning Using Feature Extraction and Partial Directed Coherence. IEEE Access 5: 14819-14829. doi: 10.1109/ACCESS.2017.2731784 |
[13] | Holm A, Lukander K, Korpela J, et al. (2009) Estimating Brain Load from the EEG. The Scientific World J 9: 639-651. doi: 10.1100/tsw.2009.83 |
[14] | Plechawska-W´ojcik M, Wawrzyk M, Wesołowska K, et al. (2017) EEG spectral analysis of human cognitive workload study. Studia Informatica 38: 17-30. |
[15] | Bauman B, Seeling P (2017) Visual Interface Evaluation for Wearables Datasets: Predicting the Subjective Augmented Vision Image QoE and QoS. Future Internet 9: 40. doi: 10.3390/fi9030040 |
[16] | Oxkey B (2017) International 10-20 system for EEG electrode placement, showing modified combinatorial nomenclature. Available from: https://commons.wikimedia.org/wiki/File:International_10-20_system_for_ EEG-MCN.svg. |
[17] | Bonanni L Lee C-H, Selker T (2005) Attention-based Design of Augmented Reality Interfaces. Extended Abstracts on Human Factors in Computing Systems Portland, OR, USA: 1228-1231. |
[18] | Hart SG (2006) NASA-task load index (NASA-TLX); 20 years later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 50: 904-908. doi: 10.1177/154193120605000909 |
[19] | Rentzos L, Vourtsis C, Mavrikios D, Chryssolouris G (2014) Using VR for Complex Product Design. In: Shumaker R and Lackey S (eds) Virtual, Augmented and Mixed Reality. Proceedings of the 6th International Conference Applications of Virtual and Augmented Reality Crete, Greece: 455-464. |
[20] | Nee AYC, Ong SK, Chryssolouris G, Mourtzis D (2012) Augmented reality applications in design and manufacturing. CIRP Annals 61: 657-679. doi: 10.1016/j.cirp.2012.05.010 |
[21] | Makris S, Karagiannis P, Koukas S, Matthaiakis A-S (2016) Augmented reality system for operator support in humanrobot collaborative assembly. CIRP Annals 65: 61-64. doi: 10.1016/j.cirp.2016.04.038 |
[22] | Makris S, Pintzos G, Rentzos L, Chryssolouris G (2013) Assembly support using AR technology based on automatic sequence generation. CIRP Annals 62: 9-12. doi: 10.1016/j.cirp.2013.03.095 |