In this paper, we investigate a sequential fractional boundary value problem that contains a combination of Erdélyi-Kober and Caputo fractional derivative operators subject to nonlocal, non-separated boundary conditions. We establish the uniqueness of the solution by using Banach's fixed point theorem, while via Krasnosel'skiĭ's fixed-point theorem and Leray-Schauder's nonlinear alternative, we prove the existence results. The obtained results are illustrated by constructed numerical examples.
Citation: Ayub Samadi, Chaiyod Kamthorncharoen, Sotiris K. Ntouyas, Jessada Tariboon. Mixed Erdélyi-Kober and Caputo fractional differential equations with nonlocal non-separated boundary conditions[J]. AIMS Mathematics, 2024, 9(11): 32904-32920. doi: 10.3934/math.20241574
In this paper, we investigate a sequential fractional boundary value problem that contains a combination of Erdélyi-Kober and Caputo fractional derivative operators subject to nonlocal, non-separated boundary conditions. We establish the uniqueness of the solution by using Banach's fixed point theorem, while via Krasnosel'skiĭ's fixed-point theorem and Leray-Schauder's nonlinear alternative, we prove the existence results. The obtained results are illustrated by constructed numerical examples.
[1] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Philadelphia: Gordon and Breach Science Publishers, 1993. |
[2] | R. Gorenflo, F. Mainardi, Fractional calculus, In: Fractals and fractional calculus in continuum mechanics, Vienna: Springer, 1997. https://doi.org/10.1007/978-3-7091-2664-6_6 |
[3] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. |
[4] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific Publishing Company, 2000. https://doi.org/10.1142/3779 |
[5] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of the fractional differential equations, Amsterdam: Elsevier, 2006. |
[6] | I. N. Sneddon, The use in mathematical physics of Erdélyi-Kober operators and of some of their generalizations, In: Fractional calculus and its applications, Berlin, Heidelberg: Springer, 1975. https://doi.org/10.1007/bfb0067097 |
[7] | V. S. Kiryakova, B. N. Al-Saqabi, Transmutation method for solving Erdélyi-Kober fractional differintegral equations, J. Math. Anal. Appl., 211. (1997), 347–364. https://doi.org/10.1006/jmaa.1997.5469 doi: 10.1006/jmaa.1997.5469 |
[8] | R. Gorenflo, Y. Luchko, F. Mainardi, Wright functions as scale-invariant solutions of the diffusion-wave equation, J. Comput. Appl. Math., 118. (2000), 175–191. https://doi.org/10.1016/s0377-0427(00)00288-0 doi: 10.1016/s0377-0427(00)00288-0 |
[9] | B. Ahmad, M. Alghanmi, A. Alsaedi, A study of generalized Caputo fractional differential equations and inclusions with Steiljes-type fractional integral boundary conditions via fixed-point theory, J. Appl. Anal. Comput., 11. (2021), 1208–1221. https://doi.org/10.11948/20200049 doi: 10.11948/20200049 |
[10] | S. K. Ntouyas, H. H. Al-Sulami, A study of coupled systems of mixed order fractional differential equations and inclusions with coupled integral fractional boundary conditions, Adv. Differ. Equ., 2020. (2020), 73. https://doi.org/10.1186/s13662-020-2539-9 doi: 10.1186/s13662-020-2539-9 |
[11] | A. Ali, M. Sarwar, M. B. Zada, K. Shah, Existence of solution to fractional differential equation with fractional integral type boundary conditions, Math. Methods Appl. Sci., 44. (2021), 1615–1627. https://doi.org/10.1002/mma.6864 doi: 10.1002/mma.6864 |
[12] | S. K. Ntouyas, B. Ahmad, J. Tariboon, $(k, \psi)$-Hilfer nonlocal integro-multi-point boundary value problems for fractional differential equations and inclusions, Mathematics, 10. (2022), 2615. https://doi.org/10.3390/math10152615 doi: 10.3390/math10152615 |
[13] | N. Kamsrisuk, S. K. Ntouyas, B. Ahmad, A. Samadi, J. Tariboon, Existence results for a coupled system of $(k, \varphi)$-Hilfer fractional differential equations with nonlocal integro-multi-point boundary conditions, AIMS Mathematics, 8. (2023), 4079–4097. https://doi.org/10.3934/math.2023203 doi: 10.3934/math.2023203 |
[14] | A. Samadi, S. K. Ntouyas, A. Cuntavepanit, J. Tariboon, Hilfer proportional nonlocal fractional integro-multi-point boundary value problems, Open Math., 21. (2023), 20230137. https://doi.org/10.1515/math-2023-0137 doi: 10.1515/math-2023-0137 |
[15] | A. Samadi, S. K. Ntouyas, J. Tariboon, Mixed Hilfer and Caputo fractional Riemann-Stieltjes integro-differential equations with non-separated boundary conditions, Mathematics, 12. (2024), 1361. https://doi.org/10.3390/math12091361 doi: 10.3390/math12091361 |
[16] | Y. Luchko, J. J. Trujillo, Caputo-type modification of the Erdélyi-Kober fractional derivative, Fract. Calc. Appl. Anal., 10. (2007), 249–267. |
[17] | Z. Odibat, D. Baleanu, On a new modification of the Erdélyi-Kober fractional derivative, Fractal Fract., 5. (2021), 121. https://doi.org/10.3390/fractalfract5030121 doi: 10.3390/fractalfract5030121 |
[18] | B. Ahmad, S. K. Ntouyas, J. Tariboon, A. Alsaedi, A study of nonlinear fractional-order boundary value problem with nonlocal Erdélyi-Kober and generalized Riemann-Liouville type integral boundary conditions, Math. Model. Anal., 22. (2017), 121–139. https://doi.org/10.3846/13926292.2017.1274920 doi: 10.3846/13926292.2017.1274920 |
[19] | K. Deimling, Nonlinear functional analysis, Berlin, Heidelberg: Springer, 1985. https://doi.org/10.1007/978-3-662-00547-7 |
[20] | M. A. Krasnosel'skii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk, 10. (1955), 123–127. |
[21] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8 |