Processing math: 68%
Research article Special Issues

Stress boundary layers for the Giesekus fluid at the static contact line in extrudate swell

  • Received: 14 August 2024 Revised: 31 October 2024 Accepted: 05 November 2024 Published: 20 November 2024
  • MSC : 76A10, 76M45

  • We used the method of matched asymptotic expansions to examine the behavior of the Giesekus fluid near to the static contact line singularity in extrudate swell. This shear-thinning viscoelastic fluid had a solution structure in which the solvent stresses dominated the polymer stresses near to the singularity. As such, the stress singularity was Newtonian dominated, but required viscoelastic stress boundary layers to fully resolve the solution at both the die wall and free surface. The sizes and mechanism of the boundary layers at the two surfaces were different. We gave a similarity solution for the boundary layer at the die wall and derived the exact solution for the boundary layer at the free-surface. The local behavior for the shape of the free-surface was also derived, which we showed was primarily determined by the solvent stress. However, the angle of separation of the free surface was determined by the the global flow geometry. It was this which determined the stress singularity and then in turn the free-surface shape.

    Citation: Jonathan D. Evans, Morgan L. Evans. Stress boundary layers for the Giesekus fluid at the static contact line in extrudate swell[J]. AIMS Mathematics, 2024, 9(11): 32921-32944. doi: 10.3934/math.20241575

    Related Papers:

    [1] Nadiyah Hussain Alharthi, Abdon Atangana, Badr S. Alkahtani . Numerical analysis of some partial differential equations with fractal-fractional derivative. AIMS Mathematics, 2023, 8(1): 2240-2256. doi: 10.3934/math.2023116
    [2] Abdon Atangana, Ali Akgül . Analysis of a derivative with two variable orders. AIMS Mathematics, 2022, 7(5): 7274-7293. doi: 10.3934/math.2022406
    [3] Hasib Khan, Jehad Alzabut, Anwar Shah, Sina Etemad, Shahram Rezapour, Choonkil Park . A study on the fractal-fractional tobacco smoking model. AIMS Mathematics, 2022, 7(8): 13887-13909. doi: 10.3934/math.2022767
    [4] Khaled M. Saad, Manal Alqhtani . Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear. AIMS Mathematics, 2021, 6(4): 3788-3804. doi: 10.3934/math.2021225
    [5] Amir Ali, Abid Ullah Khan, Obaid Algahtani, Sayed Saifullah . Semi-analytical and numerical computation of fractal-fractional sine-Gordon equation with non-singular kernels. AIMS Mathematics, 2022, 7(8): 14975-14990. doi: 10.3934/math.2022820
    [6] Abdon Atangana, Seda İğret Araz . Extension of Chaplygin's existence and uniqueness method for fractal-fractional nonlinear differential equations. AIMS Mathematics, 2024, 9(3): 5763-5793. doi: 10.3934/math.2024280
    [7] Rahat Zarin, Amir Khan, Pushpendra Kumar, Usa Wannasingha Humphries . Fractional-order dynamics of Chagas-HIV epidemic model with different fractional operators. AIMS Mathematics, 2022, 7(10): 18897-18924. doi: 10.3934/math.20221041
    [8] Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad . Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216
    [9] Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046
    [10] Muhammad Farman, Aqeel Ahmad, Ali Akgül, Muhammad Umer Saleem, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar . Dynamical behavior of tumor-immune system with fractal-fractional operator. AIMS Mathematics, 2022, 7(5): 8751-8773. doi: 10.3934/math.2022489
  • We used the method of matched asymptotic expansions to examine the behavior of the Giesekus fluid near to the static contact line singularity in extrudate swell. This shear-thinning viscoelastic fluid had a solution structure in which the solvent stresses dominated the polymer stresses near to the singularity. As such, the stress singularity was Newtonian dominated, but required viscoelastic stress boundary layers to fully resolve the solution at both the die wall and free surface. The sizes and mechanism of the boundary layers at the two surfaces were different. We gave a similarity solution for the boundary layer at the die wall and derived the exact solution for the boundary layer at the free-surface. The local behavior for the shape of the free-surface was also derived, which we showed was primarily determined by the solvent stress. However, the angle of separation of the free surface was determined by the the global flow geometry. It was this which determined the stress singularity and then in turn the free-surface shape.



    Chemical kinetics deals with chemistry experiments and interprets them in terms of a mathematical model. The experiments are done on chemical reactions with the passage of time. The models are differential equations for the rates at which reactants are consumed and products are produced. Chemists are able to understand how chemical reactions take place at the molecular level by combining models with investigation. Molecules react in steps to lead to the overall stoichiometric reaction which is reaction mechanism for collection of reactions. The set of reactions specifies the path (or paths) that reactant molecules take to finally arrive at the product molecules. All species in the reaction appear in at least one step and the sum of the steps gives the overall reaction. The govern the rate of the reaction which leads directly to the mechanism of differential equations [1]. Many processes and phenomena in chemistry generally in sciences can be designated by first-order differential equations. These equations are the most important and most frequently used to describe natural laws. The following examples are discussed: the Bouguer-Lambert-Beer law in spectroscopy, time constants of sensors, chemical reaction kinetics, radioactive decay, relaxation in nuclear magnetic resonance, and the RC constant of an electrode [2]. The induced kinetic differential equations of a reaction network endowed with mass action type kinetics are a system of polynomial differential equations [3]. We review the basic ideas of fractional differential equations and their applications on non-linear biochemical reaction models. We apply this idea to a non-linear model of enzyme inhibitor reactions [4].

    The fractional-order, which involves integration and transect differentiation using fractional calculus is helping to better understand the explanation of real-world problems than ordinary integer order, as well as in the modeling of real phenomena due to a characterization of memory and hereditary properties in [5,6]. Riemann Liouville developed the concept of fractional derivative, which is based on power law, [7,8] offers a novel fractional derivative that makes use of the exponential kernel. Several issues include the non-singular kernel fractional derivative, which covers the trigonometric and exponential functions, and [9,10,11,12] illustrates some relevant techniques for epidemic models. This virus's suggested outbreak efficiently catches the timeline for the COVID-19 disease conceptual model [13]. In the literature, many fractional operators are employed to solve real-world issues [14,15].

    In this paper, section 1 is introduction and section 2 consists of some basic fractional order derivative which are helpful to solve the epidemiological model. Section 3 and 4 consists of generalized from of the model, uniqueness and stability of the model. Fractal Fractional techniques with exponential decay kernel and Mittag-Leffler kernel respectively in section 5. Results and conclusion are discussed in section 6, and 7 respectively.

    Following are the basic definitions [7,8,14,15] used for analysis and solution of the problem.

    Definition 1: Sumudu transform for any function ϕ(t) over a set is given as,

    A={ϕ(t):there exist Λ,τ1,τ2>0,|ϕ(t)|<Λexp(|t|τi),if t(1)j×[0,)}

    is defined by

    F(u)=ST[ϕ(t)]=0exp(t)ϕ(ut)dt,      u(τ1,τ2).

    Definition 2: For a function g(t)W12(0,1),b>a and σ(0,1], the definition of Atangana–Baleanu derivative in the Caputo sense is given by

    ABC0Dσtg(t)=AB(σ)1σt0ddτg(τ)Mσ[σ1σ(tτ)σ]dτ,      n1<σ<n

    where

    AB(σ)=1σ+σΓ(σ).

    By using Sumudu transform (ST) for (1), we obtain

    ST[ABC0Dσtg(t)](s)=q(σ)1σ{σΓ(σ+1)Mσ(11σVσ)}×[ST(g(t))g(0)].

    Definition 3: For a function g(t)W12(0,1),b>a and α1(0,1], the definition of Atangana–Baleanu derivative in the Caputo sense is given by

    ABC0Dα1tg(t)=AB(α1)1α1t0ddτg(τ)Eα1[α11α1(tτ)α1]dτ,

    where

    AB(α1)=1α1+α1Γ(α1).

    Definition 4: Suppose that g(t) is continuous on an open interval (a,b), then the fractal-fractional integral of g(t) of order α1 having Mittag-Leffler type kernel and given by

    FFMJα1,α20,t(g(t))=α1α2AB(α1)Γ(α1)t0sα21g(s)(ts)α1ds+α2(1α1)tα21g(t)AB(α1)

    Robertson introduces this chemical process in [19,20]. Schafer pioneered the following chemical reactions method in 1975 [19,20]. It represents the high irradiance response (HIRES) of photomorphogenesis based on phytochrome. A stiff system of eight non-linear ordinary differential equations is used to create the following mathematical model.

    y1=M1y1+M2y2+M3y3+M4,y2=M1y1M5y2,y3=M6y3+M2y4+M7y5,y4=M3y2+M8y3M9y4,y5=M10y5+M2y6+M2y7,y6=M11y6y8+M12y4+M8y5M2y6+M12y7,y7=M11y6y8M13y7,y8=M11y6y8+M13y7. (1)

    Here M1=1.7,M2=0.43,M3=8.32, M4=0.0007,M5=8.75, M6=10.03,M7=0.035, M8=1.71,M9=1.12,M10=1.745, M11=280,M12=0.69,M13=1.81. The initial values can be represented by y=(1,0,0,0,0,0,0,0.0057)T. By using Atangana-Baleanu in Caputo sense for system (1), we get

    ABC0Dαty1=M1y1+M2y2+M3y3+M4,ABC0Dαty2=M1y1M5y2,ABC0Dαty3=M6y3+M2y4+M7y5,ABC0Dαty4=M3y2+M8y3M9y4,ABC0Dαty5=M10y5+M2y6M2y7,ABC0Dαty6=M11y6y8+M12y4+M8y5M2y6+M12y7,ABC0Dαty7=M11y6y8M13y7,ABC0Dαty8=M11y6y8+M13y7. (2)

    Here OABCDαt is the Atanagana-Baleanue Caputo sense fractional derivative with 0<α1.

    With given initial conditions

    yi(0)0,i=1,2,3,,8 (3)

    Theorem 3.1: The solution of the proposed fractional-order model (1) along initial conditions is unique and bounded in R+8.

    Proof: In (1), we can get its existence and uniqueness on the time interval (0, ∞). Afterwards, we need to show that the non-negative region R+8 is a positively invariant region. For this

    ABC0Dαty1|y1=0=M2y2+M3y3+M40,
    ABC0Dαty1|y2=0=M1y10,
    ABC0Dαty1|y3=0=M2y4+M7y50,
    ABC0Dαty1|y4=0=M3y2+M8y30,
    ABC0Dαty1|y5=0=M2y6M2y70,
    ABC0Dαty1|y6=0=M12y4+M8y5+M12y70,
    ABC0Dαty1|y7=0=M11y6y80,
    ABC0Dαty1|y8=0=M13y70

    If (y1(0)), (y2(0)), (y3(0)), (y4(0)), (y5(0)), (y6(0)), (y7(0)), (y8(0)) ϵ R8+, then from above expression, the solution cannot escape from the hyperplane. Also on each hyperplane bounding the non-negative orthant, the vector field points into R8+, i.e., the domain R8+ is a positively invariant set.

    Now, with the help of Sumudu transform definition, we get

    QEα(11αPα)ST{y1(t)y1(0)}=ST[M1y1+M2y2+M3y3+M4],QEα(11αPα)ST{y2(t)y2(0)}=ST[M1y1M5y2],QEα(11αPα)ST{y3(t)y3(0)}=ST[M6y3+M2y4+M7y5],QEα(11αPα)ST{y4(t)y4(0)}=ST[M3y2+M8y3M9y4],QEα(11αPα)ST{y5(t)y5(0)}=ST[M10y5+M2y6M2y7],QEα(11αPα)ST{y6(t)y6(0)}=ST[M11y6y8+M12y4+M8y5M2y6+M12y7],QEα(11αPα)ST{y7(t)y7(0)}=ST[M11y6y8M13y7],QEα(11αPα)ST{y8(t)y8(0)}=ST[M11y6y8+M13y7]. (4)

    Where Q=M(α)αΓ(α+1)1α

    Rearranging, we get

    ST(y1(t))=y1(0)+H×ST[M1y1+M2y2+M3y3+M4],ST(y2(t))=y2(0)+H×ST[M1y1M5y2],ST(y3(t))=y3(0)+H×ST[M6y3+M2y4+M7y5],ST(y4(t))=y4(0)+H×ST[M3y2+M8y3M9y4],ST(y5(t))=y5(0)+H×ST[M10y5+M2y6M2y7],ST(y6(t))=y6(0)+H×ST[M11y6y8+M12y4+M8y5M2y6+M12y7],ST(y7(t))=y7(0)+H×ST[M11y6y8M13y7],ST(y8(t))=y8(0)+H×ST[M11y6y8+M13y7]. (5)

    Using the inverse Sumudu transform on both sides of the system (5), we obtain

    y1(t)=y1(0)+ST1[H×ST[M1y1+M2y2+M3y3+M4]],y2(t)=y2(0)+ST1[H×ST[M1y1M5y2]],y3(t)=y3(0)+ST1[H×ST[M6y3+M2y4+M7y5]],y4(t)=y4(0)+ST1[H×ST[M3y2+M8y3M9y4]],y5(t)=y5(0)+ST1[H×ST[M10y5+M2y6M2y7]],y6(t)=y6(0)+ST1[H×ST[M11y6y8+M12y4+M8y5M2y6+M12y7]],y7(t)=y7(0)+ST1[H×ST[M11y6y8M13y7]],y8(t)=y8(0)+ST1[H×ST[M11y6y8+M13y7]]. (6)

    We next obtain the following recursive formula.

    y1(n+1)(t)=y1(n)(0)+ST1[H×ST{M1y1(n)+M2y2(n)+M3y3(n)+M4}],y2(n+1)(t)=y2(n)(0)+ST1[H×ST{M1y1(n)M5y2(n)}],y3(n+1)(t)=y3(n)(0)+ST1[H×ST{M6y3(n)+M2y4(n)+M7y5(n)}],y4(n+1)(t)=y4(n)(0)+ST1[H×ST{M3y2(n)+M8y3(n)M9y4(n)}],y5(n+1)(t)=y5(n)(0)+ST1[H×ST{M10y5(n)+M2y6(n)M2y7(n)}],y6(n+1)(t)=y6(n)(0)+ST1[H×ST{M11y6(n)y8(n)+M12y4(n)+M8y5(n)M2y6(n)+M12y7(n)}],y7(n+1)(t)=y7(n)(0)+ST1[H×ST{M11y6(n)y8(n)M13y7(n)}],y8(n+1)(t)=y8(n)(0)+ST1[H×ST{M11y6(n)y8(n)+M13y7(n)}]. (7)

    Where H=1αM(α)αΓ(α+1)Eα(11αPα)

    And the solution of system is provided by

    y1(t)=limny1(n)(t),    y2(t)=limny2(n)(t),    y3(t)=limny3(n)(t),
    y4(t)=limny4(n)(t),    y5(t)=limny5(n)(t),    y6(t)=limny6(n)(t),
    y7(t)=limny7(n)(t),    y8(t)=limny8(n)(t).

    Theorem 4.1: Define K be a self-map is given by

    K[y1(n+1)(t)]=y1(n+1)(t)=y1(n)(0)+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M1y1(n)+M2y2(n)+M3y3(n)+M4}],K[y2(n+1)(t)]=y2(n+1)(t)=y2(n)(0)+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M1y1(n)M5y2(n)}],K[y3(n+1)(t)]=y3(n+1)(t)=y3(n)(0)+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M6y3(n)+M2y4(n)+M7y5(n)}],K[y4(n+1)(t)]=y4(n+1)(t)=y4(n)(0)+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M3y2(n)+M8y3(n)M9y4(n)}],K[y5(n+1)(t)]=y5(n+1)(t)=y5(n)(0)+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M10y5(n)+M2y6(n)M2y7(n)}],K[y6(n+1)(t)]=y6(n+1)(t)=y6(n)(0)+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M11y6(n)y8(n)+M12y4(n)+M8y5(n)M2y6(n)+M12y7(n)}],K[y7(n+1)(t)]=y7(n+1)(t)=y7(n)(0)+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M11y6(n)y8(n)M13y7(n)}],K[y8(n+1)(t)]=y8(n+1)(t)=y8(n)(0)+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M11y6(n)y8(n)+M13y7(n)}]. (8)

    Proof: By using triangular inequality with the definition of norms, we get

    ||K[y1(n)(t)]K[y1(m)(t)]||||y1(n)(t)y1(m)(t)||+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M1||y1(n)y1(m)||+M2||y2(n)y2(m)||+M3||y3(n)y3(m)||+M4}],||K[y2(n)(t)]K[y2(m)(t)]||||y2(n)(t)y2(m)(t)||+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M1||y1(n)y1(m)||M5||y2(n)y2(m)||}],||K[y3(n)(t)]K[y3(m)(t)]||||y3(n)(t)y3(n)(t)||+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M6||y3(n)y3(m)||+M2||y4(n)y4(m)||+M7||y5(n)y5(m)||}],||K[y4(n)(t)]K[y4(m)(t)]||||y4(n)(t)y4(n)(t)||+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M3||y2(n)y2(m)||+M8||y3(n)y3(m)||M9||y4(n)y4(m)||}],||K[y5(n)(t)]K[y5(m)(t)]||||y5(n)(t)y5(n)(t)||+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M10||y5(n)y5(m)||+M2||y6(n)y6(m)||M2||y7(n)y7(m)||}],||K[y6(n)(t)]K[y6(m)(t)]||||y6(n)(t)y6(n)(t)||+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M11||y6(n)y8(n)y6(m)y8(m)||+M12||y4(n)y4(m)||+M8||y5(n)y5(m)||M2||y6(n)y6(m)||+M12||y7(n)y7(m)||}],||K[y7(n)(t)]K[y7(m)(t)]||||y7(n)(t)y7(n)(t)||+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M11||y6(n)y8(n)y6(m)y8(m)||M13||y7(n)y7(m)||}],||K[y8(n)(t)]K[y8(m)(t)]||||y8(n)(t)y8(n)(t)||+ST1[1αM(α)αΓ(α+1)Eα(11αPα)×ST{M11||y6(n)y8(n)y6(m)y8(m)||+M13||y7(n)y7(m)||}].

    Hence satisfied given conditions.

    θ=(0,0,0,0,0,0,0,0),θ={||y1(n)(t)y1(m)(t)||×||(y1(n)(t)+y1(m)(t))||M1||y1(n)y1(m)||+M2||y2(n)y2(m)||+M3||y3(n)y3(m)||+M4||y2(n)(t)y2(m)(t)||×||(y2(n)(t)+y2(m)(t))||+M1||y1(n)y1(m)||M5||y2(n)y2(m)||||y3(n)(t)y3(m)(t)||×||(y3(n)(t)+y3(m)(t))||M6||y3(n)y3(m)||+M2||y4(n)y4(m)||+M7||y5(n)y5(m)||||y4(n)(t)y4(m)(t)||×||(y4(n)(t)+y4(m)(t))||+M3||y2(n)y2(m)||+M8||y3(n)y3(m)||M9||y4(n)y4(m)||||y5(n)(t)y5(m)(t)||×||(y5(n)(t)+y5(m)(t))||M10||y5(n)y5(m)||+M2||y6(n)y6(m)||M2||y7(n)y7(m)||||y6(n)(t)y6(m)(t)||×||(y6(n)(t)+y6(m)(t))||M11||y6(n)y8(n)y6(m)y8(m)||+M12||y4(n)y4(m)||+M8||y5(n)y5(m)||M2||y6(n)y6(m)||+M12||y7(n)y7(m)||||y7(n)(t)y7(m)(t)||×||(y7(n)(t)+y7(m)(t))||+M11||y6(n)y8(n)y6(m)y8(m)||M13||y7(n)y7(m)||||y8(n)(t)y8(m)(t)||×||(y8(n)(t)+y8(m)(t))||M11||y6(n)y8(n)y6(m)y8(m)||+M13||y7(n)y7(m)||

    Hence the system is stable.

    Theorem 4.2: Unique singular solution with the iterative method for the special solution of system (2).

    Proof: Considering the Hilbert space H=L2((p,q)×(0,T)) which can be defined as

    h:(p,q)×(0,T)R,ghdgdh<.

    For this purpose, we consider the following operator

    θ(0,0,0,0,0,0,0,0),θ={M1y1+M2y2+M3y3+M4,M1y1M5y2,M6y3+M2y4+M7y5,M3y2+M8y3M9y4,M10y5+M2y6M2y7,M11y6y8+M12y4+M8y5M2y6+M12y7,M11y6y8M13y7,M11y6y8+M13y7.

    By using inner product, we get

    T((y1(11)y1(12),y2(21)y2(22),y3(31)y3(32),y4(41)y4(42),y5(51)y5(52),y6(61)        y6(62),y7(71)y7(72),y8(81)y8(82)),(V1,V2,V3,V4,V5,V6,V7,V8)).

    Where

    (y1(11)y1(12),y2(21)y2(22),y3(31)y3(32), y4(41)y4(42),y5(51)y5(52), y6(61)y6(62), y7(71)y7(72), y8(81)y8(82)), are the special solutions of the system. Taking into account the inner function and the norm, we have

    {M1(y1(11)y1(12))+M2(y2(21)y2(22))+M3(y3(31)y3(32))+M4,V1}M1||y1(11)y1(12)||||V1||+M2||y2(21)y2(22)||||V1||+M3||y3(31)y3(32)||||V1||+M4||V1||,{M1(y1(11)y1(12))M5(y2(21)y2(22)),V2}M1||y1(11)y1(12)||||V2||+M5||y2(21)y2(22)||||V2||,{M6(y3(31)y3(32))+M2(y4(41)y4(42))+M7(y5(51)y5(52)),V3}M6||(y3(31)y3(32))||||V3||+M2||(y4(41)y4(42))||||V3||+M7||(y5(51)y5(52))||||V3||,{M3(y2(21)y2(22))+M8(y3(31)y3(32))M9(y4(41)y4(42)),V4}M3||(y2(21)y2(22))||||V4||+M8||(y3(31)y3(32))||||V4||+M9||(y4(41)y4(42))||||V4||,{M10(y5(51)y5(52))+M2(y6(61)y6(62))M2(y7(71)y7(72)),V5}M10||(y5(51)y5(52))||||V5||+M2||(y6(61)y6(62))||||V5||+M2||(y7(71)y7(72))||||V5||,{M11(y6(61)y6(62))(y8(81)y8(82))+M12(y4(41)y4(42))+M8(y5(51)y5(52))M2(y6(61)y6(62))+M12(y7(71)y7(72)),V6}M11||(y6(61)y6(62))||||(y8(81)y8(82))||||V6||+M12||(y4(41)y4(42))||||V6||+M8||(y5(51)y5(52))||||V6||+M2||(y6(61)y6(62))||||V6||+M12||(y7(71)y7(72))||||V6||,{M11(y6(61)y6(62))(y8(81)y8(82))M13(y7(71)y7(72)),V7}M11||(y6(61)y6(62))||||(y8(81)y8(82))||||V7||+M13||(y7(71)y7(72))||||V7||,{M11(y6(61)y6(62))(y8(81)y8(82))+M13(y7(71)y7(72)),V8}M11||(y6(61)y6(62))||||(y8(81)y8(82))||||V8||+M13||(y7(71)y7(72))||||V8||.

    In the case for large number e1,e2,e3,e4,e5,e6,e7ande8, both solutions happen to be converged to the exact solution. Employing the topology concept, we can obtain eight positive very small parameters (χe1,χe2,χe3,χe4,χe5,χe6,χe7andχe8).

    ||y1y1(11)||,||y1y1(12)||χe1ϖ,||y2y2(21)||,||y2y2(22)||χe2ς,
    ||y3y3(31)||,||y3y3(32)||χe3υ,||y4y4(41)||,||y4y4(42)||χe4κ,
    ||y5y5(51)||,||y5y5(52)||χe5ϱ,||y6y6(61)||,||y6y6(62)||χe6ζ,
    ||y7y7(71)||,||y7y7(72)||χe7ν,||y8y8(81)||,||y8y8(82)||χe8ε.

    Where

    ϖ=8(M1||y1(11)y1(12)||+M2||y2(21)y2(22)||+M3||y3(31)y3(32)||+M4)||V1||
    ς=8(M1||y1(11)y1(12)||+M5||y2(21)y2(22)||)||V2||
    υ=8(M6||(y3(31)y3(32))||+M2||(y4(41)y4(42))||+M7||(y5(51)y5(52))||)||V3||
    κ=8(M3||(y2(21)y2(22))||+M8||(y3(31)y3(32))||+M9||(y4(41)y4(42))||)||V4||
    ϱ=8(M10||(y5(51)y5(52))||+M2||(y6(61)y6(62))||+M2||(y7(71)y7(72))||)||V5||
    ζ=8(M11||(y6(61)y6(62))||||(y8(81)y8(82))||+M12||(y4(41)y4(42))||+M8||(y5(51)y5(52))||+M2||(y6(61)y6(62))||+M12||(y7(71)y7(72))||)||V6||
    ν=8(M11||(y6(61)y6(62))||||(y8(81)y8(82))||+M13||(y7(71)y7(72))||)||V7||
    ε=8(M11||(y6(61)y6(62))||||(y8(81)y8(82))||+M13||(y7(71)y7(72))||)||V8||

    But, it is obvious that

    (M1||y1(11)y1(12)||+M2||y2(21)y2(22)||+M3||y3(31)y3(32)||+M4)0
    (M1||y1(11)y1(12)||+M5||y2(21)y2(22)||)0
    (M6||(y3(31)y3(32))||+M2||(y4(41)y4(42))||+M7||(y5(51)y5(52))||)0
    (M3||(y2(21)y2(22))||+M8||(y3(31)y3(32))||+M9||(y4(41)y4(42))||)0
    (M10||(y5(51)y5(52))||+M2||(y6(61)y6(62))||+M2||(y7(71)y7(72))||)0
    (M11||(y6(61)y6(62))||||(y8(81)y8(82))||+M12||(y4(41)y4(42))||+M8||(y5(51)y5(52))||+M2||(y6(61)y6(62))||+M12||(y7(71)y7(72))||)0
    (M11||(y6(61)y6(62))||||(y8(81)y8(82))||+M13||(y7(71)y7(72))||)0
    (M11||(y6(61)y6(62))||||(y8(81)y8(82))||+M13||(y7(71)y7(72))||)0

    where ||V1||,||V2||,||V3||,||V4||,||V5||,||V6||,||V7||,||V8||0.

    Therefore, we have

    ||y1(11)y1(12)||=0,||y2(21)y2(22)||=0,||y3(31)y3(32)||=0,
    ||(y4(41)y4(42))||=0,||(y5(51)y5(52))||=0,||(y6(61)y6(62))||=0,
    ||(y7(71)y7(72))||=0,||(y8(81)y8(82))||=0.

    Which yields that

    y1(11)=y1(12),y2(21)=y2(22),y3(31)=y3(32),y4(41)=y4(42),y5(51)=y5(52),y6(61)=y6(62),y7(71)=y7(72),y8(81)=y8(82)

    This completes the proof of uniqueness.

    An operator B:ZZ can be defined as:

    B(φ)(t)=φ(0)+μtμ1(1α1)AB(α1)£(t,φ(t))+μα1AB(α1)Γ(α1)t0λμ1(1λ)μ1£(t,φ(t))dλ (10)

    If £(t,φ(t)) satisfies the Lipschitz condition and the following extension then

    ● For every φZ there exists constants L£>0 and M£ such that

    |£(t,φ(t))|L£|φ(t)|+M£ (11)

    ● For every φ,¯φZ, there exists a constant M£>0 such that

    |£(t,φ(t))£(t,¯φ(t))||M£|φ(t)¯φ(t)| (12)

    Theorem 4.2: If the condition of (11) holds then for the function £:[0,T]×ZR there exists at least one solution for the (1).

    Proof: Since £ in (10) is continuous function, so B is also a continuous. Assume M={φ||φ||R,R>0}, then for φZ, we have

    B(φ)(t)=maxt[0,T]|φ(0)+μtμ1(1α1)AB(α1)£(t,φ(t))+μα1AB(α1)Γ(α1)t0λμ1(1λ)μ1£(t,φ(t))dλ
    |φ(0)+μTμ1(1α1)AB(α1)(L£||φ(t)||+M£)+maxt[0,T]μα1AB(α1)Γ(α1)t0λμ1(1λ)μ1£(t,φ(t))dλ|
    φ(0)+μTμ1(1α1)AB(α1)(L£||φ(t)||+M£)+μα1AB(α1)Γ(α1)(L£||φ(t)||+M£)Tμ+α11M(μ,α1)R.

    Hence, B is uniformly bounded, and M(μ,α1) is a beta function. For equicontinuity of B, we take t1<t2T, then consider

    B(φ)(t2)B(φ)(t1)=|μt2μ1(1α1)AB(α1)£(t2,φ(t2))+μα1AB(α1)Γ(α1)
    t20λμ1(t2λ)μ1£(t,φ(t))dλμt1μ1(1α1)AB(α1)£(t1,φ(t1))            +μα1AB(α1)Γ(α1)t20λμ1(t1λ)μ1£(t,φ(t))dλ|
    μt2μ1(1α1)AB(α1)(L£|φ(t)|+M£)+μα1AB(α1)Γ(α1)(L£|φ(t)|+M£)t2μ+α11M(μ,α1)
    μt1μ1(1α1)AB(α1)(L£|φ(t)|+M£)μα1AB(α1)Γ(α1)(L£|φ(t)|+M£)t1μ+α11M(μ,α1)

    If t1t2 then ||B(φ)(t2)B(φ)(t1)0|| Consequently ||B(φ)(t2)B(φ)(t1)0||,ast1t2. Hence B is equicontinous. Thus, by Arzela-Ascoli theorem B is completely continuous. Consequently, by the result of Schauder's fixed point, it has at least one solution.

    Theorem 4.3: If η=μTμ1(1α1)AB(α1)+μα1AB(α1)Γ(α1)Tμ+α11M(μ,α1)M£<1 and the condition (12) holds, then η has a unique solution.

    Proof: For φ,¯φZ, we have

    |B(φ)B(¯φ)|=maxt[0,T]|μtμ1(1α1)AB(α1)[£(t,φ(t))|£(t,¯φ(t))]
    +μα1AB(α1)Γ(α1)t0λμ1(1λ)μ1[£(t,φ(t))|£(t,¯φ(t))]dλ|
    [μTμ1(1α1)AB(α1)+μα1AB(α1)Γ(α1)Tμ+α11M(μ,α1)]||B(φ)B(¯φ)||
    η||B(φ)B(¯φ)||.

    Hence, B is a contraction. So, by the principle of Banach contraction, it has a unique solution.

    Ulam-Hyres stability

    The proposed model is Ulam-Hyres stable if there exists Bμ,α10 such that for every ε>0 and for every φ(L[0,T],R) satisfies the following inequality FFMJμ,α10,t(φ(t))£(t,φ(t))ε,t[0,T] such that |φ(t)£(t)|Bμ,α1ε,t[0,T].

    Suppose a perturbation ωL[0,T],R then ω(0)=0 and

    ● For every ε>0ω(t)ε|

    0FFMJμ,α1t(φ(t))=£(t,φ(t))+ω(t).

    Lemma 4.4: The solution of the perturbed model 0FFMJμ,α1t(φ(t))=£(t,φ(t))+ω(t),φ(0)=φ0 fulfills the relation

    B(t)[φ(0)+μtμ1(1α1)AB(α1)£(t,φ(t))+μα1AB(α1)Γ(α1)t0λμ1(1λ)μ1£(λ,φ(λ))dλ        α1α1,με

    Where α1α1,με=μTμ1(1α1)AB(α1)+μα1AB(α1)Γ(α1)Tμ+α11M(μ,α1).

    Lemma 4.5: By using condition (12) with lemma (4.4), proposed model is Ulam-Hyres stable if η<1.

    Proof: Suppose α1Z be a solution and φZ be any solution of (1), then

    |φ(t)α1(t)|=|φ(t)[α1(0)+μtμ1(1α1)AB(α1)£(t,α1(t))+μα1AB(α1)Γ(α1)t0λμ1(1λ)μ1£(λ,α1(λ))dλ]|
    |φ(t)[φ(0)+μtμ1(1α1)AB(α1)£(t,φ(t))+μα1AB(α1)Γ(α1)t0λμ1(1λ)μ1£(λ,φ(λ))dλ]|            +|φ(0)+μtμ1(1α1)AB(α1)£(t,φ(t))            +μα1AB(α1)Γ(α1)t0λμ1(1λ)μ1£(λ,φ(λ))dλ|
    |α1(0)+μtμ1(1α1)AB(α1)£(t,α1(t))+μα1AB(α1)Γ(α1)t0λμ1(1λ)μ1£(λ,α1(λ))dλ|
    α1α1,με+(μTμ1(1α1)AB(α1)+μα1AB(α1)Γ(α1)Tμ+α11)L£|φ(t)α1(t)|
    α1α1,με+η|φ(t)α1(t)|.

    Consequently,

    ||φα1||α1α1,με+η||φ(t)α1(t)||.

    So, we can write it as

    ||φα1||Bα1,με,

    Where Bα1,με=α1α1,μ1η. Hence the solution is Ulam-Hyres stable.

    In this section, we present the Hires problem model (1) using fractal-fractional Atangana-Baleanu derivative. We have

    FFDα1,α20,ty1=M1y1+M2y2+M3y3+M4,FFDα1,α20,ty2=M1y1M5y2,FFDα1,α20,ty3=M6y3+M2y4+M7y5,FFDα1,α20,ty4=M3y2+M8y3M9y4,FFDα1,α20,ty5=M10y5+M2y6M2y7,FFDα1,α20,ty6=M11y6y8+M12y4+M8y5M2y6+M12y7,FFDα1,α20,ty7=M11y6y8M13y7,FFDα1,α20,ty8=M11y6y8+M13y7. (13)

    With initial conditions

    y1(0)=y1(0),y2(0)=y2(0),y3(0)=y3(0),y4(0)=y4(0),y5(0)=y5(0),y6(0)=y6(0),y7(0)=y7(0),y8(0)=y8(0).

    We present the numerical algorithm for the fractal-fractional Hires problem model (13). The following is obtained by integrating the system (13).

    y1(t)y1(0)=(1α1)C(α1)α2tα21{M1y1(t)+M2y2(t)+M3y3(t)+M4}+α1α2C(α1)Γ(α1)t0τα21{M1y1(τ)+M2y2(τ)+M3y3(τ)+M4}(tτ)α11dτ,y2(t)y2(0)=(1α1)C(α1)α2tα21{M1y1(t)M5y2(t)}+α1α2C(α1)Γ(α1)t0τα21{{M1y1(τ)M5y2(τ)}}(tτ)α11dτ,y3(t)y3(0)=(1α1)C(α1)α2tα21{M6y3(t)+M2y4(t)+M7y5(t)}+α1α2C(α1)Γ(α1)t0τα21{M6y3(τ)+M2y4(τ)+M7y5(τ)}(tτ)α11dτ,y4(t)y4(0)=(1α1)C(α1)α2tα21{M3y2(t)+M8y3(t)M9y4(t)}+α1α2C(α1)Γ(α1)t0τα21{M3y2(τ)+M8y3(τ)M9y4(τ)}(tτ)α11dτ,y5(t)y5(0)=(1α1)C(α1)α2tα21{M10y5(t)+M2y6(t)M2y7(t)}+α1α2C(α1)Γ(α1)t0τα21{{M10y5(τ)+M2y6(τ)M2y7(τ)}}(tτ)α11dτ,y6(t)y6(0)=(1α1)C(α1)α2tα21{M11y6(t)y8(t)+M12y4(t)+M8y5(t)M2y6(t)+M12y7(t)}+α1α2C(α1)Γ(α1)t0τα21{M11y6(τ)y8(τ)+M12y4(τ)+M8y5(τ)M2y6(τ)+M12y7(τ)}(tτ)α11dτ,y7(t)y7(0)=(1α1)C(α1)α2tα21{M11y6(t)y8(t)M13y7(t)}+α1α2C(α1)Γ(α1)t0τα21{M11y6(τ)y8(τ)M13y7(τ)}(tτ)α11dτ,y8(t)y8(0)=(1α1)C(α1)α2tα21{M11y6(t)y8(t)+M13y7(t)}+α1α2C(α1)Γ(α1)t0τα21{{M11y6(τ)y8(τ)+M13y7(τ)}}(tτ)α11dτ, (14)

    Let

    k(t,y1(t))=α2tα21{M1y1(t)+M2y2(t)+M3y3(t)+M4},
    k(t,y2(t))=α2tα21{M1y1(t)M5y2(t)},
    k(t,y3(t))=α2tα21{M6y3(t)+M2y4(t)+M7y5(t)},
    k(t,y4(t))=α2tα21{M3y2(t)+M8y3(t)M9y4(t)},
    k(t,y5(t))=α2tα21{M10y5(t)+M2y6(t)M2y7(t)},
    k(t,y6(t))=α2tα21{M11y6(t)y8(t)+M12y4(t)+M8y5(t)M2y6(t)+M12y7(t)},
    k(t,y7(t))=α2tα21{M11y6(t)y8(t)M13y7(t)},
    k(t,y8(t))=α2tα21{M11y6(t)y8(t)+M13y7(t)}.

    Then system (14) becomes

    y1(t)y1(0)=(1α1)C(α1)k(t,y1(t))+α1C(α1)Γ(α1)t0k(τ,y1(τ))(tτ)α11dτ,y2(t)y2(0)=(1α1)C(α1)k(t,y2(t))+α1C(α1)Γ(α1)t0k(τ,y2(τ))(tτ)α11dτ,y3(t)y3(0)=(1α1)C(α1)k(t,y3(t))+α1C(α1)Γ(α1)t0k(τ,y3(τ))(tτ)α11dτ,y4(t)y4(0)=(1α1)C(α1)k(t,y4(t))+α1C(α1)Γ(α1)t0k(τ,y4(τ))(tτ)α11dτ,y5(t)y5(0)=(1α1)C(α1)k(t,y5(t))+α1C(α1)Γ(α1)t0k(τ,y5(τ))(tτ)α11dτ,y6(t)y6(0)=(1α1)C(α1)k(t,y6(t))+α1C(α1)Γ(α1)t0k(τ,y6(τ))(tτ)α11dτ,y7(t)y7(0)=(1α1)C(α1)k(t,y7(t))+α1C(α1)Γ(α1)t0k(τ,y7(τ))(tτ)α11dτ,y8(t)y8(0)=(1α1)C(α1)k(t,y8(t))+α1C(α1)Γ(α1)t0k(τ,y8(τ))(tτ)α11dτ, (15)

    At tn+1=(n+1)Δt, we have

    y1(tn+1)y1(0)=(1α1)C(α1)k(tn,y1(tn))+α1C(α1)Γ(α1)tn+10k(τ,y1(τ))(tn+1τ)α11dτ,y2(tn+1)y2(0)=(1α1)C(α1)k(tn,y2(tn))+α1C(α1)Γ(α1)tn+10k(τ,y2(τ))(tn+1τ)α11dτ,y3(tn+1)y3(0)=(1α1)C(α1)k(tn,y3(tn))+α1C(α1)Γ(α1)tn+10k(τ,y3(τ))(tn+1τ)α11dτ,y4(tn+1)y4(0)=(1α1)C(α1)k(tn,y4(tn))+α1C(α1)Γ(α1)tn+10k(τ,y4(τ))(tn+1τ)α11dτ,y5(tn+1)y5(0)=(1α1)C(α1)k(tn,y5(tn))+α1C(α1)Γ(α1)tn+10k(τ,y5(τ))(tn+1τ)α11dτ,y6(tn+1)y6(0)=(1α1)C(α1)k(tn,y6(tn))+α1C(α1)Γ(α1)tn+10k(τ,y6(τ))(tn+1τ)α11dτ,y7(tn+1)y7(0)=(1α1)C(α1)k(tn,y7(tn))+α1C(α1)Γ(α1)tn+10k(τ,y7(τ))(tn+1τ)α11dτ,y8(tn+1)y8(0)=(1α1)C(α1)k(tn,y8(tn))+α1C(α1)Γ(α1)tn+10k(τ,y8(τ))(tn+1τ)α11dτ. (16)

    Also, we have

    \begin{array}{l} {y}_{1}\left({t}_{n+1}\right) = {y}_{1}\left(0\right)+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{1}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 0}^{n}\int_{{t}_{j}}^{{t}_{j+1}} k\left(\tau , {y}_{1}\left(\tau \right)\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \\ {y}_{2}\left({t}_{n+1}\right) = {y}_{2}\left(0\right)+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{2}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 0}^{n}\int_{{t}_{j}}^{{t}_{j+1}} k\left(\tau , {y}_{2}\left(\tau \right)\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \\ {y}_{3}\left({t}_{n+1}\right) = {y}_{3}\left(0\right)+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{3}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 0}^{n}\int_{{t}_{j}}^{{t}_{j+1}} k\left(\tau , {y}_{3}\left(\tau \right)\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \\ {y}_{4}\left({t}_{n+1}\right) = {y}_{4}\left(0\right)+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{4}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 0}^{n}\int_{{t}_{j}}^{{t}_{j+1}} k\left(\tau , {y}_{4}\left(\tau \right)\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \\ {y}_{5}\left({t}_{n+1}\right) = {y}_{5}\left(0\right)+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{5}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 0}^{n}\int_{{t}_{j}}^{{t}_{j+1}} k\left(\tau , {y}_{5}\left(\tau \right)\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \\ {y}_{6}\left({t}_{n+1}\right) = {y}_{6}\left(0\right)+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{6}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 0}^{n}\int_{{t}_{j}}^{{t}_{j+1}} k\left(\tau , {y}_{6}\left(\tau \right)\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \\ {y}_{7}\left({t}_{n+1}\right) = {y}_{7}\left(0\right)+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{7}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 0}^{n}\int_{{t}_{j}}^{{t}_{j+1}} k\left(\tau , {y}_{7}\left(\tau \right)\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \\ {y}_{8}\left({t}_{n+1}\right) = {y}_{8}\left(0\right)+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{8}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 0}^{n}\int_{{t}_{j}}^{{t}_{j+1}} k\left(\tau , {y}_{8}\left(\tau \right)\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau . \end{array} (17)

    In general, approximating the function k\left(\tau, y\left(\tau \right)\right), using the Newton polynomial, we have

    \begin{array}{l} {P}_{n}\left(\tau \right) = \frac{k\left({t}_{n}, y\left({t}_{n}\right)\right)}{{t}_{n}-{t}_{n-1}}\left(\tau -{t}_{n-1}\right)+\frac{k\left({t}_{n-1}, y\left({t}_{n-1}\right)\right)}{{t}_{n}-{t}_{n-1}}\left(\tau -{t}_{n}\right) = \frac{k\left({t}_{n}, y\left({t}_{n}\right)\right)}{h}\left(\tau -{t}_{n-1}\right)\frac{k\left({t}_{n-1}, y\left({t}_{n-1}\right)\right)}{h}\left(\tau -\\ {t}_{n}\right). \end{array} (18)

    Using Eq (18) into system (17) we have

    \begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{1}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}\int_{{t}_{j}}^{{t}_{j+1}} \{k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)+\\ \frac{k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)-k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{\Delta t}\left(\tau -{t}_{j-2}\right)+\frac{k\left({t}_{j}, {{y}_{1}}^{j}\right)-2k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)+k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{{2\left(\Delta t\right)}^{2}}\left(\tau -{t}_{j-2}\right)(\tau -\\ {t}_{j-1})\}{\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \end{array} (19)

    Rearranging the above equation, we have

    \begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{1}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}[\int_{{t}_{j}}^{{t}_{j+1}} k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau +\\ \int_{{t}_{j}}^{{t}_{j+1}} \frac{k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)-k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{\Delta t}\left(\tau -{t}_{j-2}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau +\\ \int_{{t}_{j}}^{{t}_{j+1}} \frac{k\left({t}_{j}, {{y}_{1}}^{j}\right)-2k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)+k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{{2\left(\Delta t\right)}^{2}}\left(\tau -{t}_{j-2}\right)\left(\tau -{t}_{j-1}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau ], \end{array} (20)

    Writing further system (20) we have

    \begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{1}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)\int_{{t}_{j}}^{{t}_{j+1}} {\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau +\\ \frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}\frac{k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)-k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{\Delta t}\int_{{t}_{j}}^{{t}_{j+1}} \left(\tau -{t}_{j-2}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau +\\ \frac{{\alpha }_{1}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}\right)}\sum _{j = 2}^{n}\frac{k\left({t}_{j}, {{y}_{1}}^{j}\right)-2k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)+k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)}{{2\left(\Delta t\right)}^{2}}\int_{{t}_{j}}^{{t}_{j+1}} \left(\tau -{t}_{j-2}\right)\left(\tau -{t}_{j-1}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau , \end{array} (21)

    Now, calculating the integrals in system (21) we get

    \int_{{t}_{j}}^{{t}_{j+1}} {\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau = \frac{{\left(\Delta t\right)}^{{\alpha }_{1}}}{{\alpha }_{1}}\left[{\left(n-j+1\right)}^{{\alpha }_{1}}-{\left(n-j\right)}^{{\alpha }_{1}}\right],
    \begin{array}{l} \int_{{t}_{j}}^{{t}_{j+1}} \left(\tau -{t}_{j-2}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau = \frac{{\left(\Delta t\right)}^{{\alpha }_{1}+1}}{{\alpha }_{1}\left({\alpha }_{1}+1\right)}[{\left(n-j+1\right)}^{{\alpha }_{1}}\left(n-j+3+2{\alpha }_{1}\right)-{\left(n-j+1\right)}^{{\alpha }_{1}}(n-\\ j+3+3{\alpha }_{1})], \end{array}
    \begin{array}{l} \int_{{t}_{j}}^{{t}_{j+1}} \left(\tau -{t}_{j-2}\right)\left(\tau -{t}_{j-1}\right){\left({t}_{n+1}-\tau \right)}^{{\alpha }_{1}-1}d\tau = \frac{{\left(\Delta t\right)}^{{\alpha }_{1}+2}}{{\alpha }_{1}\left({\alpha }_{1}+1\right)\left({\alpha }_{1}+2\right)}[{\left(n-j+1\right)}^{{\alpha }_{1}}\left\{2{\left(n-j\right)}^{2}+\\ \left(3{\alpha }_{1}+10\right)\left(n-j\right)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\right\}-{\left(n-j\right)}^{{\alpha }_{1}}\{2{\left(n-j\right)}^{2}+\left(5{\alpha }_{1}+10\right)\left(n-j\right)+6{{\alpha }_{1}}^{2}+\\ 18{\alpha }_{1}+12\}]. \end{array}

    Inserting them into system (21) we get

    \begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}k\left({t}_{n}, {y}_{1}\left({t}_{n}\right)\right)+\frac{{\alpha }_{1}{\left(\Delta t\right)}^{{\alpha }_{1}}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+1\right)}\sum _{j = 2}^{n}k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)\left[{\left(n-j+1\right)}^{{\alpha }_{1}}-{\left(n-j\right)}^{{\alpha }_{1}}\right]+\\ \frac{{\alpha }_{1}{\left(\Delta t\right)}^{{\alpha }_{1}}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+2\right)}\sum _{j = 2}^{n}\left[k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)-k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)\right][{(n-j+1)}^{{\alpha }_{1}}\left(n-j+3+2{\alpha }_{1}\right)-(n-j+\\ 1)^{{\alpha }_{1}}\left(n-j+3+3{\alpha }_{1}\right)]+\frac{{\alpha }_{1}{\left(\Delta t\right)}^{{\alpha }_{1}}}{2\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+3\right)}\sum _{j = 2}^{n}\left[k\left({t}_{j}, {{y}_{1}}^{j}\right)-2k\left({t}_{j-1}, {{y}_{1}}^{j-1}\right)+k\left({t}_{j-2}, {{y}_{1}}^{j-2}\right)\right][(n-\\ j+1)^{{\alpha }_{1}}\left\{2{\left(n-j\right)}^{2}+\left(3{\alpha }_{1}+10\right)\left(n-j\right)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\right\}-{\left(n-j\right)}^{{\alpha }_{1}}\{2{\left(n-j\right)}^{2}+(5{\alpha }_{1}+\\ 10)\left(n-j\right)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}] \end{array} (22)

    Finally, we have the following approximation:

    \begin{array}{l} {{y}_{1}}^{n+1} = {{y}_{1}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{-{M}_{1}{y}_{1}(t)+{M}_{2}{y}_{2}(t)+{M}_{3}{y}_{3}(t)+{M}_{4}\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-2}+{M}_{2}{{y}_{2}}^{j-2}+{M}_{3}{{y}_{3}}^{j-2}+{M}_{4}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-1}+{M}_{2}{{y}_{2}}^{j-1}+{M}_{3}{{y}_{3}}^{j-1}+{M}_{4}\}-{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-2}+{M}_{2}{{y}_{2}}^{j-2}+\\ {M}_{3}{{y}_{3}}^{j-2}+{M}_{4}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j}+{M}_{2}{{y}_{2}}^{j}+{M}_{3}{{y}_{3}}^{j}+{M}_{4}\}-2{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-1}+{M}_{2}{{y}_{2}}^{j-1}+\\ {M}_{3}{{y}_{3}}^{j-1}+{M}_{4}\}+{t}^{{\alpha }_{2}-1}\{-{M}_{1}{{y}_{1}}^{j-2}+{M}_{2}{{y}_{2}}^{j-2}+{M}_{3}{{y}_{3}}^{j-2}+{M}_{4}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+\\ (3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+\\ 18{\alpha }_{1}+12\}], \\ {{y}_{2}}^{n+1} = {{y}_{2}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{{M}_{1}{y}_{1}(t)-{M}_{5}{y}_{2}(t)\}+\frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-2}-\\ {M}_{5}{{y}_{2}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-1}-{M}_{5}{{y}_{2}}^{j-1}\}-\\ {t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-2}-{M}_{5}{{y}_{2}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+\\ 3{\alpha }_{1})]+\frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j}-{M}_{5}{{y}_{2}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-1}-{M}_{5}{{y}_{2}}^{j-1}\}+\\ {t}^{{\alpha }_{2}-1}\{{M}_{1}{{y}_{1}}^{j-2}-{M}_{5}{{y}_{2}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-\\ {(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \\ {{y}_{3}}^{n+1} = {{y}_{3}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{-{M}_{6}{y}_{3}(t)+{M}_{2}{y}_{4}(t)+{M}_{7}{y}_{5}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-2}+{M}_{2}{{y}_{4}}^{j-2}+{M}_{7}{{y}_{5}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-1}+{M}_{2}{{y}_{4}}^{j-1}+{M}_{7}{{y}_{5}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-2}+{M}_{2}{{y}_{4}}^{j-2}+\\ {M}_{7}{{y}_{5}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j}+{M}_{2}{{y}_{4}}^{j}+\\ {M}_{7}{{y}_{5}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-1}+{M}_{2}{{y}_{4}}^{j-1}+{M}_{7}{{y}_{5}}^{j-1}\}+{t}^{{\alpha }_{2}-1}\{-{M}_{6}{{y}_{3}}^{j-2}+{M}_{2}{{y}_{4}}^{j-2}+\\ {M}_{7}{{y}_{5}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+10)(n-\\ j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \\ {{y}_{4}}^{n+1} = {{y}_{4}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{{M}_{3}{y}_{2}(t)+{M}_{8}{y}_{3}(t)-{M}_{9}{y}_{4}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-2}+{M}_{8}{{y}_{3}}^{j-2}-{M}_{9}{{y}_{4}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-1}+{M}_{8}{{y}_{3}}^{j-1}-{M}_{9}{{y}_{4}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-2}+{M}_{8}{{y}_{3}}^{j-2}-\\ {M}_{9}{{y}_{4}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j}+{M}_{8}{{y}_{3}}^{j}-{M}_{9}{{y}_{4}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-1}+{M}_{8}{{y}_{3}}^{j-1}-{M}_{9}{{y}_{4}}^{j-1}\}+\\ {t}^{{\alpha }_{2}-1}\{{M}_{3}{{y}_{2}}^{j-2}+{M}_{8}{{y}_{3}}^{j-2}-{M}_{9}{{y}_{4}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+\\ 9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \\ {{y}_{5}}^{n+1} = {{y}_{5}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{-{M}_{10}{y}_{5}(t)+{M}_{2}{y}_{6}(t)-{M}_{2}{y}_{7}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-2}+{M}_{2}{{y}_{6}}^{j-2}-{M}_{2}{{y}_{7}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-1}+{M}_{2}{{y}_{6}}^{j-1}-{M}_{2}{{y}_{7}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-2}+{M}_{2}{{y}_{6}}^{j-2}-\\ {M}_{2}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j}+{M}_{2}{{y}_{6}}^{j}-\\ {M}_{2}{{y}_{7}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-1}+{M}_{2}{{y}_{6}}^{j-1}-{M}_{2}{{y}_{7}}^{j-1}\}+{t}^{{\alpha }_{2}-1}\{-{M}_{10}{{y}_{5}}^{j-2}+\\ {M}_{2}{{y}_{6}}^{j-2}-{M}_{2}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+\\ 10)(n-j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+\\ 10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+\\ 12\}], \end{array} (23)
    \begin{array}{l} {{y}_{6}}^{n+1} = {{y}_{6}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{-{M}_{11}{y}_{6}(t){y}_{8}(t)+{M}_{12}{y}_{4}(t)+{M}_{8}{y}_{5}(t)-{M}_{2}{y}_{6}(t)+{M}_{12}{y}_{7}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{12}{{y}_{4}}^{j-2}+{M}_{8}{{y}_{5}}^{j-2}-{M}_{2}{{y}_{6}}^{j-2}+{M}_{12}{{y}_{7}}^{j-2}\}[(n-\\ j+1)^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}+{M}_{12}{{y}_{4}}^{j-1}+{M}_{8}{{y}_{5}}^{j-1}-\\ {M}_{2}{{y}_{6}}^{j-1}+{M}_{12}{{y}_{7}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{12}{{y}_{4}}^{j-2}+\\ {M}_{8}{{y}_{5}}^{j-2}-{M}_{2}{{y}_{6}}^{j-2}+{M}_{12}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j}{{y}_{8}}^{j}+{M}_{12}{{y}_{4}}^{j}+{M}_{8}{{y}_{5}}^{j}-{M}_{2}{{y}_{6}}^{j}+{M}_{12}{{y}_{7}}^{j}\}-\\ 2{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}+{M}_{12}{{y}_{4}}^{j-1}+{M}_{8}{{y}_{5}}^{j-1}-{M}_{2}{{y}_{6}}^{j-1}+{M}_{12}{{y}_{7}}^{j-1}\}+\\ {t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{12}{{y}_{4}}^{j-2}+{M}_{8}{{y}_{5}}^{j-2}-{M}_{2}{{y}_{6}}^{j-2}+{M}_{12}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2(n-\\ j)^{2}+(3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+\\ 6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \end{array}
    \begin{array}{l} {{y}_{7}}^{n+1} = {{y}_{7}}^{0}+\frac{(1-{\alpha }_{1})}{\mathrm{C}({\alpha }_{1})}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\{{M}_{11}{y}_{6}(t){y}_{8}(t)-{M}_{13}{y}_{7}(t)\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+1)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}-{M}_{13}{{y}_{7}}^{j-2}\}[{(n-j+1)}^{{\alpha }_{1}}-{(n-j)}^{{\alpha }_{1}}]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+2)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}-{M}_{13}{{y}_{7}}^{j-1}\}-{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}-{M}_{13}{{y}_{7}}^{j-2}\}][(n-\\ j+1)^{{\alpha }_{1}}(n-j+3+2{\alpha }_{1})-{(n-j+1)}^{{\alpha }_{1}}(n-j+3+3{\alpha }_{1})]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{(\Delta t)}^{{\alpha }_{1}}}{2\mathrm{C}({\alpha }_{1})\mathrm{\Gamma }({\alpha }_{1}+3)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j}{{y}_{8}}^{j}-{M}_{13}{{y}_{7}}^{j}\}-2{t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}-{M}_{13}{{y}_{7}}^{j-1}\}+\\ {t}^{{\alpha }_{2}-1}\{{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}-{M}_{13}{{y}_{7}}^{j-2}\}][{(n-j+1)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(3{\alpha }_{1}+10)(n-j)+2{{\alpha }_{1}}^{2}+\\ 9{\alpha }_{1}+12\}-{(n-j)}^{{\alpha }_{1}}\{2{(n-j)}^{2}+(5{\alpha }_{1}+10)(n-j)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\}], \end{array}
    \begin{array}{l} {{y}_{8}}^{n+1} = {{y}_{8}}^{0}+\frac{\left(1-{\alpha }_{1}\right)}{\mathrm{C}\left({\alpha }_{1}\right)}{\alpha }_{2}{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{y}_{6}\left(t\right){y}_{8}\left(t\right)+{M}_{13}{y}_{7}\left(t\right)\right\}+\\ \frac{{\alpha }_{1}{\alpha }_{2}{\left(\Delta t\right)}^{{\alpha }_{1}}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+1\right)}\sum _{j = 2}^{n}{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{13}{{y}_{7}}^{j-2}\right\}\left[{\left(n-j+1\right)}^{{\alpha }_{1}}-{\left(n-j\right)}^{{\alpha }_{1}}\right]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{\left(\Delta t\right)}^{{\alpha }_{1}}}{\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+2\right)}\sum _{j = 2}^{n}[{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}+{M}_{13}{{y}_{7}}^{j-1}\right\}-{t}^{{\alpha }_{2}-1}\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+\\ {M}_{13}{{y}_{7}}^{j-2}\}]\left[{\left(n-j+1\right)}^{{\alpha }_{1}}\left(n-j+3+2{\alpha }_{1}\right)-{\left(n-j+1\right)}^{{\alpha }_{1}}\left(n-j+3+3{\alpha }_{1}\right)\right]+\\ \frac{{\alpha }_{1}{\alpha }_{2}{\left(\Delta t\right)}^{{\alpha }_{1}}}{2\mathrm{C}\left({\alpha }_{1}\right)\mathrm{\Gamma }\left({\alpha }_{1}+3\right)}\sum _{j = 2}^{n}\left[{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j}{{y}_{8}}^{j}+{M}_{13}{{y}_{7}}^{j}\right\}-2{t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j-1}{{y}_{8}}^{j-1}+{M}_{13}{{y}_{7}}^{j-1}\right\}+\\ {t}^{{\alpha }_{2}-1}\left\{-{M}_{11}{{y}_{6}}^{j-2}{{y}_{8}}^{j-2}+{M}_{13}{{y}_{7}}^{j-2}\right\}\right][{\left(n-j+1\right)}^{{\alpha }_{1}}\{2{\left(n-j\right)}^{2}+\left(3{\alpha }_{1}+10\right)\left(n-j\right)+2{{\alpha }_{1}}^{2}+\\ 9{\alpha }_{1}+12\}-{\left(n-j\right)}^{{\alpha }_{1}}\left\{2{\left(n-j\right)}^{2}+\left(5{\alpha }_{1}+10\right)\left(n-j\right)+6{{\alpha }_{1}}^{2}+18{\alpha }_{1}+12\right\}]. \end{array}

    A fractional-order model is proposed for analysis and simulation, to observe the concentration of chemicals in chemistry kinematics problems with a stiff differential equation. For this purpose, we used ABC with Mittage-Lefffier law, Atangana-Tufik scheme, and fractal fractional derivative for hires problem with given initial conditions. Details of parameters values of real data are also given in [18,19] which will consider for simulation analysis for the proposed study. Solution of compartment shows in Figures 1 to 8 with fractional fractal operator at different order. Effect of fraction order can easily be observed in simulation of the compartments having a concentration of chemical reaction with stiff differential equations. The concentration {y}_{1} and {y}_{8} of the chemical species start decreasing by decreasing fractional values respectively while concentration {y}_{2}, {y}_{3} , {y}_{4} , {y}_{5} , {y}_{6} and {y}_{7} of the chemical species start increasing by decreasing fractional values. These concentrations of chemical species converge to our desired value according to steady state by decreasing the fractional values which shows that it provides us appropriate results at non integer value. We can get better concentration of the components by using the fractional derivative which are very important for chemical problem to check the actual behavior of the concentration of the chemical with smallest changes in derivative with respect to time. It is also very important for solutions of nonlinear problems which are commonly used researcher and scientist in kinetics chemistry.

    Figure 1.  Simulation of {y}_{1}\left(t\right) with fractal fractional derivative.
    Figure 2.  Simulation of {y}_{2}\left(t\right) with fractal fractional derivative.
    Figure 3.  Simulation of {y}_{3}\left(t\right) with fractal fractional derivative.
    Figure 4.  Simulation of {y}_{4}\left(t\right) with fractal fractional derivative.
    Figure 5.  Simulation of {y}_{5}\left(t\right) with fractal fractional derivative.
    Figure 6.  Simulation of {y}_{6}\left(t\right) with fractal fractional derivative.
    Figure 7.  Simulation of {y}_{7}\left(t\right) with fractal fractional derivative.
    Figure 8.  Simulation of {y}_{8}\left(t\right) with fractal fractional derivative.

    We examine the hires problems with stiff systems of nonlinear ordinary equations that rely on the concentration of chemical reaction of components in this study. The advanced techniques of fractional operator have been implemented for initial value problem arising from chemical reactions composed of large systems of stiff ordinary differential equations. The arbitrary derivative of fractional order has been taken with Atangana-Toufik scheme and fractal fractional derivative. Solutions have been obtained efficiently within limited time which shows the actual behavior of kinetic chemical reactions. Existence and uniqueness of results have been verified by fixed point theorem. Simulations are carried out for different fractional values. New chemical reactions can be done with the help of these analyses. These concepts are very important to use for real life problems like Brine tank cascade, Recycled Brine tank cascade, pond pollution, home heating and biomass transfer problem.

    Research Supporting Project number (RSP-2021/167), King Saud University, Riyadh, Saudi Arabia.

    No conflict of interest.



    [1] G. C. Georgiou, L. G. Olson, W. W. Schultz, S. Sagan, A singular finite element for stokes flow: The stick-slip problem, Int. J. Numer. Meth. Fl., 9 (1989), 1353–1367. https://doi.org/10.1002/fld.1650091105 doi: 10.1002/fld.1650091105
    [2] G. C. Georgiou, W. W. Schultz, L. G. Olson, Singular finite elements for the sudden-expansion and the die-swell problems, Int. J. Numer. Meth. Fl., 10 (1990), 357–372. https://doi.org/10.1002/fld.1650100402 doi: 10.1002/fld.1650100402
    [3] M. Elliotis, G. Georgiou, C. Xenophontos, Solution of the planar Newtonian stick-slip problem with the singular function boundary integral method, Int. J. Numer. Meth. Fl., 48 (2005), 1001–1021. https://doi.org/10.1002/fld.973 doi: 10.1002/fld.973
    [4] R. I. Tanner, A theory of die-swell, J. Polym. Sci. Pol. Phys., 8 (1970), 2067–2078. https://doi.org/10.1002/pol.1970.160081203 doi: 10.1002/pol.1970.160081203
    [5] R. Tanner, A theory of die-swell revisited, J. Non-Newton. Fluid, 129 (2005), 85–87. https://doi.org/10.1016/j.jnnfm.2005.05.010 doi: 10.1016/j.jnnfm.2005.05.010
    [6] R. Tanner, X. Huang, Stress singularities in non-Newtonian stick-slip and edge flows, J. Non-Newton. Fluid, 50 (1993), 135–160.
    [7] S. Rosenblat, Rivulet flow of a viscoelastic liquid, J. Non-Newton. Fluid, 13 (1983), 259–277. https://doi.org/10.1016/0377-0257(83)80024-X doi: 10.1016/0377-0257(83)80024-X
    [8] A. J. Tanasijczuk, C. A. Perazzo, J. Gratton, Navier-Stokes solutions for steady parallel-sided pendent rivulets, Eur. J. Mech. B-Fluid., 29 (2010), 465–471. https://doi.org/10.1016/j.euromechflu.2010.06.002 doi: 10.1016/j.euromechflu.2010.06.002
    [9] F. H. H. A. Mukahal, B. R. Duffy, S. K. Wilson, Rivulet flow of generalized newtonian fluids, Phys. Rev. Fluids, 3 (2018), 083302.
    [10] J. Vlachopoulos, D. Strutt, Polymer processing, Mater. Sci. Technol., 19 (2003), 1161–1169. https://doi.org/10.1179/026708303225004738 doi: 10.1179/026708303225004738
    [11] E. Mitsoulis, Computational polymer processing, Model. Simul. Poly., 4 (2010), 127–195. https://doi.org/10.1007/s00502-010-0743-0 doi: 10.1007/s00502-010-0743-0
    [12] R. Bird, R. C. Armstrong, O. Hassager, Dynamics of polymeric liquids, Nashville, TN: John Wiley & Sons, 2 Eds., 1 (1987).
    [13] C. W. Macosko, Rheology: Principles, measurements, and applications, Wiley, 1994.
    [14] J. M. Dealy, K. F. Wissbrun, Melt rheology and its role in plastics processing, Kluwer Academic, 1999.
    [15] R. Larson, P. S. Desai, Modeling the rheology of polymer melts and solutions, Ann. Rev. Fluid Mech., 47 (2015), 47–65. https://doi.org/10.1146/annurev-fluid-010814-014612 doi: 10.1146/annurev-fluid-010814-014612
    [16] M. Denn, Extrusion instabilities and wall slip, Annu. Rev. Fluid Mech., 33 (2001), 265–287. https://doi.org/10.1002/ar.1053 doi: 10.1002/ar.1053
    [17] R. G. Larson, Instabilities in viscoelastic flows, Rheol. Acta, 31 (1992), 213–263. https://doi.org/10.1007/BF00366504 doi: 10.1007/BF00366504
    [18] D. Tang, F. H. Marchesini, L. Cardon, D. R. D'hooge, State of the-art for extrudate swell of molten polymers: From fundamental understanding at molecular scale toward optimal die design at final product scale, Macromol. Mater. Eng., 305 (2020), 2000340. https://doi.org/10.1002/mame.202000340 doi: 10.1002/mame.202000340
    [19] S. Richardson, The die swell phenomenon, Rheologica Acta, 9 (1970), 193–199. https://doi.org/10.1007/BF01973479 doi: 10.1007/BF01973479
    [20] O. Hassager, Working group on numerical techniques, J. Non-Newton. Fluid, 29 (1988), 2–5.
    [21] S. Middleman, J. Gavis, Expansion and contraction of capillary jets of viscoelastic liquids, Phys. Fluids, 4 (1961), 963–969. https://doi.org/10.1063/1.1706446 doi: 10.1063/1.1706446
    [22] J. Gavis, S. Middleman, Origins of normal stress in capillary jets of Newtonian and viscoelastic liquids, J. Appl. Polym. Sci., 7 (1963), 493–506. https://doi.org/10.1002/app.1963.070070208 doi: 10.1002/app.1963.070070208
    [23] W. W. Graessley, S. D. Glasscock, R. L. Crawley, Die swell in molten polymers, T. Soc. Rheol., 14 (1970), 519–544.
    [24] L. A. Utracki, Z. Bakerdjian, M. R. Kamal, A method for the measurement of the true die swell of polymer melts, J. Appl. Polym. Sci., 19 (1975), 481–501. https://doi.org/10.1002/app.1975.070190213 doi: 10.1002/app.1975.070190213
    [25] D. C. Huang, J. L. White, Extrudate swell from slit and capillary dies: An experimental and theoretical study, Polym. Eng. Sci., 19 (1979), 609–616. https://doi.org/10.1002/pen.760190904 doi: 10.1002/pen.760190904
    [26] S. Middleman, J. Gavis, Expansion and contraction of capillary jets of Newtonian liquids, Phys. Fluids, 4 (1961), 355–359. https://doi.org/10.1063/1.1706332 doi: 10.1063/1.1706332
    [27] S. L. Goren, S. Wronski, The shape of low-speed capillary jets of Newtonian liquids, J. Fluid Mech., 25 (1966), 185–198. https://doi.org/10.1017/S0022112066000120 doi: 10.1017/S0022112066000120
    [28] J. Batchelor, J. Berry, F. Horsfall, Die swell in elastic and viscous fluids, Polymer, 14 (1973), 297–299. https://doi.org/10.1016/0032-3861(73)90121-3 doi: 10.1016/0032-3861(73)90121-3
    [29] R. E. Nickell, R. I. Tanner, B. Caswell, The solution of viscous incompressible jet and free-surface flows using finite-element methods, J. Fluid Mech., 65 (1974), 189–206. https://doi.org/10.1017/S0022112074001339 doi: 10.1017/S0022112074001339
    [30] R. L. Gear, M. Keentok, J. F. Milthorpe, R. I. Tanner, The shape of low Reynolds number jets, Phys. Fluids, 26 (1983), 7–9. https://doi.org/10.1063/1.863987 doi: 10.1063/1.863987
    [31] E. B. Dussan, On the spreading of liquids on solid surfaces: Static and dynamic contact lines, Ann. Rev. Fluid Mech., 11 (1979), 371–400. https://doi.org/10.1146/annurev.fl.11.010179.002103 doi: 10.1146/annurev.fl.11.010179.002103
    [32] C. Huh, L. E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interf. Sci., 35 (1971), 85–101. https://doi.org/10.1016/0021-9797(71)90188-3 doi: 10.1016/0021-9797(71)90188-3
    [33] G. J. Jameson, M. C. G. del Cerro, Theory for the equilibrium contact angle between a gas, a liquid and a solid, J. Chem. Soc., 72 (1976), 883–895. https://doi.org/10.1039/f19767200883 doi: 10.1039/f19767200883
    [34] G. J. Merchant, J. B. Keller, Contact angles, Phys. Fluids A Fluid Dynam., 4 (1992), 477–485. https://doi.org/10.1063/1.858320 doi: 10.1063/1.858320
    [35] J. C. Slattery, E. Oh, K. Fu, Extension of continuum mechanics to the nanoscale, Chem. Eng. Sci., 59 (2004), 4621–4635. https://doi.org/10.1016/j.ces.2004.06.046 doi: 10.1016/j.ces.2004.06.046
    [36] M. E. Diaz, M. D. Savage, R. L. Cerro, The effect of temperature on contact angles and wetting transitions for n-alkanes on PTFE, J. Colloid Interf. Sci., 503 (2017), 159–167. https://doi.org/10.1016/j.jcis.2017.05.003 doi: 10.1016/j.jcis.2017.05.003
    [37] W. J. Silliman, L. E. Scriven, Separating how near a static contact line: Slip at a wall and shape of a free surface, J. Comput. Phys., 34 (1980), 287–313. https://doi.org/10.1016/0021-9991(80)90091-1 doi: 10.1016/0021-9991(80)90091-1
    [38] W. W. Schultz, C. Gervasio, A study of the singularity in the die-swell problem, Q. J. Mech. Appl. Math., 43 (1990), 407–425. https://doi.org/10.1093/qjmam/43.3.407 doi: 10.1093/qjmam/43.3.407
    [39] T. R. Salamon, D. E. Bornside, R. C. Armstrong, R. A. Brown, The role of surface tension in the dominant balance in the die swell singularity, Phys. Fluids, 7 (1995), 2328–2344. https://doi.org/10.1063/1.868746 doi: 10.1063/1.868746
    [40] T. R. Salamon, D. E. Bornside, R. C. Armstrong, R. A. Brown, Local similarity solutions in the presence of a slip boundary condition, Phys. Fluids, 9 (1997), 1235–1247. https://doi.org/10.1063/1.869263 doi: 10.1063/1.869263
    [41] Y. Kulkarni, T. Fullana, S. Zaleski, Stream function solutions for some contact line boundary conditions: Navier slip, super slip and the generalized Navier boundary condition, P. Roy. Soc. A Math. Phys. Eng. Sci., 479 (2023). https://doi.org/10.1098/rspa.2023.0141 doi: 10.1098/rspa.2023.0141
    [42] T. R. Salamon, D. E. Bornside, R. C. Armstrong, R. A. Brown, Local similarity solutions for the stress field of an Oldroyd-b fluid in the partial-slip/slip flow, Phys. Fluids, 9 (1997), 2191–2209. https://doi.org/10.1063/1.869342 doi: 10.1063/1.869342
    [43] L. M. Hocking, A moving fluid interface on a rough surface, J. Fluid Mech., 76 (1976), 801–817. https://doi.org/10.1017/S0022112076000906 doi: 10.1017/S0022112076000906
    [44] R. G. Larson, Constitutive equations for polymer melts and solutions, Butterworth-Heinemann, 1988.
    [45] H. Giesekus, A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility, J. Non-Newton. Fluid, 11 (1982), 69–109. https://doi.org/10.1016/0377-0257(82)85016-7 doi: 10.1016/0377-0257(82)85016-7
    [46] H. Giesekus, Stressing behaviour in simple shear flow as predicted by a new constitutive model for polymer fluids, J. Non-Newton. Fluid, 12 (1983), 367–374. https://doi.org/10.1016/0377-0257(83)85009-5 doi: 10.1016/0377-0257(83)85009-5
    [47] A. Beris, R. Armstrong, R. Brown, Finite element calculation of viscoelastic flow in a journal bearing: Ⅱ. moderate eccentricity, J. Non-Newton. Fluid, 19 (1986), 323–347. https://doi.org/10.1016/0377-0257(86)80055-6 doi: 10.1016/0377-0257(86)80055-6
    [48] H. K. Moffatt, Viscous and resistive eddies near a sharp corner, J. Fluid Mech., 18 (1964), 1–18. https://doi.org/10.1017/S0022112064000015 doi: 10.1017/S0022112064000015
    [49] J. D. Evans, M. L. Evans, The extrudate swell singularity of Phan-Thien-Tanner and Giesekus fluids, Phys. Fluids, 31 (2019), 113102. https://doi.org/10.1063/1.5129664 doi: 10.1063/1.5129664
    [50] J. Evans, Stick-slip singularity of the giesekus fluid, J. Non-Newton. Fluid, 222 (2015), 24–33. https://doi.org/10.1016/j.jnnfm.2014.08.012 doi: 10.1016/j.jnnfm.2014.08.012
    [51] J. D. Evans, M. L. Evans, Stress boundary layers for the Phan-Thien-Tanner fluid at the static contact line in extrudate swell, J. Eng. Math., 2024, in press. https://doi.org/10.21203/rs.3.rs-3934625/v1
    [52] G. Schleiniger, R. J. Weinacht, A remark on the Giesekus viscoelastic fluid, J. Rheol., 35 (1991), 1157–1170. https://doi.org/10.1122/1.550169 doi: 10.1122/1.550169
    [53] L. D. Sturges, Die swell: The separation of the free surface, J. Non-Newton. Fluid, 6 (1979), 155–159. https://doi.org/10.1016/0377-0257(79)87012-3 doi: 10.1016/0377-0257(79)87012-3
    [54] M. Renardy, The stresses of an upper convected Maxwell fluid in a Newtonian velocity field near a re-entrant corner, J. Non-Newton. Fluid, 50 (1993), 127–134. https://doi.org/10.1016/0377-0257(93)80027-9 doi: 10.1016/0377-0257(93)80027-9
    [55] M. Renardy, How to integrate the upper convected Maxwell (UCM) stresses near a singularity (and maybe elsewhere, too), J. Non-Newton. Fluid, 52 (1994), 91–95. https://doi.org/10.1016/0377-0257(94)85060-7 doi: 10.1016/0377-0257(94)85060-7
    [56] M. I. Gerritsma, T. N. Phillips, On the use of characteristic variables in viscoelastic flow problems, IMA J. Appl. Math., 66 (2001), 127–147. https://doi.org/10.1093/imamat/66.2.127 doi: 10.1093/imamat/66.2.127
    [57] M. I. Gerritsma, T. N. Phillips, On the characteristics and compatibility equations for the UCM model fluid, ZAMM-J. Appl. Math. Mech./ZAMM, 88 (2008), 523–539. https://doi.org/10.1002/zamm.200700058 doi: 10.1002/zamm.200700058
    [58] R. G. Owens, T. N. Phillips, Computational rheology, Imperial College Press, 2002.
    [59] M. L. Evans, The extrudate swell singularity of viscoelastic fluids, PhD thesis, University of Bath, 2020.
    [60] M. Renardy, The high Weissenberg number limit of the UCM model and the Euler equations, J. Non-Newton. Fluid, 69 (1997), 293–301. https://doi.org/10.1016/S0377-0257(96)01544-3 doi: 10.1016/S0377-0257(96)01544-3
    [61] T. Hagen, M. Renardy, Boundary layer analysis of the Phan-Thien-Tanner and Giesekus model in high Weissenberg number flow, J. Non-Newton. Fluid, 73 (1997), 181–189. https://doi.org/10.1016/S0377-0257(97)00035-9 doi: 10.1016/S0377-0257(97)00035-9
    [62] P. Lagerstrom, J. Cole, Examples illustrating expansion procedures for the Navier-Stokes equations, Indiana Univ. Math. J., 4 (1955), 817–882. https://doi.org/10.1512/iumj.1955.4.54032 doi: 10.1512/iumj.1955.4.54032
    [63] I. Chang, Navier-stokes solutions at large distances from a finite body, J. Math. Mech., 10 (1961), 811–876. https://doi.org/10.1512/iumj.1961.10.10055 doi: 10.1512/iumj.1961.10.10055
    [64] M. V. Dyke, Perturbation methods in fluid mechanics, Academic Press, New York and London, 1964.
    [65] P. A. Lagerstrom, Matched asymptotic expansions, Springer, New York, 1988.
    [66] J. Kevorkian, J. D. Cole, Perturbation methods in applied mathematics, Springer, New York, 1981.
    [67] R. G. Owens, The separation angle of the free surface of a viscous fluid at a straight edge, J. Fluid Mech., 942 (2022). https://doi.org/10.1017/jfm.2022.408 doi: 10.1017/jfm.2022.408
    [68] F. Pimenta, M. A. Alves, RheoTool, 2016. Available from: https://github.com/fppimenta/rheoTool.
    [69] R. Comminal, F. Pimenta, J. H. Hattel, M. A. Alves, J. Spangenberg, Numerical simulation of the planar extrudate swell of pseudoplastic and viscoelastic fluids with the streamfunction and the VOF methods, J. Non-Newton. Fluid, 252 (2108), 1–18. https://doi.org/10.1016/j.jnnfm.2017.12.005 doi: 10.1016/j.jnnfm.2017.12.005
    [70] M. Tomé, M. Araujo, J. Evans, S. McKee, Numerical solution of the Giesekus model for incompressible free surface flows without solvent viscosity, J. Non-Newton. Fluid, 263 (2109), 104–119. https://doi.org/10.1016/j.jnnfm.2018.11.007 doi: 10.1016/j.jnnfm.2018.11.007
  • This article has been cited by:

    1. Hira Soomro, Nooraini Zainuddin, Hanita Daud, Joshua Sunday, Noraini Jamaludin, Abdullah Abdullah, Mulono Apriyanto, Evizal Abdul Kadir, Variable Step Block Hybrid Method for Stiff Chemical Kinetics Problems, 2022, 12, 2076-3417, 4484, 10.3390/app12094484
    2. Zeeshan Ali, Faranak Rabiei, Kamyar Hosseini, A fractal–fractional-order modified Predator–Prey mathematical model with immigrations, 2023, 207, 03784754, 466, 10.1016/j.matcom.2023.01.006
    3. Sümeyra Uçar, Analysis of hepatitis B disease with fractal–fractional Caputo derivative using real data from Turkey, 2023, 419, 03770427, 114692, 10.1016/j.cam.2022.114692
    4. Mohammad Partohaghighi, Ali Akgül, Rubayyi T. Alqahtani, New Type Modelling of the Circumscribed Self-Excited Spherical Attractor, 2022, 10, 2227-7390, 732, 10.3390/math10050732
    5. G.M. Vijayalakshmi, Roselyn Besi. P, A fractal fractional order vaccination model of COVID-19 pandemic using Adam’s moulton analysis, 2022, 8, 26667207, 100144, 10.1016/j.rico.2022.100144
    6. SHAIMAA A. M. ABDELMOHSEN, SHABIR AHMAD, MANSOUR F. YASSEN, SAEED AHMED ASIRI, ABDELBACKI M. M. ASHRAF, SAYED SAIFULLAH, FAHD JARAD, NUMERICAL ANALYSIS FOR HIDDEN CHAOTIC BEHAVIOR OF A COUPLED MEMRISTIVE DYNAMICAL SYSTEM VIA FRACTAL–FRACTIONAL OPERATOR BASED ON NEWTON POLYNOMIAL INTERPOLATION, 2023, 31, 0218-348X, 10.1142/S0218348X2340087X
    7. D.A. Tverdyi, R.I. Parovik, A.R. Hayotov, A.K. Boltaev, Распараллеливание численного алгоритма решения задачи Коши для нелинейного дифференциального уравнения дробного переменного порядка с помощью технологии OpenMP, 2023, 20796641, 87, 10.26117/2079-6641-2023-43-2-87-110
    8. Khalid Hattaf, A New Class of Generalized Fractal and Fractal-Fractional Derivatives with Non-Singular Kernels, 2023, 7, 2504-3110, 395, 10.3390/fractalfract7050395
    9. Ali Raza, Ovidiu V. Stadoleanu, Ahmed M. Abed, Ali Hasan Ali, Mohammed Sallah, Heat transfer model analysis of fractional Jeffery-type hybrid nanofluid dripping through a poured microchannel, 2024, 22, 26662027, 100656, 10.1016/j.ijft.2024.100656
    10. Mubashir Qayyum, Efaza Ahmad, Hijaz Ahmad, Bandar Almohsen, New solutions of time-space fractional coupled Schrödinger systems, 2023, 8, 2473-6988, 27033, 10.3934/math.20231383
    11. Muhammad Shahzad, Soma Mustafa, Sarbaz H A Khoshnaw, Inference of complex reaction mechanisms applying model reduction techniques, 2024, 99, 0031-8949, 045242, 10.1088/1402-4896/ad3291
    12. B. El Ansari, E. H. El Kinani, A. Ouhadan, Symmetry analysis of the time fractional potential-KdV equation, 2025, 44, 2238-3603, 10.1007/s40314-024-02991-1
    13. Muhammad Farman, Changjin Xu, Perwasha Abbas, Aceng Sambas, Faisal Sultan, Kottakkaran Sooppy Nisar, Stability and chemical modeling of quantifying disparities in atmospheric analysis with sustainable fractal fractional approach, 2025, 142, 10075704, 108525, 10.1016/j.cnsns.2024.108525
    14. Hira Khan, Gauhar Rahman, Muhammad Samraiz, Kamal Shah, Thabet Abdeljawad, On Generalized Fractal-Fractional Derivative and Integral Operators Associated with Generalized Mittag-Leffler Function, 2025, 24058440, e42144, 10.1016/j.heliyon.2025.e42144
    15. Emmanuel Kengne, Ahmed Lakhssassi, Dynamics of stochastic nonlinear waves in fractional complex media, 2025, 542, 03759601, 130423, 10.1016/j.physleta.2025.130423
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(548) PDF downloads(25) Cited by(0)

Figures and Tables

Figures(7)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog