Research article

Fractional-order dynamics of Chagas-HIV epidemic model with different fractional operators

  • Received: 08 April 2022 Revised: 20 June 2022 Accepted: 29 June 2022 Published: 25 August 2022
  • MSC : 26A33, 34A08

  • In this research, we reformulate and analyze a co-infection model consisting of Chagas and HIV epidemics. The basic reproduction number $ R_0 $ of the proposed model is established along with the feasible region and disease-free equilibrium point $ E^0 $. We prove that $ E^0 $ is locally asymptotically stable when $ R_0 $ is less than one. Then, the model is fractionalized by using some important fractional derivatives in the Caputo sense. The analysis of the existence and uniqueness of the solution along with Ulam-Hyers stability is established. Finally, we solve the proposed epidemic model by using a novel numerical scheme, which is generated by Newton polynomials. The given model is numerically solved by considering some other fractional derivatives like Caputo, Caputo-Fabrizio and fractal-fractional with power law, exponential decay and Mittag-Leffler kernels.

    Citation: Rahat Zarin, Amir Khan, Pushpendra Kumar, Usa Wannasingha Humphries. Fractional-order dynamics of Chagas-HIV epidemic model with different fractional operators[J]. AIMS Mathematics, 2022, 7(10): 18897-18924. doi: 10.3934/math.20221041

    Related Papers:

  • In this research, we reformulate and analyze a co-infection model consisting of Chagas and HIV epidemics. The basic reproduction number $ R_0 $ of the proposed model is established along with the feasible region and disease-free equilibrium point $ E^0 $. We prove that $ E^0 $ is locally asymptotically stable when $ R_0 $ is less than one. Then, the model is fractionalized by using some important fractional derivatives in the Caputo sense. The analysis of the existence and uniqueness of the solution along with Ulam-Hyers stability is established. Finally, we solve the proposed epidemic model by using a novel numerical scheme, which is generated by Newton polynomials. The given model is numerically solved by considering some other fractional derivatives like Caputo, Caputo-Fabrizio and fractal-fractional with power law, exponential decay and Mittag-Leffler kernels.



    加载中


    [1] J. A. Pérez-Molina, A. Rodríguez-Guardado, A. Soriano, M. Pinazo, B. Carrilero, M. García-Rodríguez, et al., Guidelines on the treatment of chronic coinfection by Trypanosoma cruzi and HIV outside endemic areas, HIV Clin. Trials, 12 (2011), 287–298. https://doi.org/10.1310/hct1206-287 doi: 10.1310/hct1206-287
    [2] E. A. D. Almeida, A. N. Ramos Junior, D. Correia, M. A. Shikanai-Yasuda, Co-infection Trypanosoma cruzi/HIV: Systematic review (1980–2010), Rev. Soc. Bras. Med. Trop., 44 (2011), 762–770. https://doi.org/10.1590/S0037-86822011000600021 doi: 10.1590/S0037-86822011000600021
    [3] J. Jannin, R. Salvatella, Estimación cuantitativa de la enfermedad de Chagas en las Américas, 2006, 1–28. Available from: https://pesquisa.bvsalud.org/portal/resource/pt/lil-474053
    [4] World Health Organization, HIV/AIDS, 2021.
    [5] A. N. R. Junior, D. Correia, E. A. Almeida, M. A. Shikanai-Yasuda, History, current issues and future of the Brazilian network for attending and studying Trypanosoma cruzi/HIV coinfection, J. Infect. Dev. Ctries, 4 (2010), 682–688. https://doi.org/10.3855/jidc.1176 doi: 10.3855/jidc.1176
    [6] A. M. C. Sartori, K. Y. Ibrahim, E. V. Nunes Westphalen, L. M. A. Braz, O. C. Oliveira, E. Gakiya, et al., Manifestations of Chagas disease (American trypanosomiasis) in patients with HIV/AIDS, Ann. Trop. Med. Parasit., 101 (2007), 31–50. https://doi.org/10.1179/136485907X154629 doi: 10.1179/136485907X154629
    [7] A. M. C. Sartori, J. E. Neto, E. V. Nunes, L. M. A. Braz, H. H. Caiaffa-Filho, O. da Cruz Oliveira Jr., et al., Trypanosoma cruzi parasitemia in chronic Chagas disease: Comparison between human immunodeficiency virus (HIV)–positive and HIV-negative patients, J. Infect. Dis., 186 (2002), 872–875. https://doi.org/10.1086/342510 doi: 10.1086/342510
    [8] E. D. O. Santos, J. D. R. Canela, H. C. G. Moncao, M. J. G. Roque, Reactivation of Chagas' disease leading to the diagnosis of acquired immunodeficiency syndrome, Braz. J. Infect. Dis., 6 (2002), 317–321. https://doi.org/10.1590/S1413-86702002000600009 doi: 10.1590/S1413-86702002000600009
    [9] D. Gluckstein, F. Ciferri, J. Ruskin, Chagas disease: Another cause of cerebral mass in the acquired immunodeficiency syndrome, Amer. J. Med., 92 (1992), 429–432. https://doi.org/10.1016/0002-9343(92)90275-G doi: 10.1016/0002-9343(92)90275-G
    [10] M. S. Ferreira, S. D. A. Nishioka, M. T. A. Silvestre, A. S. Borges, F. R. F. N. Araujo, A. Rocha, Reactivation of Chagas disease in patients with AIDS: Report of three new cases and review of the literature, Clin. Infect. Dis., 25 (1997), 1397–1400. https://doi.org/10.1086/516130 doi: 10.1086/516130
    [11] J. C. P. Dias, A. C. Silveira, C. J. Schofield, The impact of Chagas disease control in Latin America: A review, Mem. Inst. Oswaldo Cruz, 97 (2002), 603–612. https://doi.org/10.1590/S0074-02762002000500002 doi: 10.1590/S0074-02762002000500002
    [12] E. Lages-Silva, L. E. Ramirez, M. L. Silva-Vergara, E. Chiari, Chagasic meningoencephalitis in a patient with acquired immunodeficiency syndrome: Diagnosis, follow-up, and genetic characterization of Trypanosoma cruzi, Clin. Infect. Dis., 34 (2002), 118–123. https://doi.org/10.1086/324355 doi: 10.1086/324355
    [13] H. Albrecht, Redefining AIDS: Towards a modification of the current AIDS case definition, Clin. Infect. Dis., 24 (1997), 64–74. https://doi.org/10.1093/clinids/24.1.64 doi: 10.1093/clinids/24.1.64
    [14] A. M. Da-Cruz, R. P. Igreja, W. Dantas, A. C. V. Junqueira, R. S. Pacheco, A. J. Silva-Gonçalves, et al., Long-term follow-up of co-infected HIV and Trypanosoma cruzi Brazilian patients, Trans. Roy. Soc. Trop. Med. Hyg., 98 (2004), 728–733. https://doi.org/10.1016/j.trstmh.2004.01.010 doi: 10.1016/j.trstmh.2004.01.010
    [15] A. L. Billencourt, Actual aspects and epidemiological significance of congenital transmission of Chagas disease, Mem. Inst. Oswaldo Cruz, 79 (1984), 133–137.
    [16] S. N. Busenberg, C. Vargas, Modelling Chagas' disease: Variable population size and demographic implications, In: Mathematical population dynamics, 1991,283–296.
    [17] J. X. Velasco-Hernandez, An epidemiological model for the dynamics of Chagas' disease, Biosystems, 26 (1991), 127–134. https://doi.org/10.1016/0303-2647(91)90043-K doi: 10.1016/0303-2647(91)90043-K
    [18] J. X. Velasco-Hernandez, A model for Chagas disease involving transmission by vectors and blood transfusion, Theor. Popul. Biol., 46 (1994), 1–31. https://doi.org/10.1006/tpbi.1994.1017 doi: 10.1006/tpbi.1994.1017
    [19] D. Greenhalgh, G. Hay, Mathematical modelling of the spread of HIV/AIDS amongst injecting drug users, Math. Med. Biol., 14 (1997), 11–38. https://doi.org/10.1093/imammb/14.1.11 doi: 10.1093/imammb/14.1.11
    [20] P. Agarwal, R. Singh, Modelling of transmission dynamics of Nipah virus (Niv): A fractional order approach, Phys. A, 547 (2020), 124243. https://doi.org/10.1016/j.physa.2020.124243 doi: 10.1016/j.physa.2020.124243
    [21] R. Zarin, A. Khan, A. Yusuf, S. Abdel-Khalek, M. Inc, Analysis of fractional COVID-19 epidemic model under Caputo operator, Math. Meth. Appl. Sci., 2021. https://doi.org/10.1002/mma.7294
    [22] P. Agarwal, J. Choi, R. B. Paris, Extended Riemann-Liouville fractional derivative operator and its applications, J. Nonlinear Sci. Appl., 8 (2015), 451–466.
    [23] R. Zarin, A. Khan, M. Inc, U. W. Humphries, T. Karite, Dynamics of five grade leishmania epidemic model using fractional operator with Mittag-Leffler kernel, Chaos Solitons Fract., 147 (2021), 110985. https://doi.org/10.1016/j.chaos.2021.110985 doi: 10.1016/j.chaos.2021.110985
    [24] P. Agarwal, J. Choi, Fractional calculus operators and their image formulas, J. Korean Math. Soc., 53 (2016), 1183–1210. https://doi.org/10.4134/JKMS.j150458 doi: 10.4134/JKMS.j150458
    [25] A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Phys. A, 505 (2018), 688–706. https://doi.org/10.1016/j.physa.2018.03.056 doi: 10.1016/j.physa.2018.03.056
    [26] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, 2015. https://doi.org/10.48550/arXiv.1602.03408
    [27] R. Zarin, I. Ahmed, P. Kumam, A. Zeb, A. Din, Fractional modeling and optimal control analysis of rabies virus under the convex incidence rate, Results Phys., 28 (2021), 104665. https://doi.org/10.1016/j.rinp.2021.104665 doi: 10.1016/j.rinp.2021.104665
    [28] H. Abboubakar, P. Kumar, N. A. Rangaig, S. Kumar, A malaria model with Caputo-Fabrizio and Atangana-Baleanu derivatives, Int. J. Mod. Simul. Sci. Comput., 12 (2021), 2150013. https://doi.org/10.1142/S1793962321500136 doi: 10.1142/S1793962321500136
    [29] K. N. Nabi, H. Abboubakar, P. Kumar, Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives, Chaos Solitons Fract., 141 (2020), 110283. https://doi.org/10.1016/j.chaos.2020.110283 doi: 10.1016/j.chaos.2020.110283
    [30] M. Vellappandi, P. Kumar, V. Govindaraj, W. Albalawi, An optimal control problem for mosaic disease via Caputo fractional derivative, Alex. Eng. J., 61 (2022), 8027–8037. https://doi.org/10.1016/j.aej.2022.01.055 doi: 10.1016/j.aej.2022.01.055
    [31] V. S. Erturk, P. Kumar, Solution of a COVID-19 model via new generalized Caputo-type fractional derivatives, Chaos Solitons Fract., 139 (2020), 110280. https://doi.org/10.1016/j.chaos.2020.110280 doi: 10.1016/j.chaos.2020.110280
    [32] P. Kumar, V. S. Erturk, A. Yusuf, S. Kumar, Fractional time-delay mathematical modeling of Oncolytic Virotherapy, Chaos Solitons Fract., 150 (2021), 111123. https://doi.org/10.1016/j.chaos.2021.111123 doi: 10.1016/j.chaos.2021.111123
    [33] P. Kumar, V. Govindaraj, V. S. Erturk, A novel mathematical model to describe the transmission dynamics of tooth cavity in the human population, Chaos Solitons Fract., 161 (2022), 112370. https://doi.org/10.1016/j.chaos.2022.112370 doi: 10.1016/j.chaos.2022.112370
    [34] K. Annan, M. Fisher, Stability conditions of Chagas-HIV co-infection disease model using the next generation method, Appl. Math. Sci., 7 (2013), 2815–2832. https://doi.org/10.12988/AMS.2013.13250 doi: 10.12988/AMS.2013.13250
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1477) PDF downloads(103) Cited by(18)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog