Loading [MathJax]/jax/output/SVG/jax.js
Research article

Fractional-order dynamics of Chagas-HIV epidemic model with different fractional operators

  • Received: 08 April 2022 Revised: 20 June 2022 Accepted: 29 June 2022 Published: 25 August 2022
  • MSC : 26A33, 34A08

  • In this research, we reformulate and analyze a co-infection model consisting of Chagas and HIV epidemics. The basic reproduction number R0 of the proposed model is established along with the feasible region and disease-free equilibrium point E0. We prove that E0 is locally asymptotically stable when R0 is less than one. Then, the model is fractionalized by using some important fractional derivatives in the Caputo sense. The analysis of the existence and uniqueness of the solution along with Ulam-Hyers stability is established. Finally, we solve the proposed epidemic model by using a novel numerical scheme, which is generated by Newton polynomials. The given model is numerically solved by considering some other fractional derivatives like Caputo, Caputo-Fabrizio and fractal-fractional with power law, exponential decay and Mittag-Leffler kernels.

    Citation: Rahat Zarin, Amir Khan, Pushpendra Kumar, Usa Wannasingha Humphries. Fractional-order dynamics of Chagas-HIV epidemic model with different fractional operators[J]. AIMS Mathematics, 2022, 7(10): 18897-18924. doi: 10.3934/math.20221041

    Related Papers:

    [1] Muhammad Altaf Khan, Saif Ullah, Muhammad Farhan . The dynamics of Zika virus with Caputo fractional derivative. AIMS Mathematics, 2019, 4(1): 134-146. doi: 10.3934/Math.2019.1.134
    [2] A. E. Matouk, Ismail Gad Ameen, Yasmeen Ahmed Gaber . Analyzing the dynamics of fractional spatio-temporal SEIR epidemic model. AIMS Mathematics, 2024, 9(11): 30838-30863. doi: 10.3934/math.20241489
    [3] Shabir Ahmad, Aman Ullah, Mohammad Partohaghighi, Sayed Saifullah, Ali Akgül, Fahd Jarad . Oscillatory and complex behaviour of Caputo-Fabrizio fractional order HIV-1 infection model. AIMS Mathematics, 2022, 7(3): 4778-4792. doi: 10.3934/math.2022265
    [4] Muhammad Altaf Khan, Sajjad Ullah, Saif Ullah, Muhammad Farhan . Fractional order SEIR model with generalized incidence rate. AIMS Mathematics, 2020, 5(4): 2843-2857. doi: 10.3934/math.2020182
    [5] Ruiqing Shi, Yihong Zhang . Dynamic analysis and optimal control of a fractional order HIV/HTLV co-infection model with HIV-specific antibody immune response. AIMS Mathematics, 2024, 9(4): 9455-9493. doi: 10.3934/math.2024462
    [6] Zafar Iqbal, Muhammad Aziz-ur Rehman, Muhammad Imran, Nauman Ahmed, Umbreen Fatima, Ali Akgül, Muhammad Rafiq, Ali Raza, Ali Asrorovich Djuraev, Fahd Jarad . A finite difference scheme to solve a fractional order epidemic model of computer virus. AIMS Mathematics, 2023, 8(1): 2337-2359. doi: 10.3934/math.2023121
    [7] Rahat Zarin, Abdur Raouf, Amir Khan, Aeshah A. Raezah, Usa Wannasingha Humphries . Computational modeling of financial crime population dynamics under different fractional operators. AIMS Mathematics, 2023, 8(9): 20755-20789. doi: 10.3934/math.20231058
    [8] A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny . Stability of HHV-8 and HIV-1 co-infection model with latent reservoirs and multiple distributed delays. AIMS Mathematics, 2024, 9(7): 19195-19239. doi: 10.3934/math.2024936
    [9] Muhammad Altaf Khan, Muhammad Ismail, Saif Ullah, Muhammad Farhan . Fractional order SIR model with generalized incidence rate. AIMS Mathematics, 2020, 5(3): 1856-1880. doi: 10.3934/math.2020124
    [10] Hongyan Wang, Shaoping Jiang, Yudie Hu, Supaporn Lonapalawong . Analysis of drug-resistant tuberculosis in a two-patch environment using Caputo fractional-order modeling. AIMS Mathematics, 2024, 9(11): 32696-32733. doi: 10.3934/math.20241565
  • In this research, we reformulate and analyze a co-infection model consisting of Chagas and HIV epidemics. The basic reproduction number R0 of the proposed model is established along with the feasible region and disease-free equilibrium point E0. We prove that E0 is locally asymptotically stable when R0 is less than one. Then, the model is fractionalized by using some important fractional derivatives in the Caputo sense. The analysis of the existence and uniqueness of the solution along with Ulam-Hyers stability is established. Finally, we solve the proposed epidemic model by using a novel numerical scheme, which is generated by Newton polynomials. The given model is numerically solved by considering some other fractional derivatives like Caputo, Caputo-Fabrizio and fractal-fractional with power law, exponential decay and Mittag-Leffler kernels.



    American trypanosomiasis, commonly known as Chagas disease, is a fatal disease transmitted by biting insects called "kissing bugs". The Trypanosoma cruzi parasite is the cause of Chagas disease. People who have Chagas are unaware of the disease for many years, as there are no symptoms. After several years, some of the people who have Chagas face heart damage, which consequently leads to sudden death. In Latin America, no other parasitic disease kills as many people as Chagas does. Almost 6 million people have been infected from Chagas, and per year, 173,000 new cases appear. In Latin America, it is endemic in 21 countries, and 9,490 people have been killed in 2019. Unfortunately, countries in which Chagas is not endemic have recently been affected due to the migration of people from the endemic regions[1,2], which results in the contact of Chagas-infected migrants with HIV-infected people, and hence a co-infection occurs [3,4]. It has been observed that vertical transplacental transmission, contaminated blood products, and blood transfusions are the transmission means of both diseases. Intravenous drug users are a high prevalence group for Chagas, when they use contaminated needles. The prevalence of co-infection is significantly higher in this group [5].

    A serious situation develops in patients when a co-infection of Chagas disease with HIV infection occurs, which results in high fatality rates[6,7]. It has been reported that after diagnosis, it takes 10–20 days to fatal evolution. Myocarditis, meningoencephalitis and cutaneous lesions are the clinical manifestations which may present in coinfected patients [8,9,10]. Early diagnosis with highly active antiretroviral treatment can only improve the survival. In non-endemic regions, the professionals rarely suspect the HIV-positive patients of having Chagas.

    While a number of clinical studies have been reported on the Chagas epidemic in the setting of advanced AIDS [11,12,13,14], not much has been analyzed in the setting of the Chagas epidemic and HIV co-infection despite its contingency and clinical consequence. A number of mathematical models have also been studied to simulate the spread and control of either the Chagas epidemic or advanced AIDS [15,16,17,18,19].

    In this paper, we use fractional derivatives to simulate the proposed disease structure. Fractional calculus is a modification of classical calculus. To simulate a mathematical model of any proposed phenomena related to a real-world problem, the fractional-order derivatives are most suitable because they provide a higher degree of accuracy and are the best fit to capture the memory effects and spanning nature. Epidemic models defined in the sense of fractional derivatives provide more information about the disease dynamics as compared to the integer-order models [20,21]. Various types of fractional derivatives in the forms of different kernel properties have been proposed by mathematicians [23,24] and have been used to simulate different problems [25,26,27]. For example, in [28], some researchers proposed a malaria model with Caputo-Fabrizio and Atangana-Baleanu derivatives. Some recent studies on mathematical modeling of infectious diseases using fractional derivatives are [29,30,31,32,33].

    The organization of our paper is as follows: Section 2 deals with the feasible region, basic reproduction number and the equilibrium point of the proposed Chagas and HIV co-infection model. Section 3 is concerned with the local stability of the proposed model. In Section 4, the deterministic model is then fractionalized by using the Atangana-Baleanu fractional derivative in the Caputo sense. Also, some preliminaries are available regarding different fractional derivatives in the said section. Existence and uniqueness are determined in Section 5. Section 6 deals with the Ulam-Hyers stability of our model. Section 7 depicts some simulations carried out by a new numerical scheme proposed by Atangana and Seda. Section 8 is devoted to justifying the concluding remarks along with the further scope of the study.

    In the model, we split the total human population size N into five different classes: Chagas susceptible class SC, class of HIV susceptible SH, Chagas infectious class IC, class of HIV infectious IH and the class of infected population with both Chagas and HIV ICH. So, the complete human population size is specified by

    N(t)=SC+SH+IC+IH+ICH. (2.1)

    Thus, the mathematical model for defining the proposed structure of Chagas and/or HIV infections is derived by the following system [34]:

    {dSCdt=ασ(γ1(IC+π1ICH))SCμSC,dSHdt=(1α)σ(γ2(IH+π2ICH))SHμSH,dICdt=(γ1(IC+π1ICH))SC(μ+δ1)ICγ3ICIHρCIC+θCICH,dIHdt=(γ2(IH+π2ICH))SH(μ+δ2)IHγ4ICIHρHIH+θHICH,dICHdt=˙γICIH(μ+δ3)ICH˙θICH. (2.2)

    The parameters and the classes used in the above proposed model are specified in Tables 1 and 2.

    Table 1.  Description of the parameters.
    Parameter Description
    γ Probability that contact results in infection
    γ1 Chagas infection rate
    γ2 HIV infection rate
    ˙γ Rate of being infected with both Chagas and HIV
    γ3 Rate of joining co-infection class after infection with Chagas
    γ4 Rate of joining co-infection class after infection with HIV
    δ1 Death rate of humans infected with Chagas
    δ2 Death rate of humans infected with HIV
    δ3 Death rate of humans co-infected
    ρC Recovery rate of humans infected with Chagas
    ρH Recovery rate of humans infected with HIV
    ˙ρ Recovery rate of humans co-infected
    σ Rate of being infected
    μ Natural mortality rate
    α Proportion of humans susceptible to Chagas
    β Proportion of humans susceptible to HIV
    θC Rate at which co-infected humans recover from Chagas
    θH Rate at which co-infected humans recover from HIV

     | Show Table
    DownLoad: CSV
    Table 2.  Description of the model classes.
    Variables Descriptions
    N Total population
    SC Number of humans susceptible to Chagas
    SH Number of humans susceptible to HIV
    IC Number of humans infected with Chagas
    IH Number of humans infected with HIV
    ICH Number of humans infected with Chagas and HIV
    RCH Number of humans recovered from both infections

     | Show Table
    DownLoad: CSV

    The region

    Δ={(SC,SH,IC,IH,ICH)R5+|0Nσμ} (2.3)

    is positively invariant for (2.2), and all solutions of (SC,SH,IC,IH,ICH)R5+ remain in Δ for all t>0.

    The disease-free equilibrium (DFE) denoted by E0 is

    E0=(SC0,SH0,IC0,IH0,ICH0)=(ασμ,(1α)σμ,0,0,0). (2.4)

    Let (IC,IH,ICH) be our infected compartment, and then it follows from system (2.2) that

    {dICdt=(γ1(IC+π1ICH))SC(μ+δ1)ICγ3ICIHρCIC+θCICH,dIHdt=(γ2(IH+π2ICH))SH(μ+δ2)IHγ4ICIHρHIH+θHICH,dICHdt=˙γICIH(μ+δ3)ICH˙θICH, (2.5)

    the Jacobian matrix of the model is

    J=(γ1S0C(μ+δ1+ρC)0γ1π1S0C+θC0γ2S0H(μ+δ2+ρH)γ2π2S0H+θH00(μ+δ3+˙θ)). (2.6)

    Arranging J such that J=FV, we get

    F=(γ1S0C0γ1π1S0C0γ2S0Hγ2π2S0H000), (2.7)

    where the elements in the matrix F constitute the new infection terms

    V=((μ+δ1+ρC)0θC0(μ+δ2+ρH)θH00(μ+δ3+˙θ)). (2.8)

    The matrix V represents the exchange of infection from one compartment to another. Therefore, the next generation matrix defined by FV1 is

    FV1=(γ1S0Cμ+δ1+ρC0γ1ρCS0C(μ+δ1+ρC)(μ+δ3+˙θ)+γ1π1S0Cμ+δ3+˙θ0γ2S0Hμ+δ2+ρHγ2ρHS0H(μ+δ1+ρC)(μ+δ3+˙θ)+γ2π2S0H(μ+δ3+˙θ)(μ+ρH+δ2)000). (2.9)

    Thus, R0, which is the dominant eigenvalue of matrix FV1, is obtained as

    R0=max(R0C,R0H)=max(γ1S0Cμ+δ1+ρC,γ2S0Hμ+δ2+ρH), (2.10)

    where R0C and R0H are the reproduction numbers for Chagas and HIV, respectively.

    Theorem 3.1. The disease-free equilibrium E0 of the system (2.2) is locally asymptotically stable if R0<1.

    Proof. The Jacobian matrix of the system (2.2) at E0 is given by

    J0=(μ0γ1ασμ0γ1π1ασμ0μ0γ2(1α)σμγ2π2(1α)σμ00a110γ1π1ασμ+θC000a22(γ2π2(1α)σμ+˙θ)0000(μ+δ3+˙θ)), (3.1)

    where a11=(μ+δ1+ρCγ1ασμ) and a22=(μ+δ2+γ4+ρHγ2(1α)σμ).

    The characteristic equation of J0 is given by

    f(λ)=(λ+μ)(λ+μ)(λ+(μ+δ1+ρCγ1ασμ))(λ+(μ+δ2+γ4+ρHγ2(1α)σμ))(λ+(μ+δ3+˙θ))=0. (3.2)

    The three eigenvalues of the characteristic equation of J0 are negative, i.e., λ1=μ, λ2=μ, and λ5=(μ+δ3+˙θ).

    The eigen value λ3=(μ+δ1+ρCγ1ασμ) is negative if μ+δ1+ρCγ1ασμ>0, that is

    μ+δ1+ρC>γ1ασμ,orγ1ασμμ+δ1+ρC<1,

    and by definition

    R0C=γ1ασμμ+δ1+ρC<1.

    Similarly, λ4=(μ+δ2+γ4+ρHγ2(1α)σμ) is negative if (μ+δ2+γ4+ρHγ2(1α)σμ)>0, that is

    μ+δ2+γ4+ρH>γ2(1α)σμ,orγ2(1α)σμμ+δ2+γ4+ρH<1,

    and by definition

    R0H=γ2(1α)σμμ+δ2+γ4+ρH<1.

    So, R0=max(R0C,R0H) implies that R0<1.

    This shows that the DFE point is asymptotically stable if R0<1.

    Here, we present some definitions of integral and differential operators, starting with the Caputo fractional derivative

    C0DΞtF(t)=1Γ(1Ξ)t0ddΨf(Ψ)(tΨ)ΞdΨ, (4.1)

    the Caputo-Fabrizio fractional derivative

    CF0DΞtF(t)=M(Ξ)1Ξt0ddΨf(Ψ)exp[Ξ1Ξ(tΨ)]dΨ, (4.2)

    and the Atangana-Baleanu-Caputo (ABC) fractional derivative

    ABCDΞtF(t)=AB(Ξ)1Ξt0ddΨf(Ψ)Ex[Ξ1Ξ(tΨ)Ξ]dΨ. (4.3)

    The fractal-fractional derivatives with power-law kernel, exponential decay kernel, and Mittag-Leffler kernel are given by

    FFP0DΞ,ψtF(t)=1Γ(1Ξ)ddtψt0f(Ψ)(tΨ)ΞdΨ,FFE0DΞ,ψtF(t)=M(Ξ)1Ξddtψt0f(Ψ)exp[Ξ1Ξ(tΨ)]dΨ,0FFMDΞ,ψtF(t)=AB(Ξ)1Ξddtψt0f(Ψ)EΞ[Ξ1Ξ(tΨ)Ξ]dΨ, (4.4)

    where

    dF(t)dtψ=limtt1F(t)f(t1)t2ψt2ψ1(2ψ). (4.5)

    The fractal-fractional integrals with power-law, exponential decay and Mittag-Leffler kernels, respectively, are given below:

    FFP0JΞ,ψtF(t)=1Γ(Ξ)t0(tΨ)Ξ1Ψ1ψf(Ψ)dΨ,FFE0JΞ,ψtF(t)=1ΞM(Ξ)t1ψF(t)+ΞM(Ξ)t0(tΨ)Ξ1Ψ1ψf(Ψ)dΨ,FFM0JΞ,ψtF(t)=1ΞAB(Ξ)t1ψF(t)+ΞAB(Ξ)Γ(Ξ)t0(tΨ)Ξ1Ψ1ψf(Ψ)dΨ. (4.6)

    To the best of our knowledge, no one has yet considered the fractional-order Chagas-HIV epidemic model in the sense of the ABC fractional derivative. Therefore, getting motivation from the above-given model (2.2), we consider a fractional-order Chagas-HIV model using the ABC fractional derivative [26], which is as follows:

    {ABCDΞ0,t[SC(t)]={ασ(γ1(IC+π1ICH))SCμSC},ABCDΞ0,t[SH(t)]={(1α)σ(γ2(IH+π2ICH))SHμSH},ABCDΞ0,t[IC(t)]={(γ1(IC+π1ICH))SC(μ+δ1)ICγ3ICIHρCIC+θCICH},ABCDΞ0,t[IH(t)]={(γ2(IH+π2ICH))SH(μ+δ2)IHγ4ICIHρHIH+θHICH},ABCDΞ0,t[ICH(t)]={˙γICIH(μ+δ3)ICH˙θICH}, (4.7)

    with the initial sizes of given classes

    SC(0),SH(0),IC(0),IC(0),ICH(0)0.

    First, we derive the existence and uniqueness of the solution with respect to the Atangana-Baleanu-Caputo derivative for the system (4.7). Consider a continuous real-valued function denoted by B(J) associated to the supremum-norm characteristic, is a Banach space on J=[0,b] and P=B(J)×B(J)×B(J)×B(J)×B(J) with norm (SC,SH,IC,IH,ICH)=SC+SH+IC+IH+ICH, where SC=suptJ|SC(t)|, SH=suptj|SH(t)|, IC=suptj|IC(t)|, IH=suptj|IH(t)|, ICH=suptj|ICH(t)|. Using the Atangana-Baleanu-Caputo fractional integral operator on both sides of Eq (4.7), we get

    (5.1)

    Now, the definition (4.3) leads us to

    SC(t)SC(0)=1ΞB(Ξ)K1(Ξ,t,SC(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K1(Ξ,ϑ,SC(ϑ))dϑ,SH(t)SH(0)=1ΞB(Ξ)K2(Ξ,t,SH(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K2(Ξ,ϑ,SH(ϑ))dϑ,IC(t)IC(0)=1ΞB(Ξ)K3(Ξ,t,IC(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K3(Ξ,ϑ,IC(ϑ))dϑ,IH(t)IH(0)=1ΞB(Ξ)K4(Ξ,t,IH(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K4(Ξ,ϑ,IH(ϑ))dϑ,ICH(t)ICH(0)=1ΞB(Ξ)K5(Ξ,t,ICH(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K5(Ξ,ϑ,ICH(ϑ))dϑ, (5.2)

    where

    K1(Ξ,t,SC(t))=ασ(γ1(IC+π1ICH))SCμSC,K2(Ξ,t,SH(t))=(1α)σ(γ2(IH+π2ICH))SHμSH,K3(Ξ,t,IC(t))=(γ1(IC+π1ICH))SC(μ+δ1)ICγ3ICIHρCIC+θCICH,K4(Ξ,t,IH(t))=(γ2(IH+π2ICH))SH(μ+δ2)IHγ4ICIHρHIH+θHICH,K5(Ξ,t,ICH(t))=˙γICIH(μ+δ3)ICH˙θICH. (5.3)

    The symbols K1, K2, K3, K4 and K5 have to hold for the Lipschitz condition only if SC(t), SH(t), IC(t), IH(t) and ICH(t) possess an upper bound. Taking that SC(t) and SC(t) are couple functions, we get

    K1(Ξ,t,SC(t))K1(Ξ,t,SC(t))=((γ1(IC+π1ICH))+μ)(SC(t)SC(t)). (5.4)

    Taking into account η1:=((γ1(IC+π1ICH))+μ), one reaches

    K1(Ξ,t,SC(t))K1(Ξ,t,SC(t))η1SC(t)SC(t). (5.5)

    Also, we can get

    K2(Ξ,t,SH(t))K2(Ξ,t,SH(t))η2SH(t)SH(t),K3(Ξ,t,IC(t))K3(Ξ,t,IC(t))η3IC(t)IC(t),K4(Ξ,t,IH(t))K4(Ξ,t,IH(t))η4IH(t)IH(t),K5(Ξ,t,ICH(t))K5(Ξ,t,ICH(t))η5ICH(t)ICH(t), (5.6)

    where

    η2=((γ2(IH+π2ICH))+μ),η3=(μ+δ1+γ3IH+ρC),η4=(μ+δ2+γ4IC+ρH),η5=(μ+δ3+˙θ),

    which shows that the Lipschitz condition holds. Continuing in a recursive manner, the expressions in (5.2) yield

    SCn(t)SC(0)=1ΞB(Ξ)K1(Ξ,t,SCn1(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K1(Ξ,ϑ,SCn1(ϑ))dϑ,SHn(t)SH(0)=1ΞB(Ξ)K2(Ξ,t,SHn1(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K2(Ξ,ϑ,SHn1(ϑ))dϑ,ICn(t)IC(0)=1ΞB(Ξ)K3(Ξ,t,ICn1(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K3(Ξ,ϑ,ICn1(ϑ))dϑ,IHn(t)IH(0)=1ΞB(Ξ)K4(Ξ,t,IHn1(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K4(Ξ,ϑ,IHn1(ϑ))dϑ,ICHn(t)ICH(0)=1ΞB(Ξ)K5(Ξ,t,ICHn1(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K5(Ξ,ϑ,ICHn1(ϑ))dϑ. (5.7)

    Together with SC0(t)=SC(0), SH0(t)=SH(0), IC0(t)=IC(0), IH0(t)=IH(0) and ICH0(t)=ICH(0), differences of consecutive terms yield

    ISC,n(t)=SCn(t)SCn1(t)=1ΞB(Ξ)(K1(Ξ,t,SCn1(t))K1(Ξ,t,SCn2(t)))+ΞB(Ξ)Γ(Ξ)t0(tϑ)Ξ1(K1(Ξ,ϑ,SCn1(ϑ))K1(Ξ,ϑ,SCn2(ϑ)))dϑ,ISH,n(t)=SHn(t)SHn1(t)=1ΞB(Ξ)(K2(Ξ,t,SHn1(t))K2(Ξ,t,SHn2(t)))+ΞB(Ξ)Γ(Ξ)l0(tϑ)Ξ1(K2(Ξ,ϑ,SHn1(ϑ))K2(Ξ,ϑ,SHn2(ϑ)))dϑ,IIC,n(t)=IC1n(t)ICn1(t)=1ΞB(Ξ)(K3(Ξ,t,ICn1(t))K3(Ξ,t,ICn2(t)))+ΞB(Ξ)Γ(Ξ)t0(tϑ)Ξ1(K3(Ξ,ϑ,ICn1(ϑ))K3(Ξ,ϑ,ICn2(ϑ)))dϑ,IIH,n(t)=IH2n(t)IHn1(t)=1ΞB(Ξ)(K4(Ξ,t,IHn1(t))K4(Ξ,t,IHn2(t)))+ΞB(Ξ)Γ(Ξ)t0(tϑ)Ξ1(K4(Ξ,ϑ,IHn1(ϑ))K4(Ξ,ϑ,IHn2(ϑ)))dϑ,IICH,n(t)=ICHn(t)ICHn1(t)=1ΞB(Ξ)(K5(Ξ,t,ICHn1(t))K5(Ξ,t,ICHn2(t)))+ΞB(Ξ)Γ(Ξ)t0(tϑ)Ξ1(K5(Ξ,ϑ,ICHn1(ϑ))K5(Ξ,ϑ,ICHn2(ϑ)))dϑ. (5.8)

    It is vital to observe that SCn(t)=ni=0ISC,i(t), SHn(t)=ni=0ISH,i(t), ICn(t)=ni=0IIC,i(t), IHn(t)=ni=0IIH,i(t), ICHn(t)=ni=0IICH,i(t). Additionally, by using Eqs (5.5), (5.6) and considering that ISC,n1(t)=SCn1(t)SCn2(t), ISH,n1(t)=SHn1(t)SHn2(t), IIC,n1(t)=ICn1(t)ICn2(t), IIH,n1(t)=IHn1(t)IHn2(t), IICH,n1(t)=ICHn1(t)ICHn2(t), we reach

    ISC,n(t)1ΞB(Ξ)η1ISC,n1(t)ΞB(Ξ)Γ(Ξ)η1×t0(tϑ)Ξ1ISC,n1(ϑ)dϑ,ISH,n(t)1ΞB(Ξ)η2ISH,n1(t)ΞB(Ξ)Γ(Ξ)η2×t0(tϑ)Ξ1ISH,n1(ϑ)dϑ,IIC,n(t)1ΞB(Ξ)η3IIC,n1(t)ΞB(Ξ)Γ(Ξ)η3×t0(tϑ)Ξ1IIC,n1(ϑ)dϑ,IIH,n(t)1ΞB(Ξ)η4IIH,n1(t)ΞB(Ξ)Γ(Ξ)η4×t0(tϑ)Ξ1IIH,n1(ϑ)dϑ,IICH,n(t)1ΞB(Ξ)η5IICH,n1(t)ΞB(Ξ)Γ(Ξ)η5×t0(tϑ)Ξ1IICH,n1(ϑ)dϑ. (5.9)

    Theorem 5.1. Assume that the following condition holds:

    1ΞB(Ξ)ηi+ΞB(Ξ)Γ(Ξ)bΞηi<1,i=1,2,,5. (5.10)

    Then, (4.7) has a unique solution for t[0,b].

    Proof. It is given that SC(t), SH(t), IC(t), IH(t) and ICH(t) are bounded functions. In advance, as can be observed from Eqs (5.5) and (5.6), the symbols K1, K2, K3, K4 and K5 hold for the Lipschitz condition. Therefore, using Eq (5.9), together with a recursive hypothesis, we derive

    ISC,n(t)SC0(t)(1ΞB(Ξ)η1+ΞbΞB(Ξ)Γ(Ξ)η1)n,ISH,n(t)SH0(t)(1ΞB(Ξ)η3+ΞbΞB(Ξ)Γ(Ξ)η2)n,IIC,n(t)IC0(t)(1ΞB(Ξ)η3+ΞbΞB(Ξ)Γ(Ξ)η3)n,IIH,n(t)IH0(t)(1ΞB(Ξ)η4+ΞbΞB(Ξ)Γ(Ξ)η4)n,IICH,n(t)ICH0(t)(1ΞB(Ξ)η5+ΞbΞB(Ξ)Γ(Ξ)η5)n. (5.11)

    Thus, we can observe that sequences exist that satisfy ISC,n(t)0, ISH,n(t)0, IIC,n(t)0, IIH,n(t)0, IICH,n(t)0, as n. Moreover, from Eq (5.11) and applying the triangle inequality, for any k, we have

    SCn+k(t)SCn(t)n+kj=n+1Zj1=Zn+11Zn+k+111Z1,SHn+k(t)SHn(t)n+kj=n+1Zj2=Zn+12Zn+k+121Z2,ICn+k(t)ICn(t)n+kj=n+1Zj3=Zn+13Zn+k+131Z3,IHn+k(t)IHn(t)n+kj=n+1Zj4=Zn+14Zn+k+141Z4,ICHn+k(t)ICHn(t)n+ki=n+1Zj5=Zn+15Zn+k+151Z5, (5.12)

    with Zi=1ΞB(Ξ)ηi+ΞB(Ξ)Γ(Ξ)bΞηi<1 by hypothesis. Similarly, we can prove the existence of a unique solution for the proposed model in terms of other fractional derivatives.

    Definition 6.1. [23] The ABC fractional integral model proposed by Eq (5.2) is called Hyers-Ulam stable if there exist constants ζi>0,iN5 satisfying the following: For every γi>0,iN5, when

    |SC(t)1ΞB(Ξ)K1(Ξ,t,SC(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K1(Ξ,ϑ,SC(ϑ))dϑ|γ1,|SH(t)1ΞB(Ξ)K2(Ξ,t,SH(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K2(Ξ,ϑ,SH(ϑ))dϑ|γ2,|IC(t)1ΞB(Ξ)K3(Ξ,t,IC(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K3(Ξ,ϑ,IC(ϑ))dϑ|γ3, (6.1)
    |IH(t)1ΞB(Ξ)K4(Ξ,t,IH(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K4(Ξ,ϑ,IH(ϑ))dϑ|γ4,|ICH(t)1ΞB(Ξ)K5(Ξ,t,ICH(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K5(Ξ,ϑ,ICH(ϑ))dϑ|γ5, (6.2)

    there exist (˙SC(t),˙SH(t),˙IC(t),˙IH(t),˙ICH(t)) satisfying

    ˙SC(t)=1ΞB(Ξ)K1(Ξ,t,SC(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K1(Ξ,ϑ,˙SC(ϑ))dϑ,˙SH(t)=1ΞB(Ξ)K2(Ξ,t,SH(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K2(Ξ,ϑ,˙SH(ϑ))dϑ,˙IC(t)=1ΞB(Ξ)K3(Ξ,t,IC(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K3(Ξ,ϑ,˙IC(ϑ))dϑ,˙IH(t)=1ΞB(Ξ)K4(Ξ,t,IH(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K4(Ξ,ϑ,˙IH(ϑ))dϑ,˙ICH(t)=1ΞB(Ξ)K5(Ξ,t,ICH(t))+ΞB(Ξ)Γ(Ξ)×t0(tϑ)Ξ1K5(Ξ,ϑ,˙ICH(ϑ))dϑ, (6.3)

    such that

    |SC(t)˙SC(t)|ζ1γ1,|SH(t)˙SH(t)|ζ2γ2,|IC(t)˙IC(t)|ζ3γ3,|IH(t)˙IH(t)|ζ4γ4,|ICH(t)˙ICH(t)|ζ5γ5. (6.4)

    Theorem 6.1. With the definition of J, the given model of fractional order (5.1) is Hyers-Ulam stable.

    Proof. Using Theorem 5.1, the given ABC fractional system (5.1) contains a unique solution (SC(t),SH(t), IC(t),IH(t),ICH(t)) satisfying the equations of system (5.2). Then, we have

    SC(t)˙SC(t)1ΞB(Ξ)K1(Ξ,t,SC(t))K1(Ξ,t,˙SC(t))+ΞB(Ξ)Γ(Ξ)t0(tϑ)Ξ1K1(Ξ,t,SC(t))K1(Ξ,t,˙SC(t))dϑ[1ΞB(Ξ)+ΞB(Ξ)Γ(Ξ)]I1SC˙SC, (6.5)
    SH(t)˙SH(t)1ΞB(Ξ)K2(Ξ,t,SH(t))K2(Ξ,t,˙SH(t))+ΞB(Ξ)Γ(Ξ)t0(tϑ)Ξ1K2(Ξ,t,SH(t))K2(Ξ,t,˙SH(t))dϑ[1ΞB(Ξ)+ΞB(Ξ)Γ(Ξ)]I2SH˙SH, (6.6)
    IC(t)˙IC(t)1ΞB(Ξ)K3(Ξ,t,IC(t))K3(Ξ,t,˙IC(t))+ΞB(Ξ)Γ(Ξ)t0(tϑ)Ξ1K3(Ξ,t,IC(t))K3(Ξ,t,˙IC(t))dϑ[1ΞB(Ξ)+ΞB(Ξ)Γ(Ξ)]I3IC˙IC, (6.7)
    IH(t)˙IH(t)1ΞB(Ξ)K4(Ξ,t,IH(t))K4(Ξ,t,˙IH(t))+ΞB(Ξ)Γ(Ξ)t0(tϑ)Ξ1K4(Ξ,t,IH(t))K4(Ξ,t,˙IH(t))dϑ[1ΞB(Ξ)+ΞB(Ξ)Γ(Ξ)]I4IH˙IH, (6.8)
    ICH(t)˙ICH(t)1ΞB(Ξ)K5(Ξ,t,ICH(t))K5(Ξ,t,˙ICH(t))+ΞB(Ξ)Γ(Ξ)t0(tϑ)Ξ1K5(Ξ,t,ICH(t))K5(Ξ,t,˙ICH(t))dϑ[1ΞB(Ξ)+ΞB(Ξ)Γ(Ξ)]I5ICH˙ICH. (6.9)

    Taking γi=Ii, Δi=1ΞB(Ξ)+ΞB(Ξ)Γ(Ξ), this implies

    SC(t)˙SC(t)γ1Δ1. (6.10)

    Following the same procedure, we have

    {SH(t)˙SH(t)γ2Δ2,IC(t)˙IC(t)γ3Δ3,IH(t)˙IH(t)γ4Δ4,ICH(t)˙ICH(t)γ5Δ5. (6.11)

    From the results of Eqs (6.10) and (6.11), the AB fractional integral model (5.2) is Hyers-Ulam stable, and consequently the AB-fractional order model (5.1) is Hyers-Ulam stable. This ends the proof.

    Now, we derive a numerical scheme for our model. We shall start with the Caputo-Fabrizio fractional derivative, and this will be followed by the Caputo and Atangana-Baleanu fractional derivatives. Finally, we will solve the models with fractal-fractional derivatives. So, the Caputo-Fabrizio model is given by

    {CF0DΞtSC=ασ(γ1(IC+π1ICH))SCμSC,CF0DΞtSH=(1α)σ(γ2(IH+π2ICH))SHμSH,CF0DΞtIC=(γ1(IC+π1ICH))SC(μ+δ1)ICγ3ICIHρCIC+θCICH,CF0DΞtIH=(γ2(IH+π2ICH))SH(μ+δ2)IHγ4ICIHρHIH+θHICH,CF0DΞtICH=˙γICIH(μ+δ3)ICH˙θICH. (7.1)

    For simplicity, we write the above equation as follows:

    {CF0DΞtSC=SC(t,SC,SH,IC,IH,ICH),CF0DΞtSH=SH(t,SC,SH,IC,IH,ICH),CF0DΞtIC=IC(t,SC,SH,IC,IH,ICH),CF0DΞtIH=IH(t,SC,SH,IC,IH,ICH),CF0DΞtICH=ICH(t,SC,SH,IC,IH,ICH). (7.2)

    After applying the fractional integral with exponential kernel and putting Newton polynomials into these equations, we can solve our model as follows:

    Sv+1C=SvC+1ΞM(Ξ)[SC(tv,SvC,SvH,IvC,IvH,IvCH,)SC(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)]+ΞM(Ξ){2312SC(tv,SvC,SvH,IvC,IvH,IvCH,)Δt43SC(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)Δt+512SC(tv2,Sv2C,Sv2H,Iv2C,Iv2H,Iv2CH)Δt},
    Sv+1H=SvH+1ΞM(Ξ)[SH(tv,SvC,SvH,IvC,IvH,IvCH,)SH(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)]+ΞM(Ξ){2312SH(tv,SvC,SvH,IvC,IvH,IvCH,)Δt43SH(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)Δt+512SH(tv2,Sv2C,Sv2H,Iv2C,Iv2H,Iv2CH)Δt},
    Iv+1C=IvC+1ΞM(Ξ)[IC(tv,IvC,SvH,IvC,IvH,IvCH,)IC(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)]+ΞM(Ξ){2312IC(tv,SvC,SvH,IvC,IvH,IvCH,)Δt43IC(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)Δt+512IC(tv2,Sv2C,Sv2H,Iv2C,Iv2H,Iv2CH)Δt},
    Iv+1H=IvH+1ΞM(Ξ)[IH(tv,IvC,SvH,IvC,IvH,IvCH,)IH(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)]+ΞM(Ξ){2312IH(tv,SvC,SvH,IvC,IvH,IvCH,)Δt43IH(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)Δt+512IH(tv2,Sv2C,Sv2H,Iv2C,Iv2H,Iv2CH)Δt},
    Iv+1CH=IvCH+1ΞM(Ξ)[ICH(tv,IvC,SvH,IvC,IvH,IvCH,)ICH(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)]+ΞM(Ξ){2312ICH(tv,SvC,SvH,IvC,IvH,IvCH,)Δt43ICH(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)Δt+512ICH(tv2,Sv2C,Sv2H,Iv2C,Iv2H,Iv2CH)Δt}.

    We have the following numerical scheme for the Mittag-Leffler case:

    Sv+1C=1ΞAB(Ξ)+SC(tv,SvC,SvH,IvC,IvH,IvCH)+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+1)vu=2SC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+2)vu=2[SC(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)SC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+Ξ(Δt)Ξ2AB(Ξ)Γ(Ξ+3)vu=2{SC(tu,SuC,SuH,IuC,IuH,IuCH)2SC(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+SC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ,
    Sv+1H=1ΞAB(Ξ)+SH(tv,SvC,SvH,IvC,IvH,IvCH)+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+1)vu=2SH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+2)vu=2[SH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)SH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+Ξ(Δt)Ξ2AB(Ξ)Γ(Ξ+3)vu=2{SH(tu,SuC,SuH,IuC,IuH,IuCH)2SH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+SH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ,
    Iv+1C=1ΞAB(Ξ)+IC(tv,SvC,SvH,IvC,IvH,IvCH)+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+1)vu=2IC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+2)vu=2[IC(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)IC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+Ξ(Δt)Ξ2AB(Ξ)Γ(Ξ+3)vu=2{IC(tu,SuC,SuH,IuC,IuH,IuCH)2IC(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+IC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ,
    Iv+1H=1ΞAB(Ξ)+IH(tv,SvC,SvH,IvC,IvH,IvCH)+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+1)vu=2IH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+2)vu=2[IH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)IH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+Ξ(Δt)Ξ2AB(Ξ)Γ(Ξ+3)vu=2{IH(tu,SuC,SuH,IuC,IuH,IuCH)2IH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+IH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ,
    Iv+1CH=1ΞAB(Ξ)+ICH(tv,SvC,SvH,IvC,IvH,IvCH)+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+1)vu=2ICH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+2)vu=2[ICH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)ICH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+Ξ(Δt)Ξ2AB(Ξ)Γ(Ξ+3)vu=2{ICH(tu,SuC,SuH,IuC,IuH,IuCH)2ICH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+ICH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ,

    where

    Δ=[(vu+1)Ξ[2(vu)2+(3Ξ+10)(vu)+2Ξ2+9Ξ+12](vu)Ξ[2(vu)2+(5Ξ+10)(vu)+6Ξ2+18Ξ+12]],
    Σ=[(vu+1)Ξ(vu+3+2Ξ)(vu)Ξ(vu+3+3Ξ)],Π=[(vu+1)Ξ(vu)Ξ].

    Finally, we have the following numerical approximation with the Caputo derivative:

    Sv+1C=(Δt)ΞΓ(Ξ+1)vu=2SC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+(Δt)ΞΓ(Ξ+2)vu=2[SC(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)SC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+(Δt)Ξ2Γ(Ξ+3)vu=2{SC(tu,SuC,SuH,IuC,IuH,IuCH)2SC(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+SC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ,
    Sv+1H=(Δt)ΞΓ(Ξ+1)vu=2SH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+(Δt)ΞΓ(Ξ+2)vu=2[SH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)SH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+(Δt)Ξ2Γ(Ξ+3)vu=2{SH(tu,SuC,SuH,IuC,IuH,IuCH)2SH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+SH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ,
    Iv+1C=(Δt)ΞΓ(Ξ+1)vu=2IC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+(Δt)ΞΓ(Ξ+2)vu=2[IC(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)IC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+(Δt)Ξ2Γ(Ξ+3)vu=2{IC(tu,SuC,SuH,IuC,IuH,IuCH)2IC(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+IC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ,
    Iv+1H=(Δt)ΞΓ(Ξ+1)vu=2IH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+(Δt)ΞΓ(Ξ+2)vu=2[IH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)IH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+(Δt)Ξ2Γ(Ξ+3)vu=2{IH(tu,SuC,SuH,IuC,IuH,IuCH)2IH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+IH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ,
    Iv+1CH=(Δt)ΞΓ(Ξ+1)vu=2ICH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+(Δt)ΞΓ(Ξ+2)vu=2[ICH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)ICH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+(Δt)Ξ2Γ(Ξ+3)vu=2{ICH(tu,SuC,SuH,IuC,IuH,IuCH)2ICH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+ICH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ.

    Now, we consider our model with fractal-fractional operators. We start with the Caputo-Fabrizio fractal-fractional derivative

    {FFE0DΞ,ψtSC=SC(t,SC,SH,IC,IH,ICH),FFE0DΞ,ψtSH=SH(t,SC,SH,IC,IH,ICH),FFE0DΞ,ψtIC=IC(t,SC,SH,IC,IH,ICH),FFE0DΞ,ψtIH=IH(t,SC,SH,IC,IH,ICH),FFE0DΞ,ψtICH=ICH(t,SC,SH,IC,IH,ICH). (7.3)

    After applying the fractal-fractional integral with exponential kernel, we have the following scheme for this model:

    Sv+1C=SvC+1ΞM(Ξ)[t1ψvSC(tv,SvC,SvH,IvC,IvH,IvCH)t1ψv1SC(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)]+ΞM(Ξ){2312t1ψvSC(tv,SvC,SvH,IvC,IvH,IvCH)Δt43t1ψv1SC(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)Δt+512t1ψv2SC(tv2,Sv2C,Sv2H,Iv2C,Iv2H,Iv2CH)Δt},
    Sv+1H=SvH+1ΞM(Ξ)[t1ψvSH(tv,SvC,SvH,IvC,IvH,IvCH)t1ψv1SH(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)]+ΞM(Ξ){2312t1ψvSH(tv,SvC,SvH,IvC,IvH,IvCH)Δt43t1ψv1SH(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)Δt+512t1ψv2SH(tv2,Sv2C,Sv2H,Iv2C,Iv2H,Iv2CH)Δt},
    Iv+1C=IvC+1ΞM(Ξ)[t1ψvIC(tv,SvC,SvH,IvC,IvH,IvCH)t1ψv1IC(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)]+ΞM(Ξ){2312t1ψvIC(tv,SvC,SvH,IvC,IvH,IvCH)Δt43t1ψv1IC(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)Δt+512t1ψv2IC(tv2,Sv2C,Sv2H,Iv2C,Iv2H,Iv2CH)Δt},
    Iv+1H=IvH+1ΞM(Ξ)[t1ψvIH(tv,SvC,SvH,IvC,IvH,IvCH)t1ψv1IH(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)]+ΞM(Ξ){2312t1ψvIH(tv,SvC,SvH,IvC,IvH,IvCH)Δt43t1ψv1IH(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)Δt+512t1ψv2IH(tv2,Sv2C,Sv2H,Iv2C,Iv2H,Iv2CH)Δt},
    Iv+1CH=IvCH+1ΞM(Ξ)[t1ψvICH(tv,SvC,SvH,IvC,IvH,IvCH)t1ψv1ICH(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)]+ΞM(Ξ){2312t1ψvICH(tv,SvC,SvH,IvC,IvH,IvCH)Δt43t1ψv1ICH(tv1,Sv1C,Sv1H,IvC,Iv1H,Iv1CH)Δt+512t1ψv2ICH(tv2,Sv2C,Sv2H,Iv2C,Iv2H,Iv2CH)Δt}.

    For the Mittag-Leffler kernel, we have the following numerical scheme:

    Sv+1C=1ΞAB(Ξ)t1ψvSC(tv,SvC,SvH,IvC,IvH,IvCH)+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+1)vu=2t1ψu2SC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+2)vu=2[t1ψu1SC(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)t1ψu2SC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+Ξ(Δt)Ξ2AB(Ξ)Γ(Ξ+3)vu=2{t1ψuSC(tu,SuC,SuH,IuC,IuH,IuCH)2t1ψu1SC(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+t1ψu2SC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ,
    Sv+1H=1ΞAB(Ξ)t1ψvSH(tv,SvC,SvH,IvC,IvH,IvCH)+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+1)vu=2t1ψu2SH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+2)vu=2[t1ψu1SH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)t1ψu2SH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+Ξ(Δt)Ξ2AB(Ξ)Γ(Ξ+3)vu=2{t1ψuSH(tu,SuC,SuH,IuC,IuH,IuCH)2t1ψu1SH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+t1ψu2SH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ,
    Iv+1C=1ΞAB(Ξ)t1ψvIC(tv,SvC,SvH,IvC,IvH,IvCH)+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+1)vu=2t1ψu2IC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+2)vu=2[t1ψu1IC(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)t1ψu2IC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+Ξ(Δt)Ξ2AB(Ξ)Γ(Ξ+3)vu=2{t1ψuIC(tu,SuC,SuH,IuC,IuH,IuCH)2t1ψu1IC(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+t1ψu2IC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ,
    Iv+1H=1ΞAB(Ξ)t1ψvIH(tv,SvC,SvH,IvC,IvH,IvCH)+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+1)vu=2t1ψu2IH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+2)vu=2[t1ψu1IH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)t1ψu2IH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+Ξ(Δt)Ξ2AB(Ξ)Γ(Ξ+3)vu=2{t1ψuIH(tu,SuC,SuH,IuC,IuH,IuCH)2t1ψu1IH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+t1ψu2IH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ,
    Iv+1CH=1ΞAB(Ξ)t1ψvICH(tv,SvC,SvH,IvC,IvH,IvCH)+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+1)vu=2t1ψu2ICH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+Ξ(Δt)ΞAB(Ξ)Γ(Ξ+2)vu=2[t1ψu1ICH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)t1ψu2ICH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+Ξ(Δt)Ξ2AB(Ξ)Γ(Ξ+3)vu=2{t1ψuICH(tu,SuC,SuH,IuC,IuH,IuCH)2t1ψu1ICH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+t1ψu2ICH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ.

    For the power-law kernel, we can get the following numerical scheme:

    Sv+1C=(Δt)ΞΓ(Ξ+1)vu=2t1ψu2SC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+(Δt)ΞΓ(Ξ+2)vu=2[t1ψu1SC(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)t1ψu2SC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+(Δt)Ξ2Γ(Ξ+3)vu=2{t1ψuSC(tu,SuC,SuH,IuC,IuH,IuCH)2t1ψu1SC(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+t1ψu2SC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ,
    Sv+1H=(Δt)ΞΓ(Ξ+1)vu=2t1ψu2SH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+(Δt)ΞΓ(Ξ+2)vu=2[t1ψu1SH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)t1ψu2SH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+(Δt)Ξ2Γ(Ξ+3)vu=2{t1ψuSH(tu,SuC,SuH,IuC,IuH,IuCH)2t1ψu1SH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+t1ψu2SH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ,
    Iv+1C=(Δt)ΞΓ(Ξ+1)vu=2t1ψu2IC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+(Δt)ΞΓ(Ξ+2)vu=2[t1ψu1IC(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)t1ψu2IC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+(Δt)Ξ2Γ(Ξ+3)vu=2{t1ψuIC(tu,SuC,SuH,IuC,IuH,IuCH)2t1ψu1IC(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+t1ψu2IC(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ,
    Iv+1H=(Δt)ΞΓ(Ξ+1)vu=2t1ψu2IH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+(Δt)ΞΓ(Ξ+2)vu=2[t1ψu1IH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)t1ψu2IH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+(Δt)Ξ2Γ(Ξ+3)vu=2{t1ψuIH(tu,SuC,SuH,IuC,IuH,IuCH)2t1ψu1IH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+t1ψu2IH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ,
    Iv+1CH=(Δt)ΞΓ(Ξ+1)vu=2t1ψu2ICH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)Π+(Δt)ΞΓ(Ξ+2)vu=2[t1ψu1ICH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)t1ψu2ICH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)]Σ+(Δt)Ξ2Γ(Ξ+3)vu=2{t1ψuICH(tu,SuC,SuH,IuC,IuH,IuCH)2t1ψu1ICH(tu1,Su1C,Su1H,Iu1C,Iu1H,Iu1CH)+t1ψu2ICH(tu2,Su2C,Su2H,Iu2C,Iu2H,Iu2CH)}Δ.

    This portion is devoted to the numerical simulation results based on the above numerical schemes for the proposed HIV and Chagas disease model in the given fractional derivative senses. The numerical simulations are performed using the following parameter values: α=0.425; σ=0.4898; μ=0.0012; γ1=0.03; γ2=0.09; γ3=0.05; γ4=0.004; ρc=0.2; ρh=0.05; π1=0.002; π2=0.005; δ1=0.01; δ2=0.1; δ3=0.05; θh=0.003; θd=0.076. Variations in the given model classes at various fractional-order values can be observed from the family of Figures 16.

    Figure 1.  Graphs for the nature of each state variable for the Atangana-Baleanu-Caputo version of the fractional model at different values of Ξ.
    Figure 2.  Graphs for the nature of each state variable for the Caputo-Fabrizio version of the fractional model at different values of Ξ.
    Figure 3.  Graphs for the nature of each state variable for the Caputo version of the fractional model at different values of Ξ.
    Figure 4.  Graphs for the nature of each state variable for fractal and fractional versions of the model with Mittag-Leffler kernel at different fractional-orders Ξ and fractal dimensions ψ.
    Figure 5.  Graphs for the nature of each state variable for fractal and fractional versions of the model with the power-law kernel at different fractional-orders Ξ and fractal dimensions ψ.
    Figure 6.  Graphs for the nature of each state variable for fractal and fractional versions of the model with exponential decay kernel at different fractional-orders Ξ and fractal dimensions ψ.

    In this research, we have reformulated Chagas and HIV co-infection models by using various fractional derivatives. The basic reproductive number R0 of the aforementioned model is established along with the feasible region and disease-free equilibrium point E0. It has been proven that the E0 is locally asymptotically stable when R0 is less than one. The model is then fractionalized by using the Atangana-Baleanu fractional derivative in the Caputo sense. The existence and uniqueness of the solution along with Ulam-Hyers stability have been established. Finally, the model has been solved by a new numerical scheme, which is generated using Newton polynomials and is considered more accurate than one using Lagrange polynomials which are used to generate in the Adam Bashforth method. Furthermore, the same model is numerically solved by taking some other fractional derivatives, like Caputo-Fabrizio, Caputo, and fractal-fractional with power-law, exponential-decay and Mittag-Leffler kernels.

    In conclusion, the epidemiological profiles of AIDS and Chagas disease over the past years might facilitate the approximation of both diseases, thereby increasing the possibility of reactivation of Chagas disease in HIV patients. As patients are diagnosed after several years and some time in the last stages, its lethality rate is very high. Such cases have a big risk of not being correctly diagnosed, therefore adding to the lethality and seriousness of the epidemic. Serological tests for Chagas, even when they are indeterminate, should be taken fully into account, and the relevant parasitological tests must be done.

    This research project was supported by Thailand Science Research and Innovation (TSRI), Basic Research Fund, fiscal year 2022, under project number FRB650048/0164.

    The authors declare no conflicts of interest.



    [1] J. A. Pérez-Molina, A. Rodríguez-Guardado, A. Soriano, M. Pinazo, B. Carrilero, M. García-Rodríguez, et al., Guidelines on the treatment of chronic coinfection by Trypanosoma cruzi and HIV outside endemic areas, HIV Clin. Trials, 12 (2011), 287–298. https://doi.org/10.1310/hct1206-287 doi: 10.1310/hct1206-287
    [2] E. A. D. Almeida, A. N. Ramos Junior, D. Correia, M. A. Shikanai-Yasuda, Co-infection Trypanosoma cruzi/HIV: Systematic review (1980–2010), Rev. Soc. Bras. Med. Trop., 44 (2011), 762–770. https://doi.org/10.1590/S0037-86822011000600021 doi: 10.1590/S0037-86822011000600021
    [3] J. Jannin, R. Salvatella, Estimación cuantitativa de la enfermedad de Chagas en las Américas, 2006, 1–28. Available from: https://pesquisa.bvsalud.org/portal/resource/pt/lil-474053
    [4] World Health Organization, HIV/AIDS, 2021.
    [5] A. N. R. Junior, D. Correia, E. A. Almeida, M. A. Shikanai-Yasuda, History, current issues and future of the Brazilian network for attending and studying Trypanosoma cruzi/HIV coinfection, J. Infect. Dev. Ctries, 4 (2010), 682–688. https://doi.org/10.3855/jidc.1176 doi: 10.3855/jidc.1176
    [6] A. M. C. Sartori, K. Y. Ibrahim, E. V. Nunes Westphalen, L. M. A. Braz, O. C. Oliveira, E. Gakiya, et al., Manifestations of Chagas disease (American trypanosomiasis) in patients with HIV/AIDS, Ann. Trop. Med. Parasit., 101 (2007), 31–50. https://doi.org/10.1179/136485907X154629 doi: 10.1179/136485907X154629
    [7] A. M. C. Sartori, J. E. Neto, E. V. Nunes, L. M. A. Braz, H. H. Caiaffa-Filho, O. da Cruz Oliveira Jr., et al., Trypanosoma cruzi parasitemia in chronic Chagas disease: Comparison between human immunodeficiency virus (HIV)–positive and HIV-negative patients, J. Infect. Dis., 186 (2002), 872–875. https://doi.org/10.1086/342510 doi: 10.1086/342510
    [8] E. D. O. Santos, J. D. R. Canela, H. C. G. Moncao, M. J. G. Roque, Reactivation of Chagas' disease leading to the diagnosis of acquired immunodeficiency syndrome, Braz. J. Infect. Dis., 6 (2002), 317–321. https://doi.org/10.1590/S1413-86702002000600009 doi: 10.1590/S1413-86702002000600009
    [9] D. Gluckstein, F. Ciferri, J. Ruskin, Chagas disease: Another cause of cerebral mass in the acquired immunodeficiency syndrome, Amer. J. Med., 92 (1992), 429–432. https://doi.org/10.1016/0002-9343(92)90275-G doi: 10.1016/0002-9343(92)90275-G
    [10] M. S. Ferreira, S. D. A. Nishioka, M. T. A. Silvestre, A. S. Borges, F. R. F. N. Araujo, A. Rocha, Reactivation of Chagas disease in patients with AIDS: Report of three new cases and review of the literature, Clin. Infect. Dis., 25 (1997), 1397–1400. https://doi.org/10.1086/516130 doi: 10.1086/516130
    [11] J. C. P. Dias, A. C. Silveira, C. J. Schofield, The impact of Chagas disease control in Latin America: A review, Mem. Inst. Oswaldo Cruz, 97 (2002), 603–612. https://doi.org/10.1590/S0074-02762002000500002 doi: 10.1590/S0074-02762002000500002
    [12] E. Lages-Silva, L. E. Ramirez, M. L. Silva-Vergara, E. Chiari, Chagasic meningoencephalitis in a patient with acquired immunodeficiency syndrome: Diagnosis, follow-up, and genetic characterization of Trypanosoma cruzi, Clin. Infect. Dis., 34 (2002), 118–123. https://doi.org/10.1086/324355 doi: 10.1086/324355
    [13] H. Albrecht, Redefining AIDS: Towards a modification of the current AIDS case definition, Clin. Infect. Dis., 24 (1997), 64–74. https://doi.org/10.1093/clinids/24.1.64 doi: 10.1093/clinids/24.1.64
    [14] A. M. Da-Cruz, R. P. Igreja, W. Dantas, A. C. V. Junqueira, R. S. Pacheco, A. J. Silva-Gonçalves, et al., Long-term follow-up of co-infected HIV and Trypanosoma cruzi Brazilian patients, Trans. Roy. Soc. Trop. Med. Hyg., 98 (2004), 728–733. https://doi.org/10.1016/j.trstmh.2004.01.010 doi: 10.1016/j.trstmh.2004.01.010
    [15] A. L. Billencourt, Actual aspects and epidemiological significance of congenital transmission of Chagas disease, Mem. Inst. Oswaldo Cruz, 79 (1984), 133–137.
    [16] S. N. Busenberg, C. Vargas, Modelling Chagas' disease: Variable population size and demographic implications, In: Mathematical population dynamics, 1991,283–296.
    [17] J. X. Velasco-Hernandez, An epidemiological model for the dynamics of Chagas' disease, Biosystems, 26 (1991), 127–134. https://doi.org/10.1016/0303-2647(91)90043-K doi: 10.1016/0303-2647(91)90043-K
    [18] J. X. Velasco-Hernandez, A model for Chagas disease involving transmission by vectors and blood transfusion, Theor. Popul. Biol., 46 (1994), 1–31. https://doi.org/10.1006/tpbi.1994.1017 doi: 10.1006/tpbi.1994.1017
    [19] D. Greenhalgh, G. Hay, Mathematical modelling of the spread of HIV/AIDS amongst injecting drug users, Math. Med. Biol., 14 (1997), 11–38. https://doi.org/10.1093/imammb/14.1.11 doi: 10.1093/imammb/14.1.11
    [20] P. Agarwal, R. Singh, Modelling of transmission dynamics of Nipah virus (Niv): A fractional order approach, Phys. A, 547 (2020), 124243. https://doi.org/10.1016/j.physa.2020.124243 doi: 10.1016/j.physa.2020.124243
    [21] R. Zarin, A. Khan, A. Yusuf, S. Abdel-Khalek, M. Inc, Analysis of fractional COVID-19 epidemic model under Caputo operator, Math. Meth. Appl. Sci., 2021. https://doi.org/10.1002/mma.7294
    [22] P. Agarwal, J. Choi, R. B. Paris, Extended Riemann-Liouville fractional derivative operator and its applications, J. Nonlinear Sci. Appl., 8 (2015), 451–466.
    [23] R. Zarin, A. Khan, M. Inc, U. W. Humphries, T. Karite, Dynamics of five grade leishmania epidemic model using fractional operator with Mittag-Leffler kernel, Chaos Solitons Fract., 147 (2021), 110985. https://doi.org/10.1016/j.chaos.2021.110985 doi: 10.1016/j.chaos.2021.110985
    [24] P. Agarwal, J. Choi, Fractional calculus operators and their image formulas, J. Korean Math. Soc., 53 (2016), 1183–1210. https://doi.org/10.4134/JKMS.j150458 doi: 10.4134/JKMS.j150458
    [25] A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Phys. A, 505 (2018), 688–706. https://doi.org/10.1016/j.physa.2018.03.056 doi: 10.1016/j.physa.2018.03.056
    [26] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, 2015. https://doi.org/10.48550/arXiv.1602.03408
    [27] R. Zarin, I. Ahmed, P. Kumam, A. Zeb, A. Din, Fractional modeling and optimal control analysis of rabies virus under the convex incidence rate, Results Phys., 28 (2021), 104665. https://doi.org/10.1016/j.rinp.2021.104665 doi: 10.1016/j.rinp.2021.104665
    [28] H. Abboubakar, P. Kumar, N. A. Rangaig, S. Kumar, A malaria model with Caputo-Fabrizio and Atangana-Baleanu derivatives, Int. J. Mod. Simul. Sci. Comput., 12 (2021), 2150013. https://doi.org/10.1142/S1793962321500136 doi: 10.1142/S1793962321500136
    [29] K. N. Nabi, H. Abboubakar, P. Kumar, Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives, Chaos Solitons Fract., 141 (2020), 110283. https://doi.org/10.1016/j.chaos.2020.110283 doi: 10.1016/j.chaos.2020.110283
    [30] M. Vellappandi, P. Kumar, V. Govindaraj, W. Albalawi, An optimal control problem for mosaic disease via Caputo fractional derivative, Alex. Eng. J., 61 (2022), 8027–8037. https://doi.org/10.1016/j.aej.2022.01.055 doi: 10.1016/j.aej.2022.01.055
    [31] V. S. Erturk, P. Kumar, Solution of a COVID-19 model via new generalized Caputo-type fractional derivatives, Chaos Solitons Fract., 139 (2020), 110280. https://doi.org/10.1016/j.chaos.2020.110280 doi: 10.1016/j.chaos.2020.110280
    [32] P. Kumar, V. S. Erturk, A. Yusuf, S. Kumar, Fractional time-delay mathematical modeling of Oncolytic Virotherapy, Chaos Solitons Fract., 150 (2021), 111123. https://doi.org/10.1016/j.chaos.2021.111123 doi: 10.1016/j.chaos.2021.111123
    [33] P. Kumar, V. Govindaraj, V. S. Erturk, A novel mathematical model to describe the transmission dynamics of tooth cavity in the human population, Chaos Solitons Fract., 161 (2022), 112370. https://doi.org/10.1016/j.chaos.2022.112370 doi: 10.1016/j.chaos.2022.112370
    [34] K. Annan, M. Fisher, Stability conditions of Chagas-HIV co-infection disease model using the next generation method, Appl. Math. Sci., 7 (2013), 2815–2832. https://doi.org/10.12988/AMS.2013.13250 doi: 10.12988/AMS.2013.13250
  • This article has been cited by:

    1. Shewafera Wondimagegnhu Teklu, Birhanu Baye Terefe, COVID-19 and syphilis co-dynamic analysis using mathematical modeling approach, 2023, 8, 2297-4687, 10.3389/fams.2022.1101029
    2. Emmanuel Addai, Lingling Zhang, Ama Kyerewaa Preko, Joshua Kiddy K. Asamoah, Fractional order epidemiological model of SARS-CoV-2 dynamism involving Alzheimer’s disease, 2022, 2, 27724425, 100114, 10.1016/j.health.2022.100114
    3. Rahat Zarin, Numerical study of a nonlinear COVID-19 pandemic model by finite difference and meshless methods, 2022, 6, 26668181, 100460, 10.1016/j.padiff.2022.100460
    4. Yu Gu, Mohabat Khan, Rahat Zarin, Amir Khan, Abdullahi Yusuf, Usa Wannasingha Humphries, Mathematical analysis of a new nonlinear dengue epidemic model via deterministic and fractional approach, 2023, 67, 11100168, 1, 10.1016/j.aej.2022.10.057
    5. Peijiang Liu, Xiangxiang Huang, Rahat Zarin, Ting Cui, Anwarud Din, Modeling and numerical analysis of a fractional order model for dual variants of SARS-CoV-2, 2023, 65, 11100168, 427, 10.1016/j.aej.2022.10.025
    6. Yu-Ming Chu, Rahat Zarin, Asad Khan, Saqib Murtaza, A vigorous study of fractional order mathematical model for SARS-CoV-2 epidemic with Mittag-Leffler kernel, 2023, 11100168, 10.1016/j.aej.2023.03.037
    7. Ashfaq Ahmad, Rashid Ali, Ijaz Ahmad, Fuad A. Awwad, Emad A. A. Ismail, Global Stability of Fractional Order HIV/AIDS Epidemic Model under Caputo Operator and Its Computational Modeling, 2023, 7, 2504-3110, 643, 10.3390/fractalfract7090643
    8. Zehba Raizah, Rahat Zarin, Advancing COVID-19 Understanding: Simulating Omicron Variant Spread Using Fractional-Order Models and Haar Wavelet Collocation, 2023, 11, 2227-7390, 1925, 10.3390/math11081925
    9. Rahat Zarin, Usa Wannasingha Humphries, Teerapol Saleewong, Advanced mathematical modeling of hepatitis B transmission dynamics with and without diffusion effect using real data from Thailand, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05154-7
    10. Rahat Zarin, Niamat Ullah, Amir Khan, Usa Wannasingha Humphries, A numerical study of a new non-linear fractal fractional mathematical model of malicious codes propagation in wireless sensor networks, 2023, 135, 01674048, 103484, 10.1016/j.cose.2023.103484
    11. K. Bhagya laxmi, K. Shiva Reddy, Dynamical behavior of obligatory mutualistic-cheater interactions under the influence of white noise, 2024, 11, 26668181, 100860, 10.1016/j.padiff.2024.100860
    12. Rahat Zarin, Abdur Raouf, Amir khan, Usa Wannasingha Humphries, Modeling hepatitis B infection dynamics with a novel mathematical model incorporating convex incidence rate and real data, 2023, 138, 2190-5444, 10.1140/epjp/s13360-023-04642-6
    13. Rahat Zarin, Usa Wannasingha Humphries, Amir Khan, Aeshah A. Raezah, Computational modeling of fractional COVID-19 model by Haar wavelet collocation Methods with real data, 2023, 20, 1551-0018, 11281, 10.3934/mbe.2023500
    14. Rahat Zarin, Nehal Shukla, Amir Khan, Jagdish Shukla, Usa Wannasingha Humphries, Dynamic strategies and optimal control analysis for hepatitis C management: non-invasive liver fibrosis diagnosis, 2024, 1025-5842, 1, 10.1080/10255842.2024.2410976
    15. Abdulrahman Mumbu, Modeling dynamics and stability analysis of pneumonia disease infection with parameters uncertainties control, 2024, 03, 2811-0072, 10.1142/S2811007224300015
    16. Rahat Zarin, Mohabat Khan, Amir Khan, Abdullahi Yusuf, Deterministic and fractional analysis of a newly developed dengue epidemic model, 2023, 1745-5030, 1, 10.1080/17455030.2023.2226765
    17. Rahat Zarin, Yousaf Khan, Maryam Ahmad, Amir Khan, Usa Wannasingha Humphries, Evaluating the impact of double dose vaccination on SARS-CoV-2 spread through optimal control analysis, 2024, 1025-5842, 1, 10.1080/10255842.2024.2364817
    18. Rahat Zarin, Abdur Raouf, Amir Khan, Aeshah A. Raezah, Usa Wannasingha Humphries, Computational modeling of financial crime population dynamics under different fractional operators, 2023, 8, 2473-6988, 20755, 10.3934/math.20231058
    19. Kamel Guedri, Rahat Zarin, Aurang Zeb, Basim M. Makhdoum, Hatoon A. Niyazi, Amir Khan, A numerical study of HIV/AIDS transmission dynamics and the onset of long-term disability in chronic infection, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05881-x
    20. Kamel Guedri, Rahat Zarin, Basim M. Makhdoum, Hatoon A. Niyazi, Hamiden Abd El-Wahed Khalifa, Advanced mathematical modeling of syphilis transmission dynamics and disability outcomes in sex-structured populations, 2025, 11, 2363-6203, 10.1007/s40808-024-02218-6
    21. Khaled Aldwoah, Shahid Ahmed, Shah Jahan, Amel Touati, Nidal EIjaneid, Tariq AIjaaidi, António M. Lopes, Fractal-fractional modeling and stability analysis of pine wilt disease dynamics, 2025, 20, 1932-6203, e0318534, 10.1371/journal.pone.0318534
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1957) PDF downloads(106) Cited by(21)

Figures and Tables

Figures(6)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog