Research article

Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions

  • Received: 01 July 2022 Revised: 30 September 2022 Accepted: 07 October 2022 Published: 18 October 2022
  • MSC : 26A33, 34A08, 34A12, 45J05

  • In this work, the existence of solutions for nonlinear hybrid fractional integro-differential equations involving generalized proportional fractional (GPF) derivative of Caputo-Liouville-type and multi-term of GPF integrals of Reimann-Liouville type with Dirichlet boundary conditions is investigated. The analysis is accomplished with the aid of the Dhage's fixed point theorem with three operators and the lower regularized incomplete gamma function. Further, the uniqueness of solutions and their Ulam-Hyers-Rassias stability to a special case of the suggested hybrid problem are discussed. For the sake of corroborating the obtained results, an illustrative example is presented.

    Citation: Zaid Laadjal, Fahd Jarad. Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions[J]. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059

    Related Papers:

  • In this work, the existence of solutions for nonlinear hybrid fractional integro-differential equations involving generalized proportional fractional (GPF) derivative of Caputo-Liouville-type and multi-term of GPF integrals of Reimann-Liouville type with Dirichlet boundary conditions is investigated. The analysis is accomplished with the aid of the Dhage's fixed point theorem with three operators and the lower regularized incomplete gamma function. Further, the uniqueness of solutions and their Ulam-Hyers-Rassias stability to a special case of the suggested hybrid problem are discussed. For the sake of corroborating the obtained results, an illustrative example is presented.



    加载中


    [1] J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
    [2] R. Hilfer, Threefold introduction to fractional derivatives, In: Anomalous transport, foundations and applications, Wiley, 2008. https://doi.org/10.1002/9783527622979.ch2
    [3] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [4] J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus: theoretical developments and applications in physics and engineering, Dordrecht: Springer, 2007. https://doi.org/10.1007/978-1-4020-6042-7
    [5] F. Maindari, Fractional calculus: some basic problems in continuum and statistical mechanics, In: Fractals and fractional caluculas in continuum mechanics, Vienna: Springer, 1997,291–348. https://doi.org/10.1007/978-3-7091-2664-6_7
    [6] J. A. T. Machado, And I say to myself: "What a fractional world!", Fract. Calc. Appl. Anal., 14 (2011), 635. https://doi.org/10.2478/s13540-011-0037-1 doi: 10.2478/s13540-011-0037-1
    [7] J. A. T. Machado, F. Mainardi, V. Kiryakova, Fractional calculus: quo vadimus? (Where are we going?), Fract. Calc. Appl. Anal., 18 (2015), 495–526. https://doi.org/10.1515/fca-2015-0031 doi: 10.1515/fca-2015-0031
    [8] H. G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
    [9] W. Qiu, D. Xu, J. Guo, Numerical solution of the fourth-order partial integro-differential equation with multi-term kernels by the Sinc-collocation method based on the double exponential transformation, Appl. Math. Comput., 392 (2021), 125693. https://doi.org/10.1016/j.amc.2020.125693 doi: 10.1016/j.amc.2020.125693
    [10] D. Xu, W. Qiu, J. Guo, A compact finite difference scheme for the fourth-order time-fractional integro-differential equation with a weakly singular kernel, Numer. Meth. Part Differ. Equ., 36 (2020), 439–458. https://doi.org/10.1002/num.22436 doi: 10.1002/num.22436
    [11] K. B. Ali, A. Ghanmi, K. Kefi, Existence of solutions for fractional differential equations with Dirichlet boundary conditions, Electron. J. Diff. Equ., 2016 (2016), 116.
    [12] R. A. C. Ferreira, Fractional de la Vallée Poussin inequalities, Math. Inequal. Appl., 22 (2019), 917–930. https://doi.org/10.7153/mia-2019-22-62 doi: 10.7153/mia-2019-22-62
    [13] R. A. C. Ferreira, Existence and uniqueness of solutions for two-point fractional boundary value problems, Electron. J. Diff. Equ., 2016 (2016), 202.
    [14] Z. Laadjal, N. Adjeroud, Sharp estimates for the unique solution of the Hadamard-type two-point fractional boundary value problems, Appl. Math. E-Notes, 2021 (2021), 275–281.
    [15] R. P. Agarwal, R. Luca, Positive solutions for a semipositone singular Riemann-Liouville fractional differential problem, Int. J. Nonlinear Sci. Numer. Simul., 20 (2019), 823–831. https://doi.org/10.1515/ijnsns-2018-0376 doi: 10.1515/ijnsns-2018-0376
    [16] F. Jiao, Y. Zhou, Existence of solution for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 62 (2011), 1181–1199. https://doi.org/10.1016/j.camwa.2011.03.086 doi: 10.1016/j.camwa.2011.03.086
    [17] S. T. M. Thabet, M. B. Dhakne, On boundary value problems of higher order abstract fractional integro-differential equations, Int. J. Nonlinear Anal. Appl., 7 (2016), 165–184.
    [18] A. Anguraj, P. Karthikeyan, J. J. Trujillo, Existence of solutions to fractional mixed integrodifferential equations with nonlocal initial condition, Adv. Differ. Equ., 2011 (2011), 690653. https://doi.org/10.1155/2011/690653 doi: 10.1155/2011/690653
    [19] B. Ahmad, J. J. Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. Value Probl., 2009 (2009), 708576. https://doi.org/10.1155/2009/708576 doi: 10.1155/2009/708576
    [20] H. L. Tidke, Existence of global solutions to nonlinear mixed Volterra-Fredholm integrodifferential equations with nonlocal conditions, Electron. J. Diff. Equ., 2009 (2009), 55.
    [21] B. Ahmad, J. J. Nieto, Boundary value problems for a class of sequential integrodifferential equations of fractional order, J. Funct. Space., 2013 (2013), 149659. https://doi.org/10.1155/2013/149659 doi: 10.1155/2013/149659
    [22] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [23] A. Ali, F. Rabiei, K. Shah, On Ulam's type stability for a class of impulsive fractional differential equations with nonlinear integral boundary conditions, J. Nonlinear Sci. Appl., 10 (2017), 4760–4775. https://doi.org/10.22436/jnsa.010.09.19 doi: 10.22436/jnsa.010.09.19
    [24] K. Shah, A. Ali, S. Bushnaq, Hyers-Ulam stability analysis to implicit Cauchy problem of fractional differential equations with impulsive conditions, Math. Method. Appl. Sci., 41 (2018), 8329–8343. https://doi.org/10.1002/mma.5292 doi: 10.1002/mma.5292
    [25] A. Ali, K. Shah, D. Baleanu, Ulam stability results to a class of nonlinear implicit boundary value problems of impulsive fractional differential equations, Adv. Differ. Equ., 2019 (2019), 5. https://doi.org/10.1186/s13662-018-1940-0 doi: 10.1186/s13662-018-1940-0
    [26] Asma, A. Ali, K. Shah, F. Jarad, Ulam-Hyers stability analysis to a class of nonlinear implicit impulsive fractional differential equations with three point boundary conditions, Adv. Differ. Equ., 2019 (2019), 7. https://doi.org/10.1186/s13662-018-1943-x doi: 10.1186/s13662-018-1943-x
    [27] A. Ali, K. Shah, F. Jarad, V. Gupta, T. Abdeljawad, Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations, Adv. Differ. Equ., 2019 (2019), 101. https://doi.org/10.1186/s13662-019-2047-y doi: 10.1186/s13662-019-2047-y
    [28] B. C. Dhage, V. Lakshmikantham, Basic results on hybrid differential equations, Nonlinear Anal. Hybrid Syst., 4 (2010), 414–424. https://doi.org/10.1016/j.nahs.2009.10.005 doi: 10.1016/j.nahs.2009.10.005
    [29] M. A. E. Herzallah, D. Baleanu, On fractional order hybrid differential equations, Abstr. Appl. Anal., 2014 (2014), 389386. https://doi.org/10.1155/2014/389386 doi: 10.1155/2014/389386
    [30] B. Ahmad, S. K. Ntouyas, J. Tariboon, On hybrid Caputo fractional integro-differential inclusions with nonlocal conditions, J. Nonlinear Sci. Appl., 9 (2016), 4235–4246. https://doi.org/10.22436/jnsa.009.06.65 doi: 10.22436/jnsa.009.06.65
    [31] B. C. Dhage, G. T. Khrpe, A. Y. Shete, J. N. Salunke, Existence and approximate solutions for nonlinear hybrid fractional integrodifferential equations, Int. J. Anal. Appl., 11 (2016), 157–167.
    [32] Z. Laadjal, T. Abdeljawad, F. Jarad, On existence-uniqueness results for proportional fractional differential equations and incomplete gamma functions, Adv. Differ. Equ., 2020 (2020), 641. https://doi.org/10.1186/s13662-020-03043-8 doi: 10.1186/s13662-020-03043-8
    [33] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [34] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. https://doi.org/10.1140/epjst/e2018-00021-7 doi: 10.1140/epjst/e2018-00021-7
    [35] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Vol. II, New York, Toronto, London: McGraw-Hill Book Company, 1953.
    [36] A. Gil, J. Segura, N. M. Temme, Efficient and accurate algorithms for the computation and inversion of the incomplete gamma function ratios, SIAM J. Sci. Comput., 34 (2012), A2965–A2981. https://doi.org/10.1137/120872553 doi: 10.1137/120872553
    [37] Z. Laadjal, F. Jarad, On a Langevin equation involving Caputo fractional proportional derivatives with respect to another function, AIMS Mathematics, 7 (2022), 1273–1292. https://doi.org/10.3934/math.2022075 doi: 10.3934/math.2022075
    [38] B. C. Dhage, A fixed point theorem in Banach ilgebras Involving three operators with applications, Kyungpook Math. J., 44 (2004), 145–155.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1383) PDF downloads(127) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog