In this present paper, we introduce graphical Branciari $ \aleph $-metric space and prove the fixed point theorem for $ \varOmega $-$ \mathcal{Q} $-contraction on complete graphical Branciari $ \aleph $ -metric spaces. Our result has been supplemented with suitable, non trivial examples. We have applied the derived fixed point result to solve non-linear Fredholm integral equations and fractional differential equation.
Citation: Rajagopalan Ramaswamy, Gunaseelan Mani. Application of fixed point result to solve integral equation in the setting of graphical Branciari $ {\aleph } $-metric spaces[J]. AIMS Mathematics, 2024, 9(11): 32945-32961. doi: 10.3934/math.20241576
In this present paper, we introduce graphical Branciari $ \aleph $-metric space and prove the fixed point theorem for $ \varOmega $-$ \mathcal{Q} $-contraction on complete graphical Branciari $ \aleph $ -metric spaces. Our result has been supplemented with suitable, non trivial examples. We have applied the derived fixed point result to solve non-linear Fredholm integral equations and fractional differential equation.
[1] | X. Song, H. Wang, S. E. Venegas-Andraca, A. A. Abd el-Latif, Quantum vedio encryption based on qubit-planes controlled-XOR operation and improved logistic map, Physica A, 537 (2020), 122660. https://doi.org/10.1016/j.physa.2019.122660 doi: 10.1016/j.physa.2019.122660 |
[2] | Y. Wu, H. Guo, W. Li, Finite-time stabilization of stochastic coupled system on networks with Markovian switching via feedback control, Physica A, 537 (2020), 122797. https://doi.org/10.1016/j.physa.2019.122797 doi: 10.1016/j.physa.2019.122797 |
[3] | A. Petrusel, G. Petrnsel, J. C. Yao, Variational analysis notions in the theory of multi-valued coincidence problems, J. Nonlinear Convex A., 19 (2018), 935–958. |
[4] | A. Petrusel, G. Petrnsel, On Reich's strict fixed point theorem for multi-valued operators in complete metric spaces, J. Nonlinear Var. Anal., 2 (2018), 103–112. https://doi.org/10.23952/jnva.2.2018.1.08 doi: 10.23952/jnva.2.2018.1.08 |
[5] | M. Xiang, B. Zhang, Homoclinic solutions for fractional discrete Lapacian equations, Nonlinear Anal., 198 (2020), 111886. https://doi.org/10.1016/j.na.2020.111886 doi: 10.1016/j.na.2020.111886 |
[6] | L. Chen, X. Liu, Y. Zhao, Exponential stability of a class of nonlinear system via fixed point theory, Nonlinear Anal., 196 (2020), 111784. https://doi.org/10.1016/j.na.2020.111784 doi: 10.1016/j.na.2020.111784 |
[7] | S. Czerwik, Contraction mapping in $b$-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11. |
[8] | A. Lukacs, S. Kajanto, Fixed point theorems for various types of ${F}$-contractions in complete $b$-metric spaces, Fixed Point Theor., 19 (2018), 321–334. https://doi.org/10.24193/FPT-RO.2018.1.25 doi: 10.24193/FPT-RO.2018.1.25 |
[9] | C. Chifu, G. Petrusel, Fixed points for multivalued contractions in $b$-metric spaces with applications to fractals, Taiwanese J. Math., 18 (2014), 1365–1375. https://doi.org/10.11650/tjm.18.2014.4137 doi: 10.11650/tjm.18.2014.4137 |
[10] | M. Cosentino, M. Jleli, B. Samet, C. Vetro, Solvability of integrodifferential problems via fixed point theory in $b$-metric spaces, Fixed Point Theory Appl., 2015 (2015), 70. https://doi.org/10.1186/s13663-015-0317-2 doi: 10.1186/s13663-015-0317-2 |
[11] | A. Branciari, A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37. https://doi.org/10.5486/PMD.2000.2133 doi: 10.5486/PMD.2000.2133 |
[12] | R. George, S. Redenovic, K. P. Reshma, S.Shukla, Rectangular $b$-metric space and contraction principles, J. Nonlinear Sci. Appl., 8 (2015), 1005–1013. https://doi.org//10.22436/JNSA.008.06.11 doi: 10.22436/JNSA.008.06.11 |
[13] | R. Johnsonbaugh, Discrete mathematics, Prentice Hall, 1996. |
[14] | M. Younis, D. Singh, A. Goyal, A novel approach of graphical rectangular $b$-metric spaces with an application to the vibrations of a vertical heavy hanging cable, J. Fixed Point Theory Appl., 21 (2019), 33. https://doi.org/10.1007/s11784-019-0673-3 doi: 10.1007/s11784-019-0673-3 |
[15] | M. Younis, D. Singh, M. Asadi, V. Joshi, Results on contractions of Reich type in graphical $b$-metric spaces with applications, Filomat, 33 (2019), 5723–5735. https://doi.org/10.2298/fil1917723y doi: 10.2298/fil1917723y |
[16] | M. Younis, D. Singh, I. Altun, V. Chauhan, Graphical structure of extended $b$-metric spaces: An application to the transverse oscillations of a homogeneous bar, Int. J. Nonlin. Sci. Num., 23 (2022), 1239–1252. https://doi.org/10.1515/ijnsns-2020-0126 doi: 10.1515/ijnsns-2020-0126 |
[17] | M. Younis, H. Ahmad, L. Chen, M. Han, Computation and convergence of fixed points in graphical spaces with an application to elastic beam deformations, J. Geom. Phys., 192 (2023), 104955. https://doi.org/10.1016/j.geomphys.2023.104955 doi: 10.1016/j.geomphys.2023.104955 |
[18] | M. Younis, D. Singh, A. Petrusel, Applications of graph Kannan mappings to the damped spring-mass system and deformation of an elastic beam, Discrete Dyn. Nat. Soc., 2019 (2019), 1315387. https://doi.org/10.1155/2019/1315387 doi: 10.1155/2019/1315387 |
[19] | M. Younis, D. Bahuguna, A unique approach to graph-based metric spaces with an application to rocket ascension, Comp. Appl. Math., 42 (2023), 44. https://doi.org/10.1007/s40314-023-02193-1 doi: 10.1007/s40314-023-02193-1 |
[20] | H. Ahmad, M. Younis, A. A. N. Abdou, Bipolar $b$-metric spaces in graph setting and related fixed points, Symmetry, 15 (2023), 1227. https://doi.org/10.3390/sym15061227 doi: 10.3390/sym15061227 |
[21] | J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359–1373. https://doi.org/10.1090/S0002-9939-07-09110-1 doi: 10.1090/S0002-9939-07-09110-1 |
[22] | I. Beg, A. R. Butt, S. Radojevi$\grave{{\rm{c}}}$, The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl., 60 (2010), 1214–1219. https://doi.org/10.1016/j.camwa.2010.06.003 doi: 10.1016/j.camwa.2010.06.003 |
[23] | F. Bojor, Fixed point of $\varPi$-contraction in metric spaces endowed with a graph, Ann. Univ. Craiova Mat., 37 (2010), 85–92. https://doi.org/10.52846/ami.v37i4.374 doi: 10.52846/ami.v37i4.374 |
[24] | L. Chen, S. Huang, C. Li, Y. Zhao, Several fixed point theorems for $F$-contractions in complete Branciari $b$-metric spaces and applications, J. Funct. Space., 2020 (2020), 7963242. https://doi.org/10.1155/2020/7963242 doi: 10.1155/2020/7963242 |
[25] | S. Shukla, S. Radenovi$\acute{c}$ C. Vetro, Graphical metric space: A generalized setting in fixed point theory, RACSAM, 111 (2017), 641–655. https://doi.org/10.1007/s13398-016-0316-0 doi: 10.1007/s13398-016-0316-0 |
[26] | M. Younis, D. Singh, On the existence of the solution of Hammerstein integral equations and fractional differential equations, J. Appl. Math. Comput., 68 (2022), 1087–1105. https://doi.org/10.1007/s12190-021-01558-1 doi: 10.1007/s12190-021-01558-1 |
[27] | A. A. Thirthar, H. Abboubakar, A. L. Alaoui, K. Sooppy Nisar, Dynamical behavior of a fractional-order epidemic model for investigating two fear effect functions, Results Control Optim., 16 (2024), 100474. https://doi.org/10.1016/j.rico.2024.100474 doi: 10.1016/j.rico.2024.100474 |
[28] | K. Muthuvel, K. Kaliraj, Kottakkaran Sooppy Nisar, V. Vijayakumar, Relative controllability for $\psi$-Caputo fractional delay control system, Results Control Optim., 16 (2024), 100475. https://doi.org/10.1016/j.rico.2024.100475 doi: 10.1016/j.rico.2024.100475 |
[29] | K. S. Nisar, A constructive numerical approach to solve the fractional modified Camassa-Holm equation, Alex. Eng. J., 106 (2024), 19–24. https://doi.org/10.1016/j.aej.2024.06.076 doi: 10.1016/j.aej.2024.06.076 |