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1. Introduction and preliminaries

In the past few decades, fixed point theory was developed by a large number of authors, especially
in metric spaces, which can be observed in [1–6]. In 1993, Czerwik [7] initiated the concept of
b-metric spaces. Later, many authors proved fixed point theorems in b-metric spaces [8–10].
However, the general metric notion was introduced by Branciari [11] in 2000, the so-called Branciari
metric. The notion of generalization of Branciari b-metric spaces was introduced by George et al. [12]
in 2015. Johnsonbaugh [13] explored certain fundamental mathematical principles, including
foundational topics relevant to fixed-point theory and discrete structures, which underpin many
concepts in fixed-point applications. Younis et al. [14] introduced graphical rectangular b-metric
space and proved fixed point theorem. Younis et al. [15] presented graphical b-metric space and
proved fixed point theorem. Younis et al. [16] presented graphical extended b-metric space and proved
fixed point theorem. Younis et al. [17] proved fixed points results using graphical B
c-Kannan-contractions by numerical iterations within the structure of graphical extended b-metric
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spaces. Younis et al. [18] presented a fixed point result for Kannan type mappings, in the framework
of graphical b-metric spaces. Younis et al. [19] introduced the notion of controlled graphical metric
type spaces and proved the fixed point theorem. Haroon Ahmad et al. [20] developed the graphical
bipolar b-metric space and proved the fixed point theorem.

The following preliminary is given for better understanding by the readers.
Let (Υ, ϱ) be a metric space. Let ∆ denote the diagonal of the Cartesian product Υ × Υ. Consider a

directed graph Ω such that the set V(Ω) of its vertices coincides with Υ, and the set E(Ω) of its edges
contains all loops, i.e., E(Ω) ⊇ ∆. We assume Ω has no parallel edges, so we can identify Ω with the
pair (V(Ω),E(Ω)). Moreover, we may treat Ω as a weighted graph (see [13], p.309) by assigning to
each edge the distance between its vertices. By Ω−1, we denote the conversion of a graph Ω, i.e., the
graph obtained from Ω by reversing the direction of edges. Thus, we have

E(Ω−1) = {(ϑ, σ)|(σ, ϑ) ∈ Ω}.

The letter Ω̃ denotes the undirected graph obtained from Ω by ignoring the direction of edges.
Actually, it will be more convenient for us to treat Ω̃ as a directed graph for which the set of its edges
is symmetric. Under this convention,

E(Ω̃) = E(Ω) ∪ E(Ω−1). (1.1)

We call (V
′

,E
′

) a subgraph of Ω ifV
′

⊆ V(Ω),E
′

⊆ E(Ω) and, for any edge (ϑ, σ) ∈ E
′

, ϑ, σ ∈ V
′

.
If ϑ and σ are vertices in a graph Ω, then a path in Ω from ϑ to σ of length r(r ∈ N) is a

sequence (ϑi)ri=0 of r + 1 vertices such that ϑ0 = ϑ, ϑr = σ and (ϑζ−1, ϑζ) ∈ E(Ω) for i = 1, ....., r. A
graph Ω is connected if there is a path between any two vertices. Ω is weakly connected if, treating all
of its edges as being undirected, there is a path from every vertex to every other vertex. More
precisely, Ω is weakly connected if Ω̃ is connected.

We define a relation P on Υ by: (ϑPσ)Ω if and only if there is a directed path from ϑ to σ in Ω. We
write η, κ ∈ (ϑPσ)Ω if η, κ is contained in some directed path from ϑ to σ in Ω. For l ∈ N, we denote

[ϑ]lΩ = {σ ∈ Υ : there is a directed path from ϑ to σ of length l}.

A sequence {ϑζ} in Υ is said to be Ω-term wise connected if (ϑζPσζ) for all ζ ∈ N. Further details one
can see [21–25].

Definition 1.1. Let Υ be a nonempty set endowed with a graph Ω, ℵ ≥ 1 and ϱ : Υ × Υ −→ [0,+∞)
satisfy the assumptions below for every ϑ, σ ∈ Υ:

(T1) ϱ(ϑ, σ) = 0 if and only if ϑ = σ;

(T2) ϱ(ϑ, σ) = ϱ(σ, ϑ);

(T3) (ϑPσ)Ω, η, φ ∈ (ϑPσ)Ω implies ϱ(ϑ, σ) ≤ ℵ[ϱ(ϑ, φ) + ϱ(φ, ω) + ϱ(ω,σ)] for all distinct points
φ, ω ∈ Υ/{ϑ, σ}.

In this case, the pair (Υ, ϱ) is called a graphical Branciari ℵ-metric space with constant ℵ ≥ 1.
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Example 1.1. Let Υ = B ∪ U, where B = {0, 1
2 ,

1
3 ,

1
4 } and U = [1, 2]. Define the graphical Branciari

ℵ-metric space ϱ : Υ × Υ −→ [0,+∞) as follows:ϱ(ϑ, σ) = ϱ(σ, ϑ) for all ϑ, σ ∈ Υ,
ϱ(ϑ, σ) = 0 ⇐⇒ ϑ = σ.

and 
ϱ(0, 1

2 ) = ϱ(1
2 ,

1
3 ) = 0.2,

ϱ(0, 1
3 ) = ϱ(1

3 ,
1
4 ) = 0.02,

ϱ(0, 1
4 ) = ϱ(1

2 ,
1
4 ) = 0.5,

ϱ(ϑ, σ) = |ϑ − σ|2, otherwise.

equipped with the graph Ω = (V(Ω),E(Ω)) so that Υ = V(Ω) with E(Ω)).

Figure 1. Graphical Branciari ℵ-metric space.

It can be seen that the above Figure 1 depicts the graph given by Ω = (V(Ω),E(Ω)).

Definition 1.2. Let {ϑζ} be a sequence in a graphical Branciari ℵ-metric space (Υ, ϱ). Then,

(S1) {ϑζ} converges to ϑ ∈ Υ if, given ϵ > 0, there is ζ0 ∈ N so that ϱ(ϑζ , ϑ) < ϵ for each ζ > ζ0. That
is, limζ→∞ ϱ(ϑζ , ϑ) = 0.

(S2) {ϑζ} is a Cauchy sequence if, for ϵ > 0, there is ζ0 ∈ N so that ϱ(ϑζ , ϑm) < ϵ for all ζ,m > ζ0.
That is, limζ,m→∞ ϱ(ϑζ , ϑm) = 0.

(S3) (Υ, ϱ) is complete if every Cauchy sequence in Υ is convergent in Υ.

Definition 1.3. (see [8]) A function Q : (0,+∞) −→ R belongs to F if it satisfies the following
condition:

(F1) Q is strictly increasing;

(F2) There exists k ∈ (0, 1) such that limϑ→0+ ϑ
kQ(ϑ) = 0.
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In [8], the authors omitted Wardowski’s (F2) condition from the above definition. Explicitly, (F2)
is not required, if {αζ}ζ∈N is a sequence of positive real numbers, then limζ→+∞ αζ = 0 if and only if
limζ→+∞Q(αζ) = −∞. The reason for this is the following lemma.

Lemma 1.1. If Q : (0,+∞) −→ R is an increasing function and {αζ}ζ∈N ⊂ (0,+∞) is a decreasing
sequence such that limζ→+∞Q(αζ) = −∞, then limζ→+∞ αζ = 0.

We can also see some properties concerning Qℵ,ℓ and Q
′

ℵ,ℓ
.

Definition 1.4. (see [9]) Let ℵ ≥ 1 and ℓ > 0. We say that Q ∈ F belongs to Fℵ,ℓ if it also satisfies
(Qℵℓ) if inf Q = −∞ and ϑ, σ ∈ (0,∞) are such that ℓ + Q(ℵϑ) ≤ Q(σ) and ℓ + Q(ℵσ) ≤ Q(η), then

ℓ + Q(ℵ2ϑ) ≤ Q(ℵσ).

In [10], the authors introduced the following condition (F4).
(Q

′

ℵℓ
) if {αζ}ζ∈N ⊂ (0,+∞) is a sequence such that ℓ +Q(ℵαζ) ≤ Q(αn−1), for all ζ ∈ N and for some

ℓ ≥ 0, then ℓ + Q(ℵζαζ) ≤ Q(ℵn−1αn−1), for all ζ ∈ N∗.

Proposition 1.1. (see [8]) If Q is increasing, then (Fℵℓ) is equivalent to (F
′

ℵℓ
).

Definition 1.5. Let (Υ, ϱ) be a graphical Branciari ℵ-metric space. We say that a mapping Π : Υ → Υ

is a Ω-Q-contraction if

(A1) Π preserves edges of Ω, that is, (ϑ, σ) ∈ E(Ω) implies (Πϑ,Πσ) ∈ E(Ω);

(A2) There exists ℓ > 0 and Q ∈ Fℵ,ℓ, such that

∀ϑ, σ ∈ Υ, (ϑ, σ) ∈ E(Ω), ϱ(Πϑ,Πσ) > 0⇒ ℓ + Q(ℵϱ(Πϑ,Πσ)) ≤ Q(ϱ(ϑ, σ)).

Chen, Huang, Li, and Zhao [24], proved fixed point theorems for Q-contractions in complete
Branciari b-metric spaces. The aim of this paper is to study the existence of fixed point theorems for
Q-contractions in complete Branciari b-metric spaces endowed with a graph Ω by introducing the
concept of Ω-Q-contraction.

2. Main results

Theorem 2.1. Let (Υ, ϱ) be a complete graphical Branciari ℵ-metric space and Q ∈ Fℵ,ℓ. Let Π :
Υ −→ Υ be a self mapping such that

(C1) there exists ϑ0 ∈ Υ such that Πϑ0 ∈ [ϑ0]lΩ, for some l ∈ N;

(C2) Π is a Ω-Q-contraction.

Then Π has a unique fixed point.

Proof. Let ϑ0 ∈ Υ be such that Πϑ0 ∈ [ϑ0]lΩ, for some l ∈ N, and {ϑζ} be the Π-Picard sequence with
initial value ϑ0. Then, there exists a path {σi}li=0 such that ϑ0 = σ0, Πϑ0 = σl and (σi−1, σi) ∈ E(Ω) for
i = 1, 2, 3....l. Since Π is a Ω-Q-contraction, by (A1), (Πσi−1, Πσi) ∈ E(Ω) for i = 1, 2, 3...l. Therefore,
{Πσi}

l
i=0 is a path from Πσ0 = Πϑ0 = ϑ1 to Πσ1 = ρ2ϑ0 = ϑ2 of length l, and so ϑ2 ∈ [ϑ1]lΩ.

Continuing this process, we obtain that Πζσi}
l
i=0, is a path from Πζσ0 = Πζϑ0 = ϑζ to Πζσl =

ΠζΠϑ0 = ϑζ+1 of length l, and so, ϑζ+1 ∈ [ϑζ]lΩ, for all ζ ∈ N. Thus {ϑζ} is a Ω-term wise connected
sequence. For any ϑ0 ∈ Υ, set ϑζ = Πϑζ−1, γζ = ϱ(ϑζ+1, ϑζ), and βζ = ϱ(ϑζ+2, ϑζ) with γ0 = ϱ(ϑ1, ϑ0)
and β0 = ϱ(ϑ2, ϑ0). Now, we consider the following two cases:
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(E1) If there exists ζ0 ∈ N ∪ {0} such that ϑζ0 = ϑζ0+1, then we have Πϑζ0 = ϑζ0 . It is clear that ϑζ0 is a
fixed point of Π . Therefore, the proof is finished.

(E2) If ϑζ , ϑζ+1, for any ζ ∈ N ∪ {0}, then we have γζ > 0, for each ζ ∈ N.

ℓ + Q(ℵϱ(Πϑζ , Πϑζ+1)) ≤ Q(ϱ(ϑζ , ϑζ+1)),
Q(ℵγζ+1) ≤ Q(γζ) − ℓ, for every ζ ∈ N.

By proposition 1.1, we obtain

Q(ℵζ+1γζ+1) ≤ Q(ℵζγζ) − ℓ, ∀ζ ∈ N. (2.1)

Furthermore, for any ζ ∈ N, we have

Q(ℵζγζ) ≤ Q(ℵζ−1γζ−1) − ℓ ≤ Q(ℵζ−2γζ−2) − 2ℓ ≤ · · · ≤ Q(γ0) − ζℓ. (2.2)

Since limζ→∞(Q(γ0) − ζℓ) = −∞, then

lim
ζ→∞
Q(ℵζγζ) = −∞.

From (2.1) and ((F1)), we derive that the sequence {ℵζγζ}∞ζ=1 is decreasing. By Lemma1.1, we derive
that

lim
ζ→∞

(ℵζγζ) = 0.

By (F2), there exists k ∈ (0, 1) such that

lim
ζ→∞

(ℵζγζ)kQ(ℵζγζ) = 0.

Multiplying (2.2) by (ℵζγζ)k results

0 ≤ ζ(ℵζγζ)kℓ + (ℵζγζ)kQ(ℵζγζ) ≤ (ℵζγζ)kQ(γ0), ∀ζ ∈ N,

which implies limζ→∞ ζ(ℵζγζ)k = 0. Then, there exists ζ1 ∈ N such that ζ(ℵζγζ)k ≤ 1, ∀ ζ ≥ ζ1. Thus,

ℵζγζ ≤
1

ζ
1
k

, ∀ζ ≥ ζ1. (2.3)

Therefore, the series
∑∞
i=1 ℵ

iγi is convergent. For all ζ, ω ∈ N, we drive the proof into two cases.
(a) If ω > 2 is odd, we obtain

ϱ(ϑζ+3, ϑζ) ≤ ℵϱ(ϑζ+3, ϑζ+2) + ℵϱ(ϑζ+2, ϑζ+1) + ℵϱ(ϑζ+1, ϑζ),

ϱ(ϑζ+5, ϑζ) ≤ℵϱ(ϑζ+5, ϑζ+2) + ℵϱ(ϑζ+2, ϑζ+1) + ℵϱ(ϑζ+1, ϑζ)
≤ℵ2ϱ(ϑζ+5, ϑζ+4) + ℵ2ϱ(ϑζ+4, ϑζ+3)
+ ℵ2ϱ(ϑζ+3, ϑζ+2) + ℵγζ+1 + ℵγζ .
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Consequently,

ϱ(ϑζ+ω, ϑζ) ≤ℵϱ(ϑζ+ω, ϑζ+2) + ℵϱ(ϑζ+2, ϑζ+1) + ℵϱ(ϑζ+1, ϑζ)
≤ℵ2ϱ(ϑζ+ω, ϑζ+4) + ℵ2ϱ(ϑζ+4, ϑζ+3)
+ ℵ2ϱ(ϑζ+3, ϑζ+2) + ℵγζ+1 + ℵγζ

≤ℵ3ϱ(ϑζ+ω, ϑζ+6) + ℵ3γζ+5 + ℵ
3γζ+4 + ℵ

2γζ+3

+ ℵ2γζ+2 + ℵγζ+1 + ℵγζ
...

≤ℵ
ω−1

2 γn+p−1 + ℵ
ω−1

2 γζ+ω−2 + ℵ
ω−1

2 γζ+ω−3 + ℵ
ω−3

2 γζ+ω−4

+ ℵ
ω−3

2 γζ+ω−5 + · · · + ℵ
2γζ+2 + ℵγζ+1 + ℵγζ

≤ℵ
ω+1

2 γζ+ω−1 + ℵ
ω
2 γζ+ω−2 + ℵ

ω−1
2 γζ+ω−3 + ℵ

ω−2
2 γζ+ω−4

+ ℵ
ω−3

2 γζ+ω−5 + · · · + ℵ
3
2γζ+1 + ℵ

2
2γζ

≤ℵω+1γζ+ω−1 + ℵ
ωγζ+ω−2 + ℵ

ω−1γζ+ω−3 + ℵ
ω−2γζ+ω−4

+ ℵω−3γζ+ω−5 + · · · + ℵ
3γζ+1 + ℵ

2γζ

≤
1
ℵζ−2

(
ℵζ+ω−1γζ+ω−1 + ℵ

ζ+ω−2γζ+ω−2 + ℵ
ζ+ω−3γζ+ω−3

+ · · · + ℵζ+1γζ+1 + ℵ
ζγζ
)

=
1
ℵζ−2

ζ+ω−1∑
i=ζ

ℵiγi

≤
1
ℵζ−2

∞∑
i=ζ

ℵiγi.

(b) If ω > 2 is even, we can obtain

ϱ(ϑζ+4, ϑζ) ≤ ℵϱ(ϑζ+4, ϑζ+2) + ℵϱ(ϑζ+2, ϑζ+1) + ℵϱ(ϑζ+1, ϑζ).

Furthermore, we conclude that

ϱ(ϑζ+ω, ϑζ) ≤ℵϱ(ϑζ+ω, ϑζ+2) + ℵϱ(ϑζ+2, ϑζ+1) + ℵϱ(ϑζ+1, ϑζ)
≤ℵ2ϱ(ϑζ+ω, ϑζ+4) + ℵ2ϱ(ϑζ+4, ϑζ+3) + ℵ2ϱ(ϑζ+3, ϑζ+2)
≤ℵ3ϱ(ϑζ+ω, ϑζ+6) + ℵ3γζ+5 + ℵ

3γζ+4 + ℵ
2γζ+3 + ℵ

2γζ+2

...

≤ℵ
ω−2

2 ϱ(ϑζ+ω, ϑζ+ω−2) + ℵ
ω−2

2 γζ+ω−3 + ℵ
ω−2

2 γζ+ω−4

+ ℵ
ω−4

2 γζ+ω−5 + ℵ
ω−4

2 γζ+ω−6 + · · · + ℵγζ+1 + ℵγζ

≤ℵ
ω−2

2 ϱ(ϑζ+ω, ϑζ+ω−2) + ℵ
ω−1

2 γζ+ω−3 + ℵ
ω−2

2 γζ+ω−4

+ ℵ
ω−3

2 γζ+ω−5 + ℵ
ω−4

2 γζ+ω−6 + · · · + ℵ
3
2γζ+1 + ℵ

2
2γζ

≤ℵ
ω−2

2 ϱ(ϑζ+ω, ϑζ+ω−2) +
1
ℵζ−2

(
ℵζ+ω−3γζ+ω−3 + ℵ

ζ+ω−4γζ+ω−4
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+ · · · + ℵζ+1γζ+1 + ℵ
ζγζ
)

≤ℵ
ω−2

2 ϱ(ϑζ+ω, ϑζ+ω−2) +
1
ℵζ−2

ζ+ω−1∑
i=ζ

ℵiγi

≤ℵ
ω−2

2 βζ+ω−2 +
1
ℵζ−2

∞∑
i=ζ

ℵiγi.

Since βζ ≥ 0, we can assume that βζ > 0, ∀ζ ∈ N. By a similar method, replacing γζ with βζ in (2.3),
there exists ζ2 ∈ N such that

ℵζβζ ≤
1

ζ
1
k

, ∀ζ ≥ ζ2,

which implies limζ→∞ ℵ
ζβζ = 0 and limζ→∞ βζ = 0. Together (a) with (b), for every ω ∈ N, letting

ζ → ∞,

ϱ(ϑn+p, ϑζ)→ 0.

Thus, {ϑζ}ζ∈N is a Cauchy sequence. Since (Υ, ϱ) is complete, there exists ϑ∗ ∈ Υ such that limζ→∞ ϑζ =

ϑ∗. Now

Q(ϱ(Πϑ,Πσ)) ≤ ℓ + Q(ϱ(Πϑ,Πσ)) ≤ ℓ + Q(ℵϱ(Πϑ,Πσ)) ≤ Q(ϱ(ϑ, σ))

holds for all ϑ, σ ∈ Υ with ϱ(Πϑ,Πσ) > 0. Since Q is increasing, then

ϱ(Πϑ,Πσ) ≤ ϱ(ϑ, σ). (2.4)

It follows that

0 ≤ ϱ(ϑζ+1, Πϑ
∗) ≤ ϱ(ϑζ , ϑ∗)→ 0 as ζ → ∞.

Hence, ϑ∗ = Πϑ∗. Suppose that ϑ∗ and σ∗ are two different fixed points of Π . Suppose that, Πϑ∗ =
ϑ∗ , σ∗ = Πσ∗ and (ϑ∗, σ∗) ∈ E(Ω). Then

ℓ + Q(ℵϱ(Πϑ∗, Πσ∗)) ≤ Q(ϱ(ϑ∗, σ∗)) ≤ Q(ℵϱ(ϑ∗, σ∗)) = Q(ℵϱ(Πϑ∗, Πσ∗)),

As ζ → ∞, which implies ℓ ≤ 0, a contradiction. Therefore ϑ∗ = σ∗. Hence, Π has a unique fixed
point in Υ. □

Next, we prove common fixed point theorems on complete graphical Branciari ℵ-metric space.

Theorem 2.2. Let (Υ, ϱ) be a complete graphical Branciari ℵ-metric space with constant ℵ > 1. If
there exist ℓ > 0 and Q ∈ Fℵ,ℓ, such that Λ,Π : Υ −→ Υ are two self mappings on Υ and satisfy

(H1) for every ϑ ∈ Υ, (ϑ, Λϑ) ∈ E(G) and (ϑ,Πϑ) ∈ E(G);

(H2) Π and Λ are generalized G-Q contraction

AIMS Mathematics Volume 9, Issue 11, 32945–32961.
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ℓ + Q(ϱ(Λϑ,Πσ)) ≤ Q(ξ1ϱ(ϑ, σ) + ℵϱ(ϑ, Λϑ) + cϱ(σ,Πσ)), (2.5)

for any ξ1,ℵ, c ∈ [0, 1) with ξ1 + ℵ + c < 1,ℵℵ < 1, and
min{ϱ(Λϑ,Πσ), ϱ(ϑ, σ), ϱ(ϑ, Λϑ), ϱ(σ,Πσ)} > 0 for any (ϑ, σ) ∈ E(G). Then Λ and Π have a unique
common fixed point.

Proof. Let ϑ0 ∈ Υ. Suppose that Λϑ0 = ϑ0, then the proof is finished, so we assume that Λϑ0 , ϑ0.
As (ϑ0, Λϑ0) ∈ E(G), so (ϑ0, ϑ1) ∈ E(G). Also, (ϑ1, Πϑ1) ∈ E(G) gives (ϑ1, ϑ2) ∈ E(G). Continuing
this way, we define a sequence {ϑj} in Υ such that (ϑj, ϑj+1) ∈ E(G) with

Λϑ2j = ϑ2j+1,

Πϑ2j+1 = ϑ2j+2,

j = 0, 1, 2, · · · .
(2.6)

Combining with (2.5) and (2.6), we have

ℓ + Q(ϱ(ϑ2j+1, ϑ2j+2)) = ℓ + Q(ϱ(Λϑ2j, Πϑ2j+1))
≤ Q(ξ1ϱ(ϑ2j, ϑ2j+1) + ℵϱ(ϑ2j, Λϑ2j) + cϱ((ϑ2j+1, Πϑ2j+2))
= Q(ξ1ϱ(ϑ2j, ϑ2j+1) + ℵϱ(ϑ2j, ϑ2j+1) + cϱ((ϑ2j+1, ϑ2j+2)).

Let λ = (ξ1+ℵ)/(1− c), 0 < λ < 1 since ξ1+ℵ+ c < 1. Using the strictly monotone increasing property
of Q,

ϱ((ϑ2j+1, ϑ2j+2)) <
ξ1 + ℵ

1 − c
ϱ(ϑ2j, ϑ2j+1) = λϱ(ϑ2j, ϑ2j+1).

Similarly,

ϱ((ϑ2j+2, ϑ2j+3)) <
ξ1 + ℵ

1 − c
ϱ(ϑ2j+1, ϑ2j+2) = λϱ(ϑ2j+1, ϑ2j+2).

Hence,

ϱ((ϑζ , ϑζ+1)) < λϱ(ϑζ−1, ϑζ), ζ ∈ N.

For any ζ ∈ N, we obtain

ϱ((ϑζ , ϑζ+1)) < λϱ(ϑζ−1, ϑζ) < λ2ϱ(ϑζ−2, ϑζ−1) < · · · < λζϱ(ϑ0, ϑ1).

Notice that

ℓ + Q(ℵϱ(ϑ1, ϑ3)) = ℓ + Q(ℵϱ(Λϑ0, Λϑ2)) ≤ Q(ϱ(ϑ0, ϑ2)),
ℓ + Q(ℵϱ(ϑ2, ϑ4)) = ℓ + Q(ℵϱ(Πϑ1, Πϑ3)) ≤ Q(ϱ(ϑ1, ϑ3)).

Since Q is strictly monotone increasing, we have

ϱ(ϑ1, ϑ3) ≤
1
ℵ
ϱ(ϑ0, ϑ2),
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ϱ(ϑ2, ϑ4) ≤
1
ℵ
ϱ(ϑ1, ϑ3) ≤

1
ℵ2ϱ(ϑ0, ϑ2).

By induction, we obtain

ϱ(ϑζ , ϑζ+2) <
1
ℵζ
ϱ(ϑ0, ϑ2), ζ ∈ N.

We consider the following two cases:
(i) Let m = ζ + ω, if ω is odd and ω > 2, we have

ϱ(ϑζ , ϑm) ≤ℵ(ϱ(ϑζ , ϑζ+1) + ϱ(ϑζ+1, ϑζ+2) + ϱ(ϑζ+2, ϑm))
≤ℵϱ(ϑζ , ϑζ+1) + ℵϱ(ϑζ+1, ϑζ+2) + ℵ2ϱ(ϑn+2, ϑζ+3)
+ ℵ2ϱ(ϑζ+3, ϑζ+4) + ℵ2ϱ(ϑζ+4, ϑm)
≤ℵϱ(ϑζ , ϑζ+1) + ℵϱ(ϑζ+1, ϑζ+2) + ℵ2ϱ(ϑn+2, ϑζ+3)
+ ℵ2ϱ(ϑζ+3, ϑζ+4) + ℵ3ϱ(ϑζ+4, ϑζ+5) + ℵ3ϱ(ϑζ+5, ϑζ+6)

+ · · · + ℵ
m−ζ

2 ϱ(ϑm−2, ϑm−1) + ℵ
m−ζ

2 ϱ(ϑm−1, ϑm)
≤ℵλζϱ(ϑ0, ϑ1) + ℵλζ+1ϱ(ϑ0, ϑ1) + ℵ2λζ+2ϱ(ϑ0, ϑ1)
+ ℵ2λζ+3ϱ(ϑ0, ϑ1) + ℵ3λζ+3ϱ(ϑ0, ϑ1) + ℵ3λζ+4ϱ(ϑ0, ϑ1)

+ · · · + ℵ
m−ζ

2 λm−2ϱ(ϑ0, ϑ1) + ℵ
m−ζ

2 λm−1ϱ(ϑ0, ϑ1)

≤(ℵλζ + ℵ2λζ+2 + ℵ3λζ+4 + · · · + ℵ
m−ζ

2 λm−2)ϱ(ϑ0, ϑ1)

+ (ℵλζ+1 + ℵ2λζ+3 + ℵ3λζ+5 + · · · + ℵ
m−ζ

2 λm−1)ϱ(ϑ0, ϑ1)

≤(ℵλζ + ℵ2λζ+2 + ℵ3λζ+4 + · · · + ℵ
m−ζ

2 λm−2)(1 + λ)ϱ(ϑ0, ϑ1)

≤ℵλζ(1 + ℵλζ+2 + ℵ2λζ+4 + · · · + ℵ
m−ζ−2

2 λm−ζ−2)(1 + λ)ϱ(ϑ0, ϑ1)

≤ℵλζ .
1 − ℵ

m−ζ
2 λm−ζ

1 − ℵλ2 (1 + λ)ϱ(ϑ0, ϑ1)

≤ℵλζ .
1 − ℵ

ω
2 λω

1 − ℵλ2 (1 + λ)ϱ(ϑ0, ϑ1).

(ii) Let m = ζ + ω, if ω is even and ω > 2, we have

ϱ(ϑζ , ϑm) ≤ℵ(ϱ(ϑζ , ϑζ+1) + ϱ(ϑζ+1, ϑζ+2) + ϱ(ϑζ+2, ϑm))
≤ℵϱ(ϑζ , ϑζ+1) + ℵϱ(ϑζ+1, ϑζ+2) + ℵ2ϱ(ϑn+2, ϑζ+3)
+ ℵ2ϱ(ϑζ+3, ϑζ+4) + ℵ2ϱ(ϑζ+4, ϑm)
≤ℵϱ(ϑζ , ϑζ+1) + ℵϱ(ϑζ+1, ϑζ+2) + ℵ2ϱ(ϑn+2, ϑζ+3)
+ ℵ2ϱ(ϑζ+3, ϑζ+4) + ℵ3ϱ(ϑζ+4, ϑζ+5) + ℵ3ϱ(ϑζ+5, ϑζ+6)

+ · · · + ℵ
m−ζ−2

2 ϱ(ϑm−4, ϑm−3) + ℵ
m−ζ−2

2 ϱ(ϑm−3, ϑm−2) + ℵ
m−ζ−2

2 ϱ(ϑm−2, ϑm)
≤ℵλζϱ(ϑ0, ϑ1) + ℵλζ+1ϱ(ϑ0, ϑ1) + ℵ2λζ+2ϱ(ϑ0, ϑ1)
+ ℵ2λζ+3ϱ(ϑ0, ϑ1) + ℵ3λζ+3ϱ(ϑ0, ϑ1) + ℵ3λζ+4ϱ(ϑ0, ϑ1)

+ · · · + ℵ
m−ζ−2

2 λm−4ϱ(ϑ0, ϑ1) + ℵ
m−ζ−2

2 λm−3ϱ(ϑ0, ϑ1) + ℵ
m−ζ−2

2 ϱ(ϑm−2, ϑm)
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≤(ℵλζ + ℵ2λζ+2 + ℵ3λζ+4 + · · · + ℵ
m−ζ−2

2 λm−4)ϱ(ϑ0, ϑ1)

+ (ℵλζ+1 + ℵ2λζ+3 + ℵ3λζ+5 + · · · + ℵ
m−ζ−2

2 λm−3)ϱ(ϑ0, ϑ1)

+ ℵ
m−ζ−2

2 ϱ(ϑm−2, ϑm)

≤(ℵλζ + ℵ2λζ+2 + ℵ3λζ+4 + · · · + ℵ
m−ζ−2

2 λm−4)(1 + λ)ϱ(ϑ0, ϑ1) + ℵ
m−ζ−2

2 ϱ(ϑm−2, ϑm)

≤ℵλζ(1 + ℵλζ+2 + ℵ2λζ+4 + · · · + ℵ
m−ζ−4

2 λm−ζ−4)(1 + λ)ϱ(ϑ0, ϑ1) + ℵ
m−ζ−2

2 ϱ(ϑm−2, ϑm)

≤ℵλζ .
1 − ℵ

m−ζ−2
2 λm−ζ−2

1 − ℵλ2 (1 + λ)ϱ(ϑ0, ϑ1) + ℵ−ζϱ(ϑ0, ϑ2)

≤ℵλζ .
1 − ℵ

ω−2
2 λω−2

1 − ℵλ2 (1 + λ)ϱ(ϑ0, ϑ1) + ℵ−ζϱ(ϑ0, ϑ2).

As m, ζ −→ ∞, ϱ(ϑζ , ϑm) −→ 0 for all ω > 2. Hence, {ϑζ} is a Cauchy sequence in Υ. Since (Υ, ϱ) is
complete, there exists z∗ ∈ Υ such that

lim
ζ→∞

ϱ(ϑζ , z∗) = 0.

Suppose that ϱ(Λz∗, z∗) > 0, then

ℓ + Q(ϱ(Λz∗, ϑ2j+2)) ≤ Q(ξ1ϱ(z∗, ϑ2j+1) + ℵϱ(z∗, Λz∗) + cϱ(ϑ2j+1, ϑ2j+2)).

Using the strictly monotone increasing property of Q, we get

ϱ(Λz∗, ϑ2j+2) < ξ1ϱ(z∗, ϑ2j+1) + ℵϱ(z∗, Λz∗) + cϱ(ϑ2j+1, ϑ2j+2)).

We can also see that

ϱ(Λz∗, z∗) < ℵ[ϱ(Λz∗, ϑ2j+2) + ϱ(ϑ2j+2, ϑ2j+1) + ϱ(ϑ2j+1, z
∗)].

It follows that
1
ℵ
ϱ(Λz∗, z∗) ≤ lim

j→∞
inf ϱ(Λz∗, ϑ2j+2)

≤ lim
j→∞

sup ϱ(Λz∗, ϑ2j+2) ≤ ℵϱ(z∗, Λz∗).

Hence, 1
ℵ
≤ ℵ which is an absurdity. Therefore, ϱ(Λz∗, z∗) = 0. Similarly, we can obtain Πz∗ = z∗.

Therefore, we have

Πz∗ = Λz∗ = z∗.

Suppose that ϑ∗ and σ∗ are two different common fixed points of Λ and Π . Suppose that, Λϑ∗ = ϑ∗ ,
σ∗ = Πσ∗ and (ϑ∗, σ∗) ∈ E(G). Then,

ℓ + Q(ϱ(ϑ∗, σ∗)) = ℓ + Q(ϱ(Λϑ∗, Πσ∗))
≤ Q(ξ1ϱ(ϑ∗, σ∗) + ℵϱ(ϑ∗, Λϑ∗) + cϱ(σ∗, Πσ∗))
= Q(ξ1ϱ(ϑ∗, σ∗) + ℵϱ(ϑ∗, ϑ∗) + cϱ(σ∗, σ∗)).

Using the strictly monotone increasing property of Q, (1 − ξ1)ϱ(ϑ∗, σ∗) < 0, which is an absurdity.
Hence ϑ∗ = σ∗. □
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Example 2.1. Let Υ = Γ ∪ Ψ , where Γ = {1
ζ

: ζ ∈ {2, 3, 4, 5}} and Ψ = [1, 2]. For any ϑ, σ ∈ Υ, we
define ϱ : Υ × Υ −→ [0,+∞) byϱ(ϑ, σ) = ϱ(σ, ϑ) for all ϑ, σ ∈ Υ,

ϱ(ϑ, σ) = 0 ⇐⇒ ϑ = σ.

and 
ϱ(1

2 ,
1
3 ) = ϱ( 1

3 ,
1
4 ) = ϱ( 1

4 ,
1
5 ) = 1

6 ,

ϱ(1
2 ,

1
4 ) = ϱ( 1

3 ,
1
5 ) = 1

7 ,

ϱ(1
2 ,

1
5 ) = ϱ( 1

2 ,
1
4 ) = 1

2 ,

ϱ(ϑ, σ) = |ϑ − σ|2, otherwise.

Clearly, (Υ, ϱ) is a complete graphical Branciari ℵ-metric space with constant ℵ = 3 > 1. Define the
graph Ω by E(Ω) = ∆ + {( 1

3 ,
1
4 ), ( 1

3 ,
1
5 ), ( 1

2 , 2), ( 1
2 ,

1
4 ), ( 1

5 ,
1
2 ), ( 1

5 , 2), (2, 1), (2, 1
3 ), (1, 1

4 ), (1, 1
2 )}.

Figure 2. Graph Ω described in Example 2.3.

Figure 2 represents the directed graph Ω. Let Π : Υ → Υ be a mapping satisfying

Πϑ =

1
2 , ϑ ∈ Γ,
1
3 , ϑ ∈ Ψ.

Now, we verify that Π is a Ω-Q-contraction. We take ϑ = 1
4 ∈ Γ, σ = 2 ∈ Ψ , and ℓ = 0.1. Then,

ϱ(Πϑ,Πσ) = ϱ(1
2 ,

1
3 ) = 1

6 > 0 and

0.1 + 3ϱ(Πϑ,Πσ) = 0.6 < 3.0625 = ϱ(ϑ, σ).

Let Q : (0,+∞)→ R be a mapping defined by Q(ϑ) = ϑ, then it is easy to see that Q ∈ Fℵ,ℓ. Therefore

ℓ + Q(ℵ.ϱ(Πϑ,Πσ)) ≤ Q(ϱ(ϑ, σ)).

Hence, Π fulfills the conditions of Theorem 2.1 and ϑ = 1
2 is the unique fixed point of Π .
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3. Applications

Consider the integral equation:

ϑ(ρ) = µ(ρ) +
∫ ξ1

0
m(ρ, φ)θ(φ, ϑ(φ))dφ, ρ ∈ [0, ξ1], ξ1 > 0. (3.1)

Let Υ = C([0, ξ1],R) be the set of real continuous functions defined on [0, ξ1] and the mapping Π :
Υ → Υ defined by

Π(ϑ(ρ)) = µ(ρ) +
∫ ξ1

0
m(ρ, φ)θ(φ, ϑ(φ))dφ, ρ ∈ [0, ξ1]. (3.2)

Obviously, ϑ(ρ) is a solution of integral Eq (3.1) iff ϑ(ρ) is a fixed point of Π .

Theorem 3.1. Suppose that

(R1) The mappings m : [0, ξ1] × R→ [0,+∞), θ : [0, ξ1] × R→ R, and µ : [0, ξ1]→ R are continuous
functions.

(R2) ∃ ℓ > 0 and ℵ > 1 such that

|θ(φ, ϑ(φ)) − θ(φ, σ(φ))| ≤

√
e−ℓ

ℵ
|ϑ(φ) − σ(φ)| (3.3)

for each φ ∈ [0, ξ1] and ϑ ≤ σ (i.e.,ϑ(φ) ≤ σ(φ))

(R3)
∫ ξ1

0
m(ρ, φ)dφ ≤ 1.

(R4) ∃ ϑ0 ∈ C([0, ξ1],R) such that ϑ0(ρ) ≤ µ(ρ) +
∫ ξ1

0
m(ρ, φ)θ(φ, ϑ0(φ))dφ for all ρ ∈ [0, ξ1]

Then, the integral Eq (3.1) has a unique solution in the set {ϑ ∈ C([0, ξ1],R) : ϑ(ρ) ≤ ϑ0(ρ) or ϑ(ρ) ≥
ϑ0(ρ), for all φ ∈ [0, ξ1]}.

Proof. Define ϱ : Υ × Υ → [0,+∞) given by

ϱ(ϑ, σ) = sup
ρ∈[0,ξ1]

|ϑ(ρ) − σ(ρ)|2

for all ϑ, σ ∈ Υ. It is easy to see that, (Υ, ϱ) is a complete graphical Branciari ℵ-metric space with
ℵ ≥ 1. Define Π : Υ → Υ by

Π(ϑ(ρ)) = µ(ρ) +
∫ ξ1

0
m(ρ, φ)θ(φ, ϑ(φ))dφ, ρ ∈ [0, ξ1]. (3.4)

Consider a graph Ω consisting of V(Ω) := Υ and E(Ω) = {(ϑ, σ) ∈ Υ × Υ : ϑ(ρ) ≤ σ(ρ)}. For each
ϑ, σ ∈ Υ with (ϑ, σ) ∈ E(Ω), we have

|Πϑ(ρ) − Πσ(ρ)|2 =
∣∣∣∣ ∫ a

0
m(ρ, φ)[θ(φ, ϑ(φ)) − θ(φ, σ(φ))]du

∣∣∣∣2
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≤
( ∫ a

0
m(ρ, φ)

√
e−ℓ

ℵ
|ϑ(φ) − σ(φ)|du

)2
≤

e−ℓ

ℵ

( ∫ a

0
m(ρ, φ)du

)2
sup
φ∈[0,a]

|ϑ(φ) − σ(φ)|2

≤
e−ℓ

ℵ
ϱ(ϑ, σ).

Thus,

ℵϱ(Πϑ,Πσ) ≤ e−ℓϱ(ϑ, σ),

which implies that

ℓ + ln(ℵϱ(Πϑ,Πσ)) ≤ ln(ϱ(ϑ, σ)),

for each ϑ, σ ∈ Υ. By (R4), we have (ϑ0, Πϑ0) ∈ E(Ω), so that [ϑ0]lΩ = {ϑ ∈ C([0, ξ1],R) : ϑ(ρ) ≤
ϑ0(ρ) or ϑ(ρ) ≥ ϑ0(ρ), for all φ ∈ [0, ξ1]}. Therefore, all the hypotheses of Theorem 2.1 are fulfilled.
Hence, the integral equation has a unique solution. □

4. Application to fractional differential equations

We recall many important definitions from fractional calculus theory . For a function ϑ ∈ C[0, 1],
the Reiman-Liouville fractional derivative of order δ > 0 is given by

1
Γ(ξ − δ)

dξ

dtξ

∫ t

0

ϑ(e)de
(t − e)δ−ξ+1 = D

δϑ(t),

provided that the right hand side is pointwise defined on [0, 1], where [δ] is the integer part of the
number δ,Γ is the Euler gamma function. For more details, one can see [26–29].

Consider the following fractional differential equation

eDηϑ(t) + f(t, ϑ(t)) = 0, 0 ≤ t ≤ 1, 1 < η ≤ 2;
ϑ(0) = ϑ(1) = 0, (4.1)

where f is a continuous function from [0, 1]×R to R and eDη represents the Caputo fractional derivative
of order η and it is defined by

eDη =
1

Γ(ξ − η)

∫ t

0

ϑξ(e)de
(t − e)η−ξ+1 .

Let Υ = (C[0, 1],R) be the set of all continuous functions defined on [0, 1]. Consider ϱ : Υ × Υ → R+

to be defined by

ϱ(ϑ, ϑ
′

) = sup
t∈[0,1]

|ϑ(t) − ϑ
′

(t)|2
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for all ϑ, ϑ
′

∈ Υ. Then (Υ, ϱ) is a complete graphical Branciari ℵ-metric space with ℵ ≥ 1. The given
fractional differential equation (4.1) is equivalent to the succeeding integral equation

ϑ(t) =
∫ 1

0
G(t, e)f(q, ϑ(e))de,

where

G(t, e) =

 [t(1−e)]η−1−(t−e)η−1

Γ(η) , 0 ≤ e ≤ t ≤ 1,
[t(1−e)]η−1

Γ(η) , 0 ≤ t ≤ e ≤ 1.

Define Π : Υ → Υ defined by

Πϑ(t) =
∫ 1

0
G(t, e)f(q, ϑ(e))de.

It is easy to note that if ϑ∗ ∈ Π is a fixed point of Π then ϑ∗ is a solution of the problem (4.1).

Theorem 4.1. Assume the fractional differential Eq (4.1). Suppose that the following conditions are
satisfied:

(S1) there exists t ∈ [0, 1], ℵ ∈ (0, 1) and ϑ, ϑ
′

∈ Υ such that

|f(t, ϑ) − f(t, ϑ
′

)| ≤

√
e−ℓ

ℵ
|ϑ(t) − ϑ

′

(t)|

for all ϑ ≤ ϑ
′

(i.e.,ϑ(t) ≤ ϑ
′

(t)).

(S2)

sup
t∈[0,1]

∫ 1

0
|G(t, e)|de ≤ 1.

(S3) ∃ ϑ0 ∈ C([0, 1],R) such that ϑ0(t) ≤
∫ 1

0
G(t, e)f(q, ϑ(e))de for all t ∈ [0, 1].

Then the fractional differential Eq (4.1) has a unique solution in the set {ϑ ∈ C([0, 1],R) : ϑ(t) ≤
ϑ0(t) or ϑ(t) ≥ ϑ0(t), for all t ∈ [0, 1]}.

Proof. Consider a graph Ω consisting ofV(Ω) := Υ and E(Ω) = {(ϑ, ϑ
′

) ∈ Υ × Υ : ϑ(ρ) ≤ σ(ρ)}. For
each ϑ, ϑ

′

∈ Υ with (ϑ, ϑ
′

) ∈ E(Ω), we have

|Πϑ(t) − Πϑ
′

(t)|2 =
∣∣∣∣∣ ∫ 1

0
G(t, e)f(q, ϑ(e))de −

∫ 1

o
G(t, e)f(q, ϑ

′

(e))de
∣∣∣∣∣2

≤

( ∫ 1

0
|G(t, e)|de

)2( ∫ 1

0

∣∣∣∣∣f(q, ϑ(e)) − f(q, ϑ
′

(e))
∣∣∣∣∣de)2

≤
e−ℓ

ℵ

∣∣∣ϑ(t) − ϑ
′

(t)
∣∣∣2.

Taking the supremum on both sides, we get

ℓ + ln(ℵϱ(Πϑ,Πϑ
′

)) ≤ ln(ϱ(ϑ, ϑ
′

)),

for each ϑ, ϑ
′

∈ Υ. By (S3), we have (ϑ0, Πϑ0) ∈ E(Ω), so that [ϑ0]lΩ = {ϑ ∈ C([0, 1],R) : ϑ(t) ≤
ϑ0(t) or ϑ(t) ≥ ϑ0(t), for all t ∈ [0, 1]}. Therefore, all the hypotheses of Theorem 2.1 are fulfilled.
Hence, the fractional differential Eq (4.1) has a unique solution. □
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5. Conclusions

In this paper, we have established fixed point results for Ω-Q-contraction in the setting of complete
graphical Branciari ℵ -metric spaces. The directed graphs have been supported by Figures 1 and 2.
The proven results have been supplemented with a non-trivial example and also applications to solve
Fredholm integral equation and fractional differential equation have also been provided.
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