This paper provided a review of the Lurie problem and its applications to control as well as modeling problems in the medical and biological fields, highlighting its connection with robust control theory, more specifically the works of Doyle, Skogestad, and Zhou. The Lurie problem involved the study of control systems with nonlinearities incorporated into the feedback loop. Providing a simpler and broader approach, this review returned to the Lurie problem, covering basic stability concepts and Aizerman's conjecture, establishing it as a special instance of the Lurie problem. The paper also explained the connection between the Lurie problem and robust control theory, which resulted in the establishment of new conditions for the Lurie problem. The principal contribution of this paper was a comprehensive review, utilizing the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology of the applications of the Lurie problem in the medical and biological fields, demonstrating its significance in various domains such as medical device controllers, mechanical ventilation systems, patient-robot-therapist collaboration, tele-surgery, fluid resuscitation control, nanobiomedicine actuators, anesthesia systems, cardiac mechanics models, oncology cell dynamics, epidemiological models, diabetes modeling, population dynamics and neuroscience, including artificial neural networks (ANN). This article seeked to present the latest advancements in the Lurie problem, offering an update for researchers in the area and a valuable starting point for new researchers with several suggestions for future work, showcasing the importance of Lurie-type systems theory in advancing medical research and applications.
Citation: Rafael F. Pinheiro, Rui Fonseca-Pinto, Diego Colón. A review of the Lurie problem and its applications in the medical and biological fields[J]. AIMS Mathematics, 2024, 9(11): 32962-32999. doi: 10.3934/math.20241577
This paper provided a review of the Lurie problem and its applications to control as well as modeling problems in the medical and biological fields, highlighting its connection with robust control theory, more specifically the works of Doyle, Skogestad, and Zhou. The Lurie problem involved the study of control systems with nonlinearities incorporated into the feedback loop. Providing a simpler and broader approach, this review returned to the Lurie problem, covering basic stability concepts and Aizerman's conjecture, establishing it as a special instance of the Lurie problem. The paper also explained the connection between the Lurie problem and robust control theory, which resulted in the establishment of new conditions for the Lurie problem. The principal contribution of this paper was a comprehensive review, utilizing the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology of the applications of the Lurie problem in the medical and biological fields, demonstrating its significance in various domains such as medical device controllers, mechanical ventilation systems, patient-robot-therapist collaboration, tele-surgery, fluid resuscitation control, nanobiomedicine actuators, anesthesia systems, cardiac mechanics models, oncology cell dynamics, epidemiological models, diabetes modeling, population dynamics and neuroscience, including artificial neural networks (ANN). This article seeked to present the latest advancements in the Lurie problem, offering an update for researchers in the area and a valuable starting point for new researchers with several suggestions for future work, showcasing the importance of Lurie-type systems theory in advancing medical research and applications.
[1] | A. I. Lurie, V. N. Postnikov, On the theory of stability of control systems, Prikl. Mat. Mekh., 8 (1944), 246–248. |
[2] | R. F. Pinheiro, D. Colón, L. L. R. Reinoso, Relating Lurie's problem, Hopfield's network and Alzheimer's disease, Congresso Brasileiro de Automática-CBA, 2 (2020), 1–8. https://doi.org/10.48011/asba.v2i1.1624 doi: 10.48011/asba.v2i1.1624 |
[3] | R. F. Pinheiro, D. Colón, R. Fonseca-Pinto, An improved Alzheimer-like disease computational model via delayed Hopfield network with Lurie control system for healing, TechRxiv, 2023. https://doi.org/10.36227/techrxiv.24146775.v1 doi: 10.36227/techrxiv.24146775.v1 |
[4] | X. Liao, P. Yu, Absolute stability of nonlinear control systems, Springer Dordrecht, 2008. https://doi.org/10.1007/978-1-4020-8482-9 |
[5] | G. Zames, On the input-output stability of time-varying nonlinear feedback systems–part Ⅱ: conditions involving circles in the frequency plane and sector nonlinearities, IEEE Trans. Automat. Contr., 11 (1966), 465–476. https://doi.org/10.1109/TAC.1966.1098356 doi: 10.1109/TAC.1966.1098356 |
[6] | V. M. Popov, Absolute stability of nonlinear systems of automatic control, Avtom. Telemekh., 22 (1961), 857–875. |
[7] | X. Zhang, B. Cui, Synchronization of Lurie system based on contraction analysis, Appl. Math. Comput., 223 (2013), 180–190. https://doi.org/10.1016/j.amc.2013.07.080 doi: 10.1016/j.amc.2013.07.080 |
[8] | X. Zhang, H. Xian, Absolute stability of the fifth-order Lurie direct control systems, 2018 Chinese Automation Congress (CAC), 2018, 4232–4236. https://doi.org/10.1109/CAC.2018.8623462 doi: 10.1109/CAC.2018.8623462 |
[9] | M. A. Aizerman, On the effect of nonlinear functions of several variables on the stability of automatic control systems, Autom. Telemekh., 8 (1947), 12. |
[10] | N. N. Krasovskii, On the stability of the solutions of a system of two differential equations, Prikl. Mat. Mekh., 17 (1953), 651–672. |
[11] | R. E. Kalman, Liapunov functions for the problem of Lurie in automatic control, Proc. Natl. Acad. Sci., 49 (1963), 201–205. https://doi.org/10.1073/pnas.49.2.201 doi: 10.1073/pnas.49.2.201 |
[12] | A. Kazemy, M. Farrokhi, Synchronization of chaotic Lur'e systems with state and transmission line time delay: a linear matrix inequality approach, Trans. Inst. Meas. Control, 39 (2017), 1703–1709. https://doi.org/10.1177/0142331216644497 doi: 10.1177/0142331216644497 |
[13] | H. Lin, C. Wang, Y. Tan, Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation, Nonlinear Dyn., 99 (2020), 2369–2386. https://doi.org/10.1007/s11071-019-05408-5 doi: 10.1007/s11071-019-05408-5 |
[14] | Y. V. Venkatesh, Frequency-domain stability criteria for SISO and MIMO nonlinear feedback systems with constant and variable time-delays, Control Theory Technol., 14 (2016), 347–368. https://doi.org/10.1007/s11768-016-6084-8 doi: 10.1007/s11768-016-6084-8 |
[15] | Y. V. Venkatesh, On the $\ell_2$-stability of time-varying linear and nonlinear discrete-time MIMO systems, Control Theory Technol., 12 (2014), 250–274. https://doi.org/10.1007/s11768-014-4045-7 doi: 10.1007/s11768-014-4045-7 |
[16] | Z. Huang, Y. V. Venkatesh, C. Xiang, T. H. Lee, Frequency-domain $\ell_2$-stability conditions for time-varying linear and nonlinear MIMO systems, Control Theory Technol., 12 (2014), 13–34. https://doi.org/10.1007/s11768-014-0182-2 doi: 10.1007/s11768-014-0182-2 |
[17] | S. F. Abtahi, E. A. Yazdi, Robust control synthesis using coefficient diagram method and $\mu$-analysis: an aerospace example, Int. J. Dynam. Control, 7 (2019), 595–606. https://doi.org/10.1007/s40435-018-0462-7 doi: 10.1007/s40435-018-0462-7 |
[18] | D. S. Bernstein, W. M. Haddad, A. G. Sparks, A Popov criterion for uncertain linear multivariable systems, Automatica, 31 (1995), 1061–1064. https://doi.org/10.1016/0005-1098(95)00025-R doi: 10.1016/0005-1098(95)00025-R |
[19] | C. M. Lee, J. C. Juang, A novel approach to stability analysis of multivariable Lur'e systems, IEEE Int. Conf. Mechatron. Autom., 2005,199–203. https://doi.org/10.1109/ICMA.2005.1626547 doi: 10.1109/ICMA.2005.1626547 |
[20] | L. Alvergue, G. Gu, S. Acharya, A generalized sector-bound approach to feedback stabilization of nonlinear control systems, Int. J. Robust Nonlinear Control, 23 (2013), 1563–1580. https://doi.org/10.1002/rnc.2843 doi: 10.1002/rnc.2843 |
[21] | N. Tan, D. P. Atherton, Robustness analysis of control systems with mixed perturbations, Trans. Inst. Meas. Control, 25 (2003), 163–184. https://doi.org/10.1191/0142331203tm081oa doi: 10.1191/0142331203tm081oa |
[22] | J. Carrasco, M. C. Turner, W. P. Heath, Zames-Falb multipliers for absolute stability: from O'Shea's contribution to convex searches, Eur. J. Control, 28 (2016), 1–19. https://doi.org/10.1016/j.ejcon.2015.10.003 doi: 10.1016/j.ejcon.2015.10.003 |
[23] | M. M. Seron, J. A. De Doná, On invariant sets and closed-loop boundedness of Lure-type nonlinear systems by LPV-embedding, Int. J. Robust Nonlinear Control, 26 (2015), 1092–1111. https://doi.org/10.1002/rnc.3354 doi: 10.1002/rnc.3354 |
[24] | X. Yu, F. Liao, Preview tracking control for discrete-time nonlinear Lur'e systems with sector-bounded nonlinearities, Trans. Inst. Meas. Control, 41 (2019), 2726–2737. https://doi.org/10.1177/0142331218808348 doi: 10.1177/0142331218808348 |
[25] | Z. Sun, Recent advances on analysis and design of switched linear systems, Control Theory Technol., 15 (2017), 242–244. https://doi.org/10.1007/s11768-017-6198-7 doi: 10.1007/s11768-017-6198-7 |
[26] | W. Duan, B. Du, Y. Li, C. Shen, X. Zhu, X. Li, et al., Improved sufficient LMI conditions for the robust stability of time-delayed neutral-type Lur'e systems, Int. J. Control Autom. Syst., 16 (2018), 2343–2353. https://doi.org/10.1007/s12555-018-0138-2 doi: 10.1007/s12555-018-0138-2 |
[27] | Q. Gao, J. Du, X. Liu, An improved absolute stability criterion for time-delay Lur'e systems and its frequency domain interpretation, Circuits Syst. Signal Process., 36 (2017), 916–930. https://doi.org/10.1007/s00034-016-0338-z doi: 10.1007/s00034-016-0338-z |
[28] | X. Qi, J. Li, Y. Xia, Z. Gao, On the robust stability of active disturbance rejection control for SISO systems, Circuits Syst. Signal Process., 36 (2017), 65–81. https://doi.org/10.1007/s00034-016-0302-y doi: 10.1007/s00034-016-0302-y |
[29] | T. Naderi, D. Materassi, G. Innocenti, R. Genesio, Revisiting Kalman and Aizerman conjectures via a graphical interpretation, IEEE Trans. Automat. Control, 64 (2019), 670–682. https://doi.org/10.1109/TAC.2018.2849597 doi: 10.1109/TAC.2018.2849597 |
[30] | A. Imani, A multi-loop switching controller for aircraft gas turbine engine with stability proof, Int. J. Control Autom. Syst., 17 (2019), 1359–1368. https://doi.org/10.1007/s12555-018-0803-5 doi: 10.1007/s12555-018-0803-5 |
[31] | W. M. Haddad, D. S. Bernstein, Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle, and Popov theorems and their application to robust stability. part Ⅰ: continuous-time theory, Int. J. Robust Nonlinear Control, 3 (1993), 313–339. https://doi.org/10.1002/rnc.4590030403 doi: 10.1002/rnc.4590030403 |
[32] | J. Doyle, Analysis of feedback systems with structured uncertainties, IEE Proceedings D (Control Theory and Applications), IET Digital Library, 129 (1982), 242–250. |
[33] | J. Doyle, Structured uncertainty in control system design, 1985 24th IEEE Conference on Decision and Control, 1985,260–265. https://doi.org/10.1109/CDC.1985.268842 doi: 10.1109/CDC.1985.268842 |
[34] | J. Doyle, ONR/Honeywell workshop on advances on multivariable control, Honeywell Workshop on Advances in Multivariable Control, 1984. |
[35] | K. Zhou, J. C. Doyle, K. Glover, Robust and optimal control, Prentice-Hall, Inc., 1996. |
[36] | S. Skogestad, I. Postlethwaite, Multivariable feedback control: analysis and design, 2 Eds., John Wiley & Sons, 2007. |
[37] | Z. Wang, P. Lundström, S. Skogestad, Representation of uncertain time delays in the ${H}_\infty$ framework, Int. J. Control, 59 (1994), 627–638. https://doi.org/10.1080/00207179408923097 doi: 10.1080/00207179408923097 |
[38] | R. F. Pinheiro, The Lurie problem and its relationships with artificial neural networks and alzheimer-like disease, Ph.D. Thesis, University of São Paulo, 2021. |
[39] | R. F. Pinheiro, D. Colón, On the $\mu$-analysis and synthesis of MIMO Lurie-type systems with application in complex networks, Circuits Syst. Signal Process., 40 (2021), 193–232. https://doi.org/10.1007/s00034-020-01464-0 doi: 10.1007/s00034-020-01464-0 |
[40] | R. F. Pinheiro, D. Colón, Analysis and synthesis of single-input-single-output Lurie type systems via $\mathscr{H}_{\infty}$ mixed-sensitivity, Trans. Inst. Meas. Control, 44 (2021), 133–143. https://doi.org/10.1177/01423312211025953 doi: 10.1177/01423312211025953 |
[41] | R. F. Pinheiro, D. Colón, Controller by $\mathcal{H}_{\infty}$ mixed-sensitivity design (S/KS/T) for Lurie type systems, 24th ABCM International Congress of Mechanical Engineering, Curitiba, 2017. |
[42] | R. F. Pinheiro, D. Colón, Robust digital controllers via $H_\infty$ design for Lurie type systems, J. Appl. Instrum. Control, 10 (2022), 9–18. https://doi.org/10.3895/jaic.v10n1.15359 doi: 10.3895/jaic.v10n1.15359 |
[43] | R. F. Pinheiro, D. Colón, On the $\mu$-analysis and synthesis for uncertain time-delay systems with Padé approximations, J. Franklin Inst., 361 (2024), 106643. https://doi.org/10.1016/j.jfranklin.2024.01.044 doi: 10.1016/j.jfranklin.2024.01.044 |
[44] | M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. et al., The PRISMA 2020 statement: an updated guideline for reporting systematic reviews, BMJ, 2021, 1–9. https://doi.org/10.1136/bmj.n71 doi: 10.1136/bmj.n71 |
[45] | K. Ogata, Modern control engineering, 5 Eds., Prentice Hall, 2010. |
[46] | V. Rǎsvan, Systems with monotone and slope restricted nonlinearities, Tatra Mt. Math. Publ., 48 (2011), 165–187. https://doi.org/10.2478/v10127-011-0016-2 doi: 10.2478/v10127-011-0016-2 |
[47] | Q. L. Han, Absolute stability of time-delay systems with sector-bounded nonlinearity, Automatica, 41 (2005), 2171–2176. https://doi.org/10.1016/j.automatica.2005.08.005 doi: 10.1016/j.automatica.2005.08.005 |
[48] | J. Huang, Y. Yang, Z. Han, J. Zhang, Robust absolute stability criterion for uncertain Lur'e differential inclusion systems with time delay, Circuits Syst. Signal Process., 31 (2012), 2001–2017. https://doi.org/10.1007/s00034-012-9430-1 doi: 10.1007/s00034-012-9430-1 |
[49] | J. Zhou, H. Lai, B. Men, ${H}_\infty$ control for Lur'e singular systems with time delays, Circuits Syst. Signal Process., 41 (2022), 1367–1388. https://doi.org/10.1007/s00034-021-01844-0 doi: 10.1007/s00034-021-01844-0 |
[50] | L. Zhang, S. Wang, W. Yu, Y. Song, New absolute stability results for Lurie systems with interval time-varying delay based on improved Wirtinger-type integral inequality, Int. J. Robust Nonlinear Control, 29 (2019), 2422–2437. https://doi.org/10.1002/rnc.4526 doi: 10.1002/rnc.4526 |
[51] | X. Yu, R. Lu, Y. Hua, Absolute stability of time-delayed Lurie direct control systems with unbounded coefficients, J. Nonlinear Funct. Anal., 2024 (2024), 9. https://doi.org/10.23952/jnfa.2024.9 doi: 10.23952/jnfa.2024.9 |
[52] | M. De Guzman, Ecuaciones diferenciales ordinarias: teoría de estabilidad y control, Alhambra, Madrid, 1975. |
[53] | R. F. Pinheiro, The Lurie problem and applications to neural networks, MS. Thesis, University of São Paulo, Mathematics and Statistics Institute, 2015. |
[54] | V. Rǎsvan, D. Popescu, On the problem of Aizerman, 2012 16th International Conference on System Theory, Control and Computing (ICSTCC), 2012, 1–6. |
[55] | V. A. Pliss, Aizerman problem for dimension 3 (in Russian), Dokl. Akad. Nauk., 17 (1958). |
[56] | H. K. Khalil, Nonlinear systems, 3 Eds., Prentice Hall, 2002. |
[57] | J. J. Slotine, W. Li, Applied nonlinear control, Prentice-Hall, 1991. |
[58] | G. E. Dullerud, F. G. Paganini, A course in robust control theory: a convex approach: a convex approach, Springer New York, 2013. |
[59] | J. J. Chang, S. Syafiie, Stability analysis of closed-loop anaesthesia system with nonlinear uncertainty: a circle criterion approach, 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), 2016,664–668. https://doi.org/10.1109/IECBES.2016.7843533 doi: 10.1109/IECBES.2016.7843533 |
[60] | F. Regazzoni, A. Quarteroni, An oscillation-free fully staggered algorithm for velocity-dependent active models of cardiac mechanics, Comput. Methods Appl. Mech. Eng., 373 (2021), 113506. https://doi.org/10.1016/j.cma.2020.113506 doi: 10.1016/j.cma.2020.113506 |
[61] | M. M Aziz, Z. Al-Nuaimi, R. Y. Y. Alkhayat, Stability analysis of mathematical models of diabetes type one by using Pade approximate, 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), 2023, 1–6. https://doi.org/10.1109/ICFDA58234.2023.10153325 doi: 10.1109/ICFDA58234.2023.10153325 |
[62] | J. Z. Zhang, Z. Jin, Q. X. Liu, Z. Y. Zhang, Analysis of a delayed SIR model with nonlinear incidence rate, Discrete Dyn. Nat. Soc., 2008 (2008), 636153. https://doi.org/10.1155/2008/636153 doi: 10.1155/2008/636153 |
[63] | K. B. Blyuss, Y. N. Kyrychko, Instability of disease-free equilibrium in a model of malaria with immune delay, Math. Biosci., 248 (2014), 54–56. https://doi.org/10.1016/j.mbs.2013.12.005 doi: 10.1016/j.mbs.2013.12.005 |
[64] | I. Ncube, Absolute stability and Hopf bifurcation in a Plasmodium falciparum malaria model incorporating discrete immune response delay, Math. Biosci., 243 (2013), 131–135. https://doi.org/10.1016/j.mbs.2013.02.010 doi: 10.1016/j.mbs.2013.02.010 |
[65] | L. Liu, A delayed SIR model with general nonlinear incidence rate, Adv. Differ. Equ., 2015 (2015), 329. https://doi.org/10.1186/s13662-015-0619-z doi: 10.1186/s13662-015-0619-z |
[66] | D. Franco, C. Guiver, H. Logemann, J. Perán, Boundedness, persistence and stability for classes of forced difference equations arising in population ecology, J. Math. Biol., 79 (2019), 1029–1076. https://doi.org/10.1007/s00285-019-01388-7 doi: 10.1007/s00285-019-01388-7 |
[67] | S. Majima, K. Matsushima, On a micro-manipulator for medical application-stability consideration of its bilateral controller, Mechatronics, 1 (1991), 293–309. https://doi.org/10.1016/0957-4158(91)90016-4 doi: 10.1016/0957-4158(91)90016-4 |
[68] | M. F. Shakib, A. Y. Pogromsky, A. Pavlov, N. van de Wouw, Computationally efficient identification of continuous-time Lur'e-type systems with stability guarantees, Automatica, 136 (2022), 110012. https://doi.org/10.1016/j.automatica.2021.110012 doi: 10.1016/j.automatica.2021.110012 |
[69] | J. Reinders, M. Giaccagli, B. Hunnekens, D. Astolfi, T. Oomen, N. van De Wouw, Repetitive control for Lur'e-type systems: application to mechanical ventilation, IEEE Trans. Control Syst. Technol., 31 (2023), 1819–1829. https://doi.org/10.1109/TCST.2023.3250966 doi: 10.1109/TCST.2023.3250966 |
[70] | M. Sharifi, H. Salarieh, S. Behzadipour, M. Tavakoli, Patient-robot-therapist collaboration using resistive impedance controlled tele-robotic systems subjected to time delays, J. Mech. Robot., 10 (2018), 061003. https://doi.org/10.1115/1.4040961 doi: 10.1115/1.4040961 |
[71] | M. Souzanchi-K, M. R. Akbarzadeh-T, Brain emotional learning impedance control of uncertain nonlinear systems with time delay: experiments on a hybrid elastic joint robot in telesurgery, Comput. Biol. Med., 138 (2021), 104786. https://doi.org/10.1016/j.compbiomed.2021.104786 doi: 10.1016/j.compbiomed.2021.104786 |
[72] | D. X. Hohenhaus, W. Yin, A. Tivay, R. Rajamani, J. O. Hahn, Robust output-feedback control of fluid resuscitation with absolute stability guarantee against uncertain physiology and therapeutic responsiveness, Control Eng. Pract., 143 (2024), 105771. https://doi.org/10.1016/j.conengprac.2023.105771 doi: 10.1016/j.conengprac.2023.105771 |
[73] | S. M. Afonin, Absolute stability of control system with electro magneto elastic actuator for nanobiomedicine, Biomed. J. Sci. Tech. Res., 21 (2019), 16027–16030. https://doi.org/10.26717/BJSTR.2019.21.003632 doi: 10.26717/BJSTR.2019.21.003632 |
[74] | M. Forti, A. Liberatore, S. Manetti, M. Marini, On absolute stability of neural networks, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94, 6 (1994), 241–244. https://doi.org/10.1109/ISCAS.1994.409572 doi: 10.1109/ISCAS.1994.409572 |
[75] | E. Kaszkurewicz, A. Bhaya, Comments on "necessary and sufficient condition for absolute stability of neural networks", IEEE Trans. Circuits Syst. I, 42 (1995), 497–499. https://doi.org/10.1109/81.404065 doi: 10.1109/81.404065 |
[76] | S. Townley, A. Ilchmann, M. G. Weiß, W. Mcclements, A. C. Ruiz, D. H. Owens, et al., Existence and learning of oscillations in recurrent neural networks, IEEE Trans. Neural Networks, 11 (2000), 205–214. https://doi.org/10.1109/72.822523 doi: 10.1109/72.822523 |
[77] | Y. Zhang, P. A. Heng, P. Vadakkepat, Absolute periodicity and absolute stability of delayed neural networks, IEEE Trans. Circuits Syst. I, 49 (2002), 256–261. https://doi.org/10.1109/81.983875 doi: 10.1109/81.983875 |
[78] | M. A Cohen, S. Grossberg, Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE Trans. Syst. Man Cybern., 13 (1983), 815–826. https://doi.org/10.1109/TSMC.1983.6313075 doi: 10.1109/TSMC.1983.6313075 |
[79] | N. E Barabanov, D. V. Prokhorov, Global stability analysis of discrete-time recurrent neural networks, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148), 6 (2001), 4550–4555. https://doi.org/10.1109/ACC.2001.945696 doi: 10.1109/ACC.2001.945696 |
[80] | N. E. Barabanov, D. V. Prokhorov, Stability analysis of discrete-time recurrent neural networks, IEEE Trans. Neur. Net., 13 (2002), 292–303. https://doi.org/10.1109/72.991416 doi: 10.1109/72.991416 |
[81] | O. Faugeras, F. Grimbert, J. J. Slotine, Absolute stability and complete synchronization in a class of neural fields models, SIAM J. Appl. Math., 69 (2008), 205–250. https://doi.org/10.1137/070694077 doi: 10.1137/070694077 |
[82] | O. Faugeras, R. Veltz, F. Grimbert, Persistent neural states: stationary localized activity patterns in nonlinear continuous $n$-population, $q$-dimensional neural networks, Neural Comput., 21 (2009), 147–187. https://doi.org/10.1162/neco.2009.12-07-660 doi: 10.1162/neco.2009.12-07-660 |
[83] | R. F. Pinheiro, D. Colón, An application of the Lurie problem in Hopfield neural networks, In: A. Fleury, D. Rade, P. Kurka, Proceedings of DINAME 2017, Springer, 2019,371–382. https://doi.org/10.1007/978-3-319-91217-2_26 |
[84] | Z. Wang, B. Hu, W. Zhou, M. Xu, D. Wang, Hopf bifurcation mechanism analysis in an improved cortex-basal ganglia network with distributed delays: an application to Parkinson's disease, Chaos Soliton. Fract., 166 (2023), 113022. https://doi.org/10.1016/j.chaos.2022.113022 doi: 10.1016/j.chaos.2022.113022 |
[85] | X. Liu, D. Miao, Q. Gao, A robust nonlinear observer for a class of neural mass models, Sci. World J., 2014 (2014), 215943. https://doi.org/10.1155/2014/215943 doi: 10.1155/2014/215943 |
[86] | X. Liu, D. K. Miao, Q. Gao, S. Y. Xu, A novel observer design method for neural mass models, Chinese Phys. B, 24 (2015), 090207. https://doi.org/10.1088/1674-1056/24/9/090207 doi: 10.1088/1674-1056/24/9/090207 |
[87] | C. X. Sun, X. Liu, A state observer for the computational network model of neural populations, Chaos, 31 (2021), 013127. https://doi.org/10.1063/5.0020184 doi: 10.1063/5.0020184 |
[88] | H. Özbay, C. Bonnet, H. Benjelloun, J. Clairambault, Stability analysis of cell dynamics in leukemia, Math. Model. Nat. Pheno., 7 (2012), 203–234. https://doi.org/10.1051/mmnp/20127109 doi: 10.1051/mmnp/20127109 |
[89] | J. Li, Y. Chen, H. Cao, D. Zhang, P. Zhang, A simple model of tumor-immune interaction: the effect of antigen delay, Int. J. Bifurcat. Chaos, 33 (2023), 2350129. https://doi.org/10.1142/S0218127423501298 doi: 10.1142/S0218127423501298 |
[90] | A. El-Gohary, Chaos and optimal control of equilibrium states of tumor system with drug, Chaos Soliton. Fract., 41 (2009), 425–435. https://doi.org/10.1016/j.chaos.2008.02.003 doi: 10.1016/j.chaos.2008.02.003 |
[91] | A. Drozdov, H. Khanina, A model for ultradian oscillations of insulin and glucose, Math. Comput. Model., 22 (1995), 23–38. https://doi.org/10.1016/0895-7177(95)00108-E doi: 10.1016/0895-7177(95)00108-E |
[92] | M. Forti, S. Manetti, M. Marini, Necessary and sufficient condition for absolute stability of neural networks, IEEE Trans. Circuits Syst. I, 41 (1994), 491–494. https://doi.org/10.1109/81.298364 doi: 10.1109/81.298364 |
[93] | J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Natl. Acad. Sci., 81 (1984), 3088–3092. https://doi.org/10.1073/pnas.81.10.3088 doi: 10.1073/pnas.81.10.3088 |
[94] | I. Birs, D. Copot, C. I. Muresan, R. De Keyser, C. M. Ionescu, Robust fractional order PI control for cardiac output stabilisation, IFAC-PapersOnLine, 52 (2019), 994–999. https://doi.org/10.1016/j.ifacol.2019.06.192 doi: 10.1016/j.ifacol.2019.06.192 |
[95] | K. J. Hunt, C. C. Hurni, Robust control of heart rate for cycle ergometer exercise, Med. Biol. Eng. Comput., 57 (2019), 2471–2482. https://doi.org/10.1007/s11517-019-02034-6 doi: 10.1007/s11517-019-02034-6 |
[96] | A. A. M. Semnani, A. R. Vali, S. M. Hakimi, V. Behnamgol, Modelling and design of observer based smooth sliding mode controller for heart rhythm regulation, Int. J. Dyn. Control, 10 (2021), 828–842. https://doi.org/10.1007/s40435-021-00847-8 doi: 10.1007/s40435-021-00847-8 |