Citation: Choukri Derbazi, Hadda Hammouche. Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory[J]. AIMS Mathematics, 2020, 5(3): 2694-2709. doi: 10.3934/math.2020174
[1] | S. Abbas, M. Benchohra, N. Hamidi, et al. Caputo-Hadamard fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 21 (2018), 1027-1045. doi: 10.1515/fca-2018-0056 |
[2] | G. Adomian, G. E. Adomian, Cellular systems and aging models, Comput. Math. Appl., 11 (1985), 283-291. doi: 10.1016/0898-1221(85)90153-1 |
[3] | R. P. Agarwal, D. O'Regan, Toplogical degree theory and its applications, Tylor and Francis, 2006. |
[4] | B. Ahmad and A. Alsaedi, Nonlinear fractional differential equations with nonlocal fractional integro-differential boundary conditions, Bound. Value Probl., 2012 (2012), 124. |
[5] | B. Ahmad, A. Alsaedi and S. K. Ntouyas, Nonlinear Langevin equations and inclusions involving mixed fractional order derivatives and variable coefficient with fractional nonlocal-terminal conditions, AIMS Mathematics, 4 (2019), 626-647. doi: 10.3934/math.2019.3.626 |
[6] | B. Ahmad, M. Alghanmi, S. K. Ntouyas, et al. A study of fractional differential equations and inclusions involving generalized Caputo-type derivative equipped with generalized fractional integral boundary conditions, AIMS Mathematics, 4 (2019), 26-42. |
[7] | A. Ali, B. Samet, K. Shah, et al. Existence and stability of solution to a toppled systems of differential equations of non-integer order, Bound. Value Probl., 2017 (2017), 16. |
[8] | N. Ali, K. Shah, D. Baleanu, et al. Study of a class of arbitrary order differential equations by a coincidence degree method, Bound. Value Probl., 2017 (2017), 111. |
[9] | A. Ardjouni, A. Djoudi, Positive solutions for nonlinear Caputo-Hadamard fractional differential equations with integral boundary conditions, Open J. Math. Anal., 3 (2019), 62-69. |
[10] | A. Ardjouni, Positive solutions for nonlinear Hadamard fractional differential equations with integral boundary conditions, AIMS Mathematics, 4 (2019) 1101-1113. |
[11] | Y. Arioua, N. Benhamidouche, Boundary value problem for Caputo-Hadamard fractional differential equations, Surveys in Mathematics and its Applications, 12 (2017), 103-115. |
[12] | M. B. Zada, K. Shah and R. A. Khan, Existence theory to a coupled system of higher order fractional hybrid differential equations by topological degree theory, Int. J. Appl. Comput. Math., 4 (2018), 102. |
[13] | P. W. Bates, On some nonlocal evolution equations arising in materials science. Nonlinear dynamics and evolution equations, Fields Inst. Commun., 48 (2006), 13-52. |
[14] | M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal., 71 (2009), 2391-2396. doi: 10.1016/j.na.2009.01.073 |
[15] | M. Benchohra, S. Bouriah, J. J. Nieto, Existence of periodic solutions for nonlinear implicit Hadamard's fractional differential equations, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 112 (2018), 25-35. |
[16] | M. Benchohra, Z. Bouteffal, J. Henderson, et al. Measure of noncompactness and fractional integro-differential equations with state-dependent nonlocal conditions in Fréchet spaces, AIMS Mathematics, 5 (2020), 15-25. doi: 10.3934/math.2020002 |
[17] | W. Benhamida, J. R. Graef, S. Hamani, Boundary value problems for Hadamard fractional differential equations with nonlocal multi-point boundary conditions, Fract. Differ. Calc., 8 (2018), 165-176. |
[18] | W. Benhamida, S. Hamani, J. Henderson, Boundary Value Problems For Caputo-Hadamard Fractional Differential Equations, Adv. Theory Nonlinear Anal. Appl., 2 (2018), 138-145. |
[19] | P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Composition of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 269 (2002), 387-400. doi: 10.1016/S0022-247X(02)00049-5 |
[20] | P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamardtype fractional integrals, J. Math. Anal. Appl., 269 (2002), 1-27. doi: 10.1016/S0022-247X(02)00001-X |
[21] | P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1-15. doi: 10.1016/S0022-247X(02)00066-5 |
[22] | A. Bednarz, L. Byszewski, On abstract nonlocal Cauchy problem, Czasopismo Techniczne, (2015), 11-17. |
[23] | L. Byszewski, Theorem about existence and uniqueness of continuous solutions of nonlocal problem for nonlinear hyperbolic equation, Appl. Anal., 12 (1991), 173-180. |
[24] | L. Byszewski, Existence and uniqueness of a classical solution to a functional-differential abstract nonlocal Cauchy problem, J. Appl. Math. Stochastic Anal., 12 (1999), 91-97. doi: 10.1155/S1048953399000088 |
[25] | D. Chergui, T. E. Oussaeif, M. Ahcene, Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions, AIMS Mathematics, 4 (2019), 112-133. doi: 10.3934/Math.2019.1.112 |
[26] | K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, Germany, 1985. |
[27] | Y. Y. Gambo, F. Jarad, D. Baleanu, et al. On Caputo modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2014 (2014), 10. |
[28] | J. R. Graef, N. Guerraiche and S. Hamani, Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces, Stud. Univ. Babes-Bolyai Math., 62 (2017), 427-438. doi: 10.24193/subbmath.2017.4.02 |
[29] | A. Guezane-Lakoud, R. Khaldi, Solvability of a fractional boundary value problem with integral condition, Nonlinear Analysis, 75 (2012), 2692-2700. doi: 10.1016/j.na.2011.11.014 |
[30] | J. Hadamard, Essai sur l'etude des fonctions donnees par leur developpment de Taylor, J. Mat. Pure Appl. Ser., 8 (1892), 101-186. |
[31] | R. Hilfer, Application of fractional calculus in physics, New Jersey: World Scientific, 2001. |
[32] | F. Isaia, On a nonlinear integral equation without compactness, Acta Math. Univ. Comenian. (N.S.), 75 (2006), 233-240. |
[33] | F. Jarad, D. Baleanu, A. Abdeljawad, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. |
[34] | R. A. Khan and K. Shah, Existence and uniqueness of solutions to fractional order multi-point boundary value problems, Communications in Applied Analysis, 19 (2015), 515-526. |
[35] | A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204. |
[36] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Sudies, Elsevier Science, 2006. |
[37] | Z. Laadjal, Q.-H. Ma, Existence and uniqueness of solutions for nonlinear Volterra-Fredholm integro-differential equation of fractional order with boundary conditions, Math. Meth. Appl. Sci., 2019. |
[38] | Q. Ma, R. Wang, J. Wang, et al. Qualitative analysis for solutions of a certain more generalized two-dimensional fractional differential system with Hadamard derivative, Appl. Math. Comput., 257 (2015), 436-445. |
[39] | K. S. Miller, B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, wiley, New YorK, 1993. |
[40] | K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9-12. doi: 10.1016/j.advengsoft.2008.12.012 |
[41] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1993. |
[42] | J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in Fractional Calculus-Theoretical Developments and Applications in Physics and Engineering, Dordrecht: Springer, 2007. |
[43] | K. Shah, A. Ali and R. A. Khan, Degree theory and existence of positive solutions to coupled systems of multi-point boundary value problems, Bound. Value Probl., 2016 (2016), 43. |
[44] | K. Shah and R. A. Khan, Existence and uniqueness results to a coupled system of fractional order boundary value problems by topological degree theory, Numer. Funct. Anal. Optim., 37 (2016), 887-899. doi: 10.1080/01630563.2016.1177547 |
[45] | K. Shah, W. Hussain, P. Thounthong, et al. On nonlinear implicit fractional differential equations with integral boundary condition involving p-Laplacian operator without compactness, Thai J. Math., 16 (2018), 301-321. |
[46] | K. Shah and W. Hussain, Investigating a class of nonlinear fractional differential equations and its Hyers-Ulam stability by means of topological degree theory, Numer. Funct. Anal. Optim., 40 (2019), 1355-1372. doi: 10.1080/01630563.2019.1604545 |
[47] | M. Shoaib, K. Shah, R. Ali Khan, Existence and uniqueness of solutions for coupled system of fractional differential equation by means of topological degree method, Journal Nonlinear Analysis and Application, 2018 (2018), 124-135. |
[48] | V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg & Higher Education Press, Beijing, 2010. |
[49] | J. Tariboon, A. Cuntavepanit, S. K. Ntouyas, et al. Separated boundary value problems of sequential Caputo and Hadamard fractional differential equations, J. Funct. Space. Appl., 2018 (2018), 1-8. |
[50] | J. Wang, Y. Zhou and W. Wei, Study in fractional differential equations by means of topological degree methods, Numer. Funct. Anal. Optim., 33 (2012), 216-238. doi: 10.1080/01630563.2011.631069 |