Citation: Junyong Zhao, Shaofang Hong, Chaoxi Zhu. The number of rational points of certain quartic diagonal hypersurfaces over finite fields[J]. AIMS Mathematics, 2020, 5(3): 2710-2731. doi: 10.3934/math.2020175
[1] | A. Adolphson and S. Sperber, p-Adic estimates for exponential sums and the theorem of ChevalleyWarning, Ann. Sci.'Ecole Norm. Sup., 20 (1987), 545-556. doi: 10.24033/asens.1543 |
[2] | S. Akiyama, On the pure Jacobi sums, Acta Arith., 75 (1996), 97-104. doi: 10.4064/aa-75-2-97-104 |
[3] | T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976. |
[4] | J. Ax, Zeros of polynomials over finite fields, Amer. J. Math., 86 (1964), 255-261. doi: 10.2307/2373163 |
[5] | B. Berndt, R. Evans, K. Williams, Gauss and Jacobi Sums, Wiley-Interscience, New York, 1998. |
[6] | W. Cao, A special degree reduction of polynomials over finite fields with applications, Int. J. Number Theory, 7 (2011), 1093-1102. doi: 10.1142/S1793042111004277 |
[7] | W. Cao and Q. Sun, On a class of equations with special degrees over finite fields, Acta Arith., 130 (2007), 195-202. doi: 10.4064/aa130-2-8 |
[8] | S. Chowla, J. Cowles and M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502-506. doi: 10.1016/0022-314X(77)90010-5 |
[9] | L. Carlitz, The numbers of solutions of a particular equation in a finite field, Publ. Math. Debrecen, 4 (1956), 379-383. |
[10] | S. N. Hu, S. F. Hong and W. Zhao, The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory, 156 (2015), 135-153. doi: 10.1016/j.jnt.2015.04.006 |
[11] | S. N. Hu and J. Y. Zhao, The number of rational points of a family of algebraic varieties over finite fields, Algebra Colloq., 24 (2017), 705-720. doi: 10.1142/S1005386717000475 |
[12] | H. Huang, W. Gao and W. Cao, Remarks on the number of rational points on a class of hypersurfaces over finite fields, Algebra Colloq., 25 (2018), 533-540. doi: 10.1142/S1005386718000366 |
[13] | K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Second Edition, Springer-Verlag, New York, 1990. |
[14] | N. Jacobson, Basic Algebra I, Freeman, New York, 1985. |
[15] | R. Lidl, H. Niederreiter, Finite Fields, second ed., Encyclopedia Math. Appl., Cambridge University Press, Cambridge, 1997. |
[16] | O. Moreno and C. J. Moreno, Improvement of Chevalley-Warningandthe Ax-Katz theorem, Amer. J. Math., 117 (1995), 241-244. doi: 10.2307/2375042 |
[17] | G. Myerson, On the number of zeros of diagonal cubic forms, J. Number Theory, 11 (1979), 95-99. doi: 10.1016/0022-314X(79)90023-4 |
[18] | G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith., 39 (1981), 251-264. doi: 10.4064/aa-39-3-251-264 |
[19] | W. M. Schmidt, Equatuions over Finite Fields, An Elementary Approach, Springer Verlag, BerlinHeidelberg-New York, 1976. |
[20] | T. Storer, Cyclotomy and Difference Sets, Chicago, IL: Marham, 1967. |
[21] | A. Weil, On some exponential sums, Proc. Natu. Acad. Sci., 34 (1948), 204-207. doi: 10.1073/pnas.34.5.204 |
[22] | J. Wolfmann, The number of solutions of certain diagonal equations over finite fields, J. Number Theory, 42 (1992), 247-257. doi: 10.1016/0022-314X(92)90091-3 |
[23] | W. P. Zhang and J. Y. Hu, The number of solutions of the diagonal cubic congruence equation mod p, Math. Rep. (Bucur.), 20 (2018), 73-80. |
[24] | J. Y. Zhao and Y. Zhao, On the number of solutions of two-variable diagonal quartic equations over finite fields, AIMS Math., in press. |