We investigate the existence of fixed point problems on a partial metric space. The results obtained are for set contractions in the domain of sets and the pattern for the partial metric space is constructed on a directed graph. Essentially, our main strategy is to employ generalized $ \phi $-contractions in order to prove our results, where the fixed points are investigated with a graph structure. Moreover, we state and prove the well-posedness of fixed point based problems of the generalized $ \phi $-contractive operator in the framework of a partial metric space. We illustrate the main results in this manuscript by providing several examples.
Citation: Talat Nazir, Zakaria Ali, Shahin Nosrat Jogan, Manuel de la Sen. On a class of fixed points for set contractions on partial metric spaces with a digraph[J]. AIMS Mathematics, 2023, 8(1): 1304-1328. doi: 10.3934/math.2023065
We investigate the existence of fixed point problems on a partial metric space. The results obtained are for set contractions in the domain of sets and the pattern for the partial metric space is constructed on a directed graph. Essentially, our main strategy is to employ generalized $ \phi $-contractions in order to prove our results, where the fixed points are investigated with a graph structure. Moreover, we state and prove the well-posedness of fixed point based problems of the generalized $ \phi $-contractive operator in the framework of a partial metric space. We illustrate the main results in this manuscript by providing several examples.
[1] | M. Abbas, M. R. Alfuraidan, A. R. Khan, T. Nazir, Fixed point results for set-contractions on metric spaces with a directed graph, Fixed Point Theory Appl., 2015 (2015), 14. https://doi.org/10.1186/s13663-015-0263-z doi: 10.1186/s13663-015-0263-z |
[2] | M. Abbas, M. R. Alfuraidan, T. Nazir, M. Rashed, Common fixed points of multivalued $F$-contractions on metric spaces with a directed graph, Carpathian J. Math., 32 (2016), 1–12. |
[3] | M. Abbas, B. Ali, Fixed point of Suzuki-Zamfirescu hybrid contractions in partial metric spaces via partial Hausdorff metric, Fixed Point Theory Appl., 2013 (2013), 1–21. https://doi.org/10.1186/1687-1812-2013-21 doi: 10.1186/1687-1812-2013-21 |
[4] | M. Abbas, V. Parvaneh, A. Razani, Periodic points of $T$-Ciric generalized contraction mappings in ordered metric spaces, Georgian Math. J., 19 (2012), 597–610. https://doi.org/10.1515/gmj-2012-0036 doi: 10.1515/gmj-2012-0036 |
[5] | S. M. A. Aleomraninejad, S. Rezapour, N. Shahzad, Some fixed point results on a metric space with a graph, Topol. Appl., 159 (2012), 659–663. https://doi.org/10.1016/j.topol.2011.10.013 doi: 10.1016/j.topol.2011.10.013 |
[6] | N. Assad, W. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math., 43 (1972), 553–562. http://dx.doi.org/10.2140/pjm.1972.43.553 doi: 10.2140/pjm.1972.43.553 |
[7] | I. Altun, A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl., 2011 (2011), 508730. https://doi.org/10.1155/2011/508730 doi: 10.1155/2011/508730 |
[8] | I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, Topol. Appl., 157 (2010), 2778–2785. https://doi.org/10.1016/j.topol.2010.08.017 doi: 10.1016/j.topol.2010.08.017 |
[9] | H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topol. Appl., 159 (2012), 3234–3242. https://doi.org/10.1016/j.topol.2012.06.012 doi: 10.1016/j.topol.2012.06.012 |
[10] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations inté grales, Fund. Math., 3 (1922), 133–181. |
[11] | F. Bojor, Fixed point of $\varphi $-contraction in metric spaces endowed with a graph, Ann. Univ. Craiova Ser. Mat. Inform., 37 (2010), 85–92. https://doi.org/10.52846/ami.v37i4.374 doi: 10.52846/ami.v37i4.374 |
[12] | C. Chifu, G. Petruşel, Generalized contractions in metric spaces endowed with a graph, Fixed Point Theory Appl., 2012 (2012), 1–9. https://doi.org/10.1186/1687-1812-2012-161 doi: 10.1186/1687-1812-2012-161 |
[13] | N. Hussain, J. R. Roshan, V. Parvaneh, A. Latif, A unification of $G$-metric, partial metric, and $b$-metric spaces, Abstr. Appl. Anal., 2014 (2014), 180698. https://doi.org/10.1155/2014/180698 doi: 10.1155/2014/180698 |
[14] | J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359–1373. https://doi.org/10.1090/S0002-9939-07-09110-1 doi: 10.1090/S0002-9939-07-09110-1 |
[15] | J. Jachymski, I. Jóźwik, Nonlinear contractive conditions: A comparison and related problems, Banach Center Publ., 1 (2007), 123–146. https://doi.org/10.4064/bc77-0-10 doi: 10.4064/bc77-0-10 |
[16] | A. Latif, T. Nazir, M. A. Kutbi, Common fixed point results for class of set-contraction mappings endowed with a directed graph, RACSAM, 113 (2019), 3207–3222. https://doi.org/10.1007/s13398-019-00689-2 doi: 10.1007/s13398-019-00689-2 |
[17] | A. Latif, V. Parvaneh, P. Salimi, A. E. Al-Mazrooei, Various Suzuki type theorems in $b$-metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 363–377. http://dx.doi.org/10.22436/jnsa.008.04.09 doi: 10.22436/jnsa.008.04.09 |
[18] | G. Lin, X. Cheng, Y. Zhang, A parametric level set based collage method for an inverse problem in elliptic partial differential equations, J. Comput. Appl. Math., 340 (2018), 101–121. https://doi.org/10.1016/j.cam.2018.02.008 doi: 10.1016/j.cam.2018.02.008 |
[19] | S. G. Matthews, Partial metric topology, Ann. New York Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x |
[20] | Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Fixed point theorems for weakly $T$-Chatterjea and weakly $T$-Kannan contractions in $b$-metric spaces, J. Inequal. Appl., 2014 (2014), 46. https://doi.org/10.1186/1029-242X-2014-46 doi: 10.1186/1029-242X-2014-46 |
[21] | A. Nicolae, D. O'Regan, A. Petruşel, Fixed point theorems for singlevalued and multivalued generalized contractions in metric spaces endowed with a graph, J. Georgian Math. Soc., 18 (2011), 307–327. https://doi.org/10.1515/gmj.2011.0019 doi: 10.1515/gmj.2011.0019 |
[22] | J. J. Nieto, R. Rodriguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223–239. http://dx.doi.org/10.1007/s11083-005-9018-5 doi: 10.1007/s11083-005-9018-5 |
[23] | A. Pansuwan, W. Sintunavarat, V. Parvaneh, Some fixed point theorems for ($\alpha, \theta, k$)-contractive multi-valued mappings with some applications, Fixed Point Theory Appl., 2015 (2015), 132. https://doi.org/10.1186/s13663-015-0385-3 doi: 10.1186/s13663-015-0385-3 |
[24] | V. Parvaneh, N. Hussain, Z. Kadelburg, Generalized wardowski type fixed point theorems via $\alpha$-admissible $FG$-contractions in $b$-metric spaces, Acta Math. Sci., 36 (2016), 1445–1456. https://doi.org/10.1016/S0252-9602(16)30080-7 doi: 10.1016/S0252-9602(16)30080-7 |
[25] | A. M. C. Ran, M. C. Reuring, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Am. Math. Soc., 132 (2004), 1435–1443. https://doi.org/10.1090/S0002-9939-03-07220-4 doi: 10.1090/S0002-9939-03-07220-4 |
[26] | S. Romaguera, M. Schellekens, Partial metric monoids and semivaluation spaces, Topol. Appl., 153 (2005), 948–962. https://doi.org/10.1016/j.topol.2005.01.023 doi: 10.1016/j.topol.2005.01.023 |
[27] | S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl., 2010 (2010), 493298. https://doi.org/10.1155/2010/493298 doi: 10.1155/2010/493298 |
[28] | J. R. Roshan, N. Shobkolaei, S. Sedghi, V. Parvaneh, S. Radenovic, Common fixed point theorems for three maps in discontinuous $G_b$-metric spaces, Acta Math. Sci., 34 (2014), 1643–1654. https://doi.org/10.1016/S0252-9602(14)60110-7 doi: 10.1016/S0252-9602(14)60110-7 |
[29] | M. P. Schellekens, The correspondence between partial metrics and semivaluations, Theor. Comput. Sci., 315 (2004), 135–149. |
[30] | O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Top., 6 (2005), 229–240. https://doi.org/10.1016/j.tcs.2003.11.016 doi: 10.1016/j.tcs.2003.11.016 |
[31] | Y. Zhang, B. Hofmann, Two new non-negativity preserving iterative regularization methods for ill-posed inverse problems, Inverse Probl. Imag., 15 (2021), 229–256. https://doi.org/10.3934/ipi.2020062 doi: 10.3934/ipi.2020062 |
[32] | Q. Zhang, Y. Song, Fixed point theory for generalized $\varphi $-weak contractions, Appl. Math. Lett., 22 (2009), 75–78. https://doi.org/10.1016/j.aml.2008.02.007 doi: 10.1016/j.aml.2008.02.007 |